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Abstract: Homotopy Analysis Method (HAM) is a semi-analytical technique that has been successfully applied to solve several 

forms of nonlinear, ordinary as well as partial differential equations. HAM yields a family of solutions at any given order of 

approximation with selection of appropriate value of an auxiliary linear operator / convergence control parameter, typically 

denoted as h. In this paper, application of HAM has been specifically proposed for solving nonlinear dynamical systems that are in 

the input affine form which are quite prevalent in nonlinear controls theory. Dynamic Matrix Control (DMC) is a very popular 

and proven linear control technique that has been successfully deployed in several process plants. Simplicity in deployment and 

operation makes DMC a more popular choice than several nonlinear controls techniques. DMC uses the step-response models of a 

given system to achieve desired control action. The model assumes that the nonlinear plant behaviour can be reasonably 

approximated with a linear model around a specific region of operation. However, the continuous time varying nature of the plant 

and changes in the set-point far away from the original operating point pose major challenges for the DMC implementation. This 

is primarily due to the inadequacy of the original linear step-response model to capture the change in dynamics of a nonlinear 

plant, because of which the control performance is compromised. The work presented here shows application of the HAM to 

accomplish both objectives easily so that a better control action is achieved for a given class of non-linear system.  

 

Keywords: Nonlinear dynamical systems, Input affine systems, Homotopy Analysis Method, Nonlinear controls, Dynamic Matrix 

Controls 

 

1. Introduction 
 

Importance and limitations of physical experiments, 

numerical simulations and analytical (approximate) 

solutions to investigate nonlinear problems have been 

discussed widely in the literature [1]. Physical experiments 

consume considerable resources, time and money, where as 

numerical solutions always pose challenges in terms of 

singularity and multiple solutions while dealing with 

nonlinear problems. It is not easy to obtain a closed form 

solution to nonlinear problems. Approximate analytical 

solutions have been proposed using perturbation techniques 

but several short comings of these methods have been 

discussed in the past. Homotopy Analysis Method is an 

approximate analytical technique that has been applied 

successfully across a wide range of nonlinear problems [2-

6]. This encompasses application areas such as fluid 

mechanics, heat and mass transfer, materials and several 

nonlinear systems exhibiting oscillatory behaviour.  

  

In this paper, we would like to show application of HAM 

extended to a class of nonlinear dynamical systems whose 

state-space form is given by, 
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Many first principles models shown in Eq. (1) can further be 

simplified to a control- affine form [7] shown in Eq. (2) 

where the input appears linearly in the system 

uxxfuxF )()(),(                       (2) 

 

The control-affine form has a distinct advantage over its 

variants in the design of model based control law where the 

input can be manipulated to achieve a desired control action. 

One of the very popular and widely accepted model based 

control scheme in the industry is Dynamic Matrix Control 

(DMC). This was the first version of Model Predictive 

Controls (MPC) that uses step response models to compute a 

sequence of control inputs based on an explicit prediction of 

outputs within a future horizon [8]. It is a widely accepted 

fact that the success of model based control schemes are 

directly linked with the ability of the models to track the 

dynamics of the process being controlled [9,10]. It is hence 

not only important for the model to capture dynamics of the 

process being controlled but also update any changes in the 

model parameters frequently. The Extended Kalman Filter 

(EKF) based framework used by Lee & Ricker [10] 

primarily seeks to track the changing model behaviour 

across different operating regimes. EKF linearizes the model 

at every operating point before iteratively computing 

propagation followed by correction.  

 

In this paper, we propose the use of HAM to solve a 

nonlinear dynamical problem defined by Eq. (2). Using the 

exponential base-function, the dynamics of the system is 

generated for different step inputs. Such a solution will 

explicitly capture the impact of different amplitude of steps 

on the output at required operating points as a continuous 

function of time as given by Eq. (3) 

 

),()( tufty                                      (3) 

 

A dynamic heat transfer system proposed by Abbasbandy 

[11] has been used to compare the step response coefficients 

derived from numerical, analytical and HAM based 

solutions. For a pre-determined sampling rate, the step-

response coefficients (SRCs) are estimated from the HAM 

solution. Improvement in performance of DMC is seen 

specifically for the HAM based SRC models against the 
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traditional SRC models derived from the linearization 

approach.  

  

2. Formulation 
 

This section covers the introduction of both the HAM and 

DMC formulation, where the connection between the 

dynamic step response coefficients derived from the HAM 

can be linked with the DMC. The approach has the potential 

to be extended to other forms of model based control such as 

Internal Model Control (IMC) and MPCs. For the benefit of 

the readers the section is divided in to three parts where 

HAM, DMC and the connection between the both are 

elaborately discussed.  

 

2.1. Homotopy Analysis Method 

 

There is a plethora of literature on theory of HAM and 

associated formulation [12,13]. The theory is once again 

discussed below so as to introduce consistency in the 

notation used and also to discuss its connections with the 

control-affine models.  

 

For brevity reasons the non-linear form of Eq. (3) is shown 

as Eq. (4) which is  

  0)(Ν tf                                     (4) 

 

Where   denotes for a non-linear operator and t  an 

independent variable. )(tf is an unknown function. The 

homotopy of the above form can be constructed as  

 

       (t;q)tqhHtfqtqqhtfqtH oo   )()();(1,),(),; L

 (5) 

 

 1,0q shown in Eq. (5) is an embedding parameter, h is 

a non-zero auxiliary parameter, )(tH is an auxiliary 

function  0)( tH , L is an auxiliary linear operator, 

)(tf o is an initial approximation of )(tf that satisfies the 

initial conditions. Likewise, );qt is also the function that 

satisfies initial conditions.  

 

Eq. (6) is called the zero-th order deformation equation and 

is formulated by setting the homotopy to zero  

     (t;q)tqhHtfqtq o   )()();(1 L           (6) 

 

When q is set to zero, Eq. (6) is simplified to the form 

below 

  0)()0(  tft; oL                           (7) 

 

From the definition of L  it follows that 

)()0( tft; o                                    (8) 

 

Similarly, when 1q ,  

  0)1; tN                                        (9) 

  

 It is important to note that Eq. (8) satisfies the initial 

condition of the differential equation. As q varies between 0 

to 1, the );qt varies continuously from the initial 

approximation )(tf o to the final solution. This is carried out 

by developing a series of linear approximations to the non-

linear equation. The m
th 

order linear approximation )(tfm is 

given as 

0
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Eq. (10) is known as the m
th 

order deformation derivative. 

The );( qt when expanded using Taylor series with respect 

to q 
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Substituting Eqs. (8) and (10) in to Eq. (11) 

   
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If the auxiliary linear operator, initial guess, h and the 

auxiliary function are chosen so that the series converges 

when q=1,  
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To deduce )(tfm , Eq. (6) is differentiated with respect to q  

 

  


























q

qtN
tqhHqtNthHtfqt

q

qt
q o

));((
)();()()();(

);
)1(





LL                   (14) 

 

Setting q=0 and  

   )()()(1 tfNthHtf oL                    (15) 

 

If the process is extended further, the form can be expressed 

as  
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By introducing a parameter m  such that  

1m if

1m if
    

0

1









m  

and rearranging Eq. (16) we can obtain 
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The final solution is obtained through  


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Typically, the solution includes finite number of 

approximation unlike as shown in Eq. (18). The convergence 

of the solution is judged based on the graph of the sum of 

finite number of terms evaluated at a specific value of t 

against auxiliary parameter, h. At the point of convergence, 

the graph tends to go horizontal to the axis of parameter t. 

The above formulation of HAM can be used in deducing the 

necessary transfer-function for the DMC. The next section 

discusses in detail the nature of the model needed for 

formulating the DMC control-law.  

 

2.2. Dynamic Matrix Control 

 

DMC uses the step response model for controlling the plant. 

The step response coefficients ig are collected by exciting 

the plant with a step test. It is assumed that the plan is stable 

and the model is adequately able to capture dynamics around 

the region of operation. The response collected with the 

changes in inputs is obtained by  





k

i

i itugty
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)()(                         (19) 

The step response model helps in deducing p
th 

step ahead 

prediction with n control actions and the response is given 

by 

fuGy ˆ                               (20) 

 

Where ŷ is the predicted output, G the step response matrix 

holding system dynamics and f being the free response of 

the system.  

 

Representation of the above terms in the form of matrix is 

given by  
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The free response of the system is thereby computed as  
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The control law is deduced using the objective function 

given by Eq. (23) which is obtained by minimizing deviation 

of the future output ( )(ˆ tjty   from the set-point trajectory 

( )( jtw  ) and is given by  
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 (23) 

The objective function ensures minimizing the difference 

between the estimated output along a prediction horizon 

( p ) with n control moves. The control law hence reduces 

to the form shown in Eq. (24)  

 
n

TT fwGGGu )()1( 1                  (24) 

 

It is important to note that the effectiveness of the control 

action depends on how accurately the step-response model is 

able to capture the dynamics and the gain of the system to be 

controlled. Most of the times, the step-response model is 

obtained by carrying a small step test in the plant or from the 

off-line simulation of the plant model. Although exhaustive 

literature is available on online adaptation, tuning and 

control, the subject has had limited success in industry due 

to several operating constraints and complexity. Leveraging 

the HAM framework for deployment of DMC is covered in 

the subsequent sections. 

 

2.3. HAM based DMC Implementation 

 

In this paper, we propose to leverage the control-affine 

structure shown in Eq. (2). This helps in deducing the step-

response behaviour of the system using HAM. In process 

plants, change in the set-point directs the DMC to bring 

necessary changes in the manipulated variable so that the 

system output is driven successively towards the target. It is 

hence important to capture a more accurate step-response 

model of the system which the controller uses to deduce the 

future input sequence. In the HAM framework, we propose 

to achieve this by selecting an exponential base-function. 

This is also based on the fact that the system being 

controlled exhibits an asymptotically stable behaviour. To 

illustrate HAM based step-response models, a simplified 

form of control-affine model has been chosen such where 

cx  )( in Eq. (3). Combining Eqs. (2) and (3), a 

simplified form of a dynamical system is shown in Eq. (25) 

cuxfx  )(                                       (25) 

 

)(xf could a linear or non-linear representation of the 

state-variable x  and cx  )( is a special case of control-

affine structure. Let su and sx represent initial steady-state 

state of the system. Deviation from the steady-state 

essentially can be described as 

   ss uuc)f(xf(x)x                      (26) 
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suu   represent the amplitude of the step-change in 

the input. By rearranging the terms in Eq. (26)  

 





 c

xfxf
x

c

s )()(
1

1
                         (27) 

 

The RHS of the Eq. (27) can be assigned to a pseudo-

variable )( and solved using HAM. This modified form 

shown in Eq. (27) offers some distinct advantages while 

dealing with different nonlinear forms of )(xf described by 

Eq. (25). However, it is to be noted that depending on the 

nature of the model, appropriate modifications of Eq. (25) 

need to be used. The next section shows an example of a 

nonlinear system which was solved using HAM to derive the 

step-response model.  

 

3. HAM based Step-response Model  
 

In this section, a liquid level system exhibiting nonlinear 

dynamics has been chosen as an example. The system has 

been a popular example in the area of process modelling and 

simulation in the literature [14-16]. For an incompressible 

fluid, the basic model for the liquid level system is given by 




kF
dt

d
A i   (28)  

The afore mentioned system is a continuous flow system 

with volumetric flow rate of incompressible fluid equal 

to iF  and flow coefficient- k . The  defines height of the 

liquid in the tank with constant cross-sectional area A. It is 

to be noted that the model of the system is a nonlinear first-

order differential equation. 

 

The corresponding steady-state representation of the above 

system is given by  

ssi kF ,                                    (29) 

 

Hence, the deviation of the system from the original steady-

state on applying a step-change with amplitude  is given 

by 

 sk
dt
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or 
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k
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
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
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Assigning the RHS of Eq. (31) to and by re-writing the 

differential w.r.t to the newly assigned variable, the Eq. (31) 

can be written as  
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For a given step-change, the terms in the bracket of Eq. (32) 

are constants and hence the equation is ready to be solved 

using HAM. The modified form will hence be 
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The base function for Eq. (33) is taken as 
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where nd is a coefficient to be determined. As shown in Eq. 

(15), the linear operator is chosen as  
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such that 

  01 tecL                                    (36)  

 

Where 1c  is constant. From Eq. (33) 
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As per Eq. (33) the initial approximation should be in the 

form  

 
tety )(0  and the initial condition of the zeroth -order 

deformation Eq. (6) is  
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The 
thm order deformation for 1m is 
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The respective solutions for different orders of 

approximation are obtained as below 
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The m
th

 order approximation of )(t is given by 
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For third-order approximation Eq. (40) could be written as  
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Remark 1:  

It is to be noted that this formulation specifically serves to 

estimate response for a non-linear system perturbed with 

step-input of definite amplitude. Therefore, deviation of the 

system from the previous steady-state can be estimated for 

any amplitude of the input from the previously known 

steady-state of the system. Response of the system from the 

earlier steady-state is estimated by using Eq. (31) where 

 
2

)(1)( 







 st

k

Δ
t   

  

Remark 2:  

It is also important to deduce appropriate value of h before 

using the proposed formulation.  
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Figure 1: Comparison of step-response behavior for a positive step-change 

 

The response obtained from numerical simulation is 

compared with the one predicted by HAM in Fig.1. The 

parameters of the system are chosen to be 75.0A m
2
, 

k =2.5 m
2.5

/s, s =1 m. The initial input governing this 

steady-state is siF , 2.5 m
3
/s. The response shown in Fig.1 

is for the  +1 m
3
/s, which corresponds to 3iF .5m

3
/s.  

For the same set of parameters, Fig.2 shows the behaviour 

predicted when a negative step change of 5.1 m
3
/s 

was introduced.  
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Figure 2: Comparison of step-response behavior for negative step-change 

 

For both the simulations, h was chosen to be 0.9 and a 3
rd

 

order approximation was found to be adequate to capture 

response of the system for step changes with different 

amplitude and direction. 

  

4. Case-Studies 
 

In this section, we show the application of HAM for DMC. 

The formulation presented in the previous section illustrates 

that by manipulating the original form of the differential 

equation, it is possible to deduce a homotopy model with the 

help of a lumped parameter that is independent of the initial 

state of the process and the corresponding input. The 

formulation also benefits in estimating the trajectory of the 

step-response by unfolding the lumped parameter and by 

using the amplitude of step-changes. This approach is 

extended to the formulation of DMC in the sections to 

follow.  

 

4.1. Heater System with Variable Specific Heat 

 

The heating/cooling system is one of the most frequently 

used unit operation in process industries. The process stream 

that is to be cooled or heated is fed in to a jacketed vessel. 

The jacket either houses an electrical element or a fluid to 

achieve heating or cooling operation. The case considered 

for this study is a bi-linear system with process stream’s heat 

capacity being a strong function of the temperature [11]. 

Although the initial structure of this model was proposed 

earlier by Abbasbandy [11], we have made a minor 

modification to the formulation which is discussed in 

Appendix-1.  

 

Remark 3:  

It is important for the readers to note that there is a subtle 

difference between the model discussed by Abbasbandy and 

the form discussed in this paper. It is important to consider 

this change as the dependency of specific heat with 

temperature cannot be independently treated outside the 

derivative term. However, we can establish equivalence of 

both the model structures with certain valid assumptions and 

manipulations  

 

The bilinear model for the heater/cooler system from 

Appendix 1 follows to be  

  0 ap TTUA
dt

dT
Vc  such that iTT )0(  (41) 

Where   aap TTcc  1  

 

Transformation applied to Eq. (41) translates to  

  01 



d

d
 with 1)0(   (42) 

Where 

ai

p

a TTand
Vc

tUATT





 


 ,,   

As discussed in the previous section, 5
th

 order approximation 

using HAM could be seen as sufficient to capture the step-

response of the system. Hence,  
 e0  

     sinh1cosh1  eh  
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The net response is hence obtained by Eq. (43) such that  





4

0

)(
n

nt                                 (43) 

It is to be noted that the actual temperature profile of the 

process is obtained by unfolding Eq. (43)  

aTttT  )()(                             (44) 

 

Figs. (3) and (4) compare the actual step-response behaviour 

of the system against the HAM based estimation. 

 

The list of parameters used for the simulation is as follows. 

 

 

 

Table 1: Parameters for heater/cooler simulation 

Name 
A 

m2 

U 

w/m2C 

V 

m3 
  

1/oC 

  

kg/m3 ac  

kJ/kgoC 

Values 0.7854 150 0.5 0.035 500 2 

 

The specific heat used in this simulation is a strong function 

of temperature and hence leads to changes in the dynamic 

response for any step-change in the input. Fig. (3) shows the 

accelerated change in the response of the system although 

the final steady-state achieved by the linear and bilinear 

system are the same. The initial steady-state ( iT ) was 

assumed to be 15 
o
C and the   was 20 

o
C corresponding to 

the 35aT o
C. 
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Figure 3: Difference between dynamic response of the bilinear and the linear model due to the variable and constant specific 

heat terms respectively 

 

Comparison in the dynamic response predicted by HAM 

against the numerical solution to the step-changes has been 

shown in Fig.4. The response has been obtained for the same 

set of parameters reported in Table 1.  
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Figure 4: Comparison between the HAM predicted dynamics vs. the actual response for the step changes of different 

amplitude and direction 

 

From Fig. 4 it is evident that that 5
th

 order approximation 

model could comfortably track the system behaviour for 

various step changes. The HAM model is hence concluded 

to be adequate to be used for DMC formulation to track 

systems response in the servo mode.  

 

The DMC simulation for the heater/cooler assumes the 

process to be initially at the steady-state which corresponds 

to 15
o
C. All parameters of the model are assumed to be the 

same as reported in Table 1. The traditional DMC approach 

uses a linear model that is identified in the vicinity to the 

initial operating point. The model thus identified assumes 

the transfer function in the Laplace Domain as 

12441.4

1

)(

)(




ssT

sT

a

 

 

The control and prediction horizon for the DMC is set to be 

10 and 30 respectively with the sampling time of 1 sec. The 

tuning factor )( is set at 0.5 The set-point of the process 

with an initial operating temperature of 15
o
C is changed to 

23
o
C at 50

th
 instant and a second change in set-point was 

imposed around 200
th

 instant. The DMC is expected to 

manipulate the jacket temperature ( aT ) such that the set-

point is tracked smoothly and instantly. However, it could be 

see from the Fig. (5) that the traditional DMC struggles to 

settle around the set-point showing a huge oscillation around 

50
th

 instant and a sluggish tracking similarly is seen around 

200
th

 instant. This is primarily due to large model-plant 

mismatch and hence inability of the model to achieve the 

desired performance. It also relates to the obvious 

understanding that for a model based controls system, the 

control action is only as good as the model would be.  

 
Figure 5: Comparison between the conventional DMC vs HAM-DMC 

 
The limitation of the traditional DMC framework was 

successfully overcome by using HAM based prediction. 

Whenever the change in set-point needs to be tracked, the 

corresponding step-response model was determined by using 

the approach discussed before. The updated model serves to 

re-determine the parameters of the DMC so that the new set-

point change for a non-linear system is tracked effortlessly, 

smoothly and instantly. Although, a similar step-response 
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could be obtained by directly using numerical methods, the 

approach becomes computationally intensive for the 

programmable logic controllers (PLCs) in the plant. The 

advantage of the proposed HAM based models hence can be 

leveraged effortlessly as it just translates to substitution of 

set-points and the model parameters in the algebraic 

equations of the restricted order.  

 

4.2. Application of HAM-DMC to pH control 

 

This example illustrates application of HAM based DMCs 

for control of pH system which is highly non-linear [17]. 

The scheme assumes pH control of a highly alkaline 

concentrated sodium chloride solution in mixed tank system 

with addition of concentrated hydrochloric acid (HCl). The 

mixing tank hence receives two feeds, the first one being the 

stream to be treated and the other one being 0.1 M HCl. 

Conditions of the system is provided in Table 2. 

 

Table 2: Composition of the incoming streams to the mixing 

tank 

Ions 
Na 

mEq/l 

Cl, 

mEq/l 

HCO3 

mEq/l 

CO3 

mEq/l 

Flow 

m3/min 

HCl 

mEq/l 
pH 

Feed stream,F1 22.62 8.243 7.522 13.581 0.166 - 11 

Acid stream,F2 - - - - - 100 0 

 

Remark 4: 

a) Unlike the example discussed in (Henson & 

Seborg,1994), this problem assumes the reactor to be a 

mixing tank with constant volume (V) of 5 m
3
. Hence, 

level control is not taken in to consideration 

b) The incoming feed-stream and the mixed stream flowing 

out are both assumed to be electrically neutral  

c) This is assumed to be a closed system with no transfer of 

carbon-dioxide with the surrounding. Hence, the total 

inorganic carbon )( TC  is assumed to constant. 

 

Assuming the density of all streams to be constant, the 

component balance for each element hence is given by 

iii
i cFFcFcF

dt

dc
V )( 21,22,11    

Or 

)()( ,2
2

,1
1

iiii
i cc

V

F
cc

V

F

dt

dc
             (45) 

 

Where the subscript )(i reference to the elements namely 

Sodium (Na
+
), Chloride (Cl

-
), Bicarbonate (HCO3

-
), 

Carbonate (CO3
2-

) and Hydrogen ion (H
+
) in mmol/liter. The 

differential equation above uses the algebraic constraint 

discussed in Remark b such that 

             OHCOHCOClNaH 2

33 2   

(46) 

Where   indicates the molar concentration in mmol/liter. 

Eq. (46) further can be simplified as  

 

   2
211

3

1








H

kk

H

k

C
HCO T

 

,  
 

 








H

k

k

H

C
CO T

2

1

2

3

1

 and  
 


 

H
OH

1110
 

The parameters of the model are provided in Table 3. 

 

Table 3:  Constants used for the simulation 

Const. 
Eq.Const,  

k1,mmol/l 

Eq.Const,  

k2 mmol/l 

TIC  

 CT, mmol/l  

Values 4101215.5   
8102599.8   7.6101 

 

The pH profile follows completely a nonlinear gain against 

acid addition. This is evident from the Fig.6 where the pH is 

shown to change from 11 to 2 with different volume of acid 

added. As shown, the gain continuously changes below 9, 

7.3, 5 and 3.  
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Figure 6: Steady-state pH profile against acid addition 

 
Depending on the set-point, it is hence important for the 

model to guide the controller continuously by updating the 

gain as well as the dynamics.  

 

 

The HAM solution to the mixing and pH model 

The deviation form of the pH model using Eq. (27) is show 

in Appendix 2. The model assumes the form as shown in Eq. 

(47). 
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   
V

F

V

FF

V

F
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d oi

i

oi

i
i







 ,1,1121
 

 (47) 

The i is the transformed variable and the concentration of 

a given component can be derived from Eq. (48) 

i

iii

i

cc
c






1

,2,1
 (48) 

A sixth order approximation was found to be sufficient to 

capture pH response to the different step-changes in acid 

flowrate.  





5

0

)(
n

nt such that 

t

o te )0(  

 tt

tt

htehehthF

hththhteheh









2

2

2.0          

0166.00166.00083.09668.00332.00249.0)1(

 

and so on. The optimal value of h was found to be -0.625. 

The estimated step response behaviour for step changes in 

0.1 N HCl from 0.001 to 0.022 m
3
/min is shown in Fig 7. 

using both HAM and nonlinear solvers.  

 

 
Figure 7: Comparison of dynamic pH response predicted using HAM and nonlinear solver for different step-changes in acid 

addition 

 

The picture shows that the HAM was able to predict the 

responses satisfactorily, which is essential for the DMC 

algorithm. Fig. 7. also shows the fact that the step response 

behavior is not linear such that the gain and dynamics 

change significantly for constant increment in acid flow. 

Performance of DMC that has been designed for unit change 

in pH is shown in Fig.8. The initial pH of the process is at 

pH of 11. At 110
th

 min, the set-point is changed to pH of 10. 

A first order transfer function with gain of 535 and time 

constant of 29.5 min was found to be the local model 

suitable for a unit change in pH. The step-response 

coefficients derived from the model were used to achieve 

change in pH from 11 to 10 which was found to be smooth 

and instantaneous.  

 

0 50 100 150 200 250 300
4

6

8

10

12

Time, min

p
H

0 50 100 150 200 250 300
-0.5

0

0.5

Time, min


A

c
id

 F
lo

w
,m

3
/m

in

 
Figure 8: pH response using conventional DMC approach 
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However, when the pH set-point was changed from 10 to 

5.5, the model was found to be inadequate to control the pH 

resulting in a bias that continued to digress from the set-

point. The change in set-point was imposed on 200
th

 min and 

the response continued to digress even after 300
th

 min. The 

pH model being highly nonlinear in nature requires new step 

response coefficients corresponding to the new set-point 

imposed. The proposed HAM model could conveniently 

track the set-point. Results of the HAM-DMC is shown in 

Fig 9.  
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Figure 9: Set point tracking using HAM-DMC framework 

 
From the response, it is evident that the proposed approach 

could enable smooth tracking despite a big change in set-

point for a nonlinear system.  

 

5. Conclusion 
 

HAM is a proven and a popular technique for solving non-

linear differential and partial differential equations. This 

paper provides a new framework where the HAM has been 

used to solve a class of non-linear dynamical systems by 

which significant improvement in the DMC can be realized. 

The approach presented is applicable to a class of control-

affine structures. The proposed transformation primarily 

helps in deducing the step-response behaviour of a non-

linear system that is independent of its initial state and 

amplitude/nature of the input. This is achieved by choosing 

the exponential base function so that the resulting model can 

be directly incorporated in to the DMC framework. The 

most significant feature of this approach is the use of simple 

algebraic step-response model resulting from the HAM 

solution. Using this structure, the step-response model can 

be readily updated depending on the change in set-point 

imposed on the controller. When the traditional linear DMC 

model shows limitations to cope-up with the model-plant 

mismatch at different operating points, the HAM can 

quickly estimate the new model corresponding to the shift in 

the set-point and provide better control at every new 

operating point. Although this work proposes solution to 

non-linear models to re-estimate DMC models, the 

performance of DMC is not compared with the non-linear 

MPC. It is primarily based on the premise that a better DMC 

action can be achieved using HAM based algebraic solutions 

wherever the PLCs have limited processing capacity to deal 

with non-linear solvers. Two case-studies have been 

provided to illustrate merits of the proposed approach. This 

could be further extended to multi-input multi-output 

(MIMO) systems along with constraints.  

  

Appendix-1 
 

For a jacketed vessel, the heat exchanged with a cooler 

medium is given by 

)( TTUAQ a    

aT is the coolant temperature in the jacket, T is the 

temperature of the process fluid in the tank, U is the overall 

heat-transfer coefficient and A is the surface area. 

Q is the rate of accumulation of heat and is given by 

  
dt

TTmcd
Q r
  

The fluid of m being heated in the vessel is considered to be 

having specific heat c  as a linear function of temperature 

such that   aa TTbcc  1 where b is a constant. For 

a constant volume system, the above expression could be 

simplified as  

    
 TTUA

dt

TTTTbcd
V a

raa 
1

  

If ar TT  , then the above equation could be simplified as  

   0)(21  aaa TTUA
dt

dT
TTbVc  

Replacing b2 with   

     01  aaa TTUA
dt

dT
TTVc   

 

Appendix-2 

For a given component, the mixing model simplifies to  

   ccFccF
dt

dC
V  2211 . To establish the 

dependency on acid added to the concentration profile, the 

form recommended in Eq. (27) is again deployed.  
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. If oc is the concentration 

corresponding to the steady-state sF ,2 , then 
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sFF ,22   
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1
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1
, and by 

differentiating with respect to c , the above equation 

simplifies to  
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