
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Survey on Object Oriented Mutation Testing

Snehal R. Takawale
1
, Sandeep Kadam

2

Abstract: Software testing is very important phase in software development. Various testing techniques are used with intention of finding

software bugs. Different approaches are suggested to perform application testing, testers shall choose testing techniques in terms of cost and

efficiency. Mutation testing is fault based testing technique which is widely used over decades. Several module and class testing techniques

have been applied to object-oriented programs, but researchers have only recently begun developing test criteria that evaluate the use of key

OO features such as inheritance, polymorphism, and encapsulation. Mutation testing is a powerful testing technique for generating software

tests and evaluating the quality of software. However, the cost of mutation testing has traditionally been so high it cannot be applied without

full automated tool support. Paper presents a method to reduce the execution cost of mutation testing for OO programs by using two key

technologies, Mutant Schemata Generation (MSG) and byte code translation. This method adapts the existing MSG method for mutants that

change the program behavior and uses byte code translation for mutants that change the program structure. A key advantage is in

performance: only two compilations are required and both the compilation and execution time for each is greatly reduced. A mutation tool

based on the MSG/byte code translation method has been built and used to measure the speedup over the separate compilation approach.

Keywords: Software testing, Mutation testing, Mutants, Mutation testing tools

1. Introduction

Software testing is a practical technique to efficiently detect

errors in software systems. Mutation testing is fault based

testing techniques which is used to measure effectiveness of

test suits. Using mutation testing, efficiency of test suits is

measured. Mutation testing technique can be used in order to

estimate the fault coverage of test suits. The idea of mutation

testing was introduced by Richard Lipton in 1978.

Mutant generation is the first step of mutation testing process.

Mutant is a copy of original program containing one fault

which is syntactically correct. These faults are introduced

using pre defined set of faults called mutation operator. After

mutant generation, next step is to execute test cases against

mutants and compare output with original program’s output.

When test case produces different output on mutant then

mutant is said to be Killed mutant otherwise mutant is said to

be live mutant. If no test case can distinguish its output from

original program’s output then, that is said to be Equivalent

mutant. It is not possible to kill an equivalent mutant, as it is

semantically equivalent to original program. The mutation

score can be calculated by ratio of killed and live mutant.

Mutation score indicates how effective given test case or test

suit is. Testers can regenerate test cases to kill the remaining

alive mutants and to raise the mutation score because a test

case set with higher mutation score is considered more

effective.

Object oriented program and language that solves the problem

and provide the solution for old problem.

Mutation testing is based on the assumption that a program

will be well tested if a majority of simple faults are detected

and removed. Simple faults are introduced into the program by

creating a set of faulty versions, called mutants. These mutants

are created from the original program by applying mutation

operators, which describe syntactic changes to the

programming language. Test cases are used to execute these

mutants with the goal of causing each mutant to produce

incorrect output. A test case that distinguishes the program

from one or more mutants is considered to be effective at

finding faults in the program. Mutation testing involves many

executions of programs; thus cost has always been a serious

issue. Many techniques for implementing mutation testing

have proved to be too slow for practical adoption. This paper

presents a design and results from an implementation of a

mutation system that is based on a novel execution strategy

that combines mutation schemata with byte code translation.

Several approaches have been developed to reduce the

computational expense of the mutation testing. Untch

categorized the approaches into three strategies, do fewer, do

smarter, and do faster. The do fewer approaches try to run

fewer mutant programs without incurring intolerable loss in

effectiveness. The do smarter approaches seek to distribute the

computational expense over several machines or factor the

expense over several executions by retaining state information

between runs. The do faster approaches focus on ways to

generate and run mutant programs as quickly as possible.

These methods have been developed for traditional

programming languages, and are not all applicable to OO

languages. This paper presents a do faster method for OO

inter-class mutation testing. This involves examining whether

existing do faster methods can be applied to object-oriented

programs. This approach primarily attempts to reduce the

compilation time. These ideas have been implemented in an

automated OO mutation system, which has been compared

with previous execution techniques. Most of the OO mutation

operators are independent of language; however, they have

only been implemented in Java and so have some Java

dependencies. The implementation method depends on the use

of reflection, so can only be used in languages that support

reflection.

A major difference for testers is that OO software changes the

levels at which testing is performed. In OO software, unit and

integration level testing can be classified into four levels: (1)

Paper ID: ART20173141 605

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

intra-method, (2) inter-method, (3) intra-class, and (4) inter-

class.

Intra-method Level: Intra-method level faults occur when the

functionality of a method is implemented incorrectly. Testing

within classes corresponds to unit testing in conventional

programs. So far, researchers have assumed that traditional

mutation operators for procedural programs will saucefor this

level (with minor modifications to adapt to new languages).

Inter-method Level: Inter-method level faults are made on

the connections between pairs of methods of a single class.

Testing at this level is equivalent to integration testing of

procedures in procedural language programs. Interface

mutation, which evaluates how well the interactions between

various units have been tested, is applicable to this level.

Intra-class Level: Intra-class testing is when tests are

constructed for a single class, with the purpose of testing the

class as a whole. Intra-class testing is a specialization of the

traditional unit and module testing. It tests the interactions of

public methods of the class when they are called in various

sequences. Tests are usually sequences of calls to methods

within the class, and include thorough tests of public

interfaces to the class.

Inter-class Level: Inter-class testing is when more than one

class is tested in combination to look for faults in how they are

integrated. Inter-class testing specializes the traditional

integration testing and seldom used subsystem testing, where

most faults related to polymorphism, inheritance, and access

are found.

2. Class Mutation Operators

Class Mutation Operators the first attempt to define mutation

operators to detect faults related to OO-specific features. They

designed thirteen class mutation operators that were extended

to sixteen. A subsequent systematic classification of OO

specific faults in terms of language syntax revealed several

types of OO faults that the previous operators do not model.

Proposed a different scheme for mutating objects. Their

approach relies on making changes to the data state of objects

during execution rather than the program.

1) Information Hiding (Access Control) in our experience,

access control is a common source of mistakes among OO

programmers. The semantics of the various access levels are

often poorly understood, and access for variables and

methods is not always considered during design. Poor

access definitions do not always cause faults initially, but

can lead to faulty behavior when the class is integrated with

other classes, modified, or inherited from. The AMC

mutation operator has been developed for this category.

2) Inheritance: Although inheritance is a powerful and useful

abstraction mechanism, incorrect use can lead to a number

of faults. Seven mutation operators have been defined to test

the various aspects of using inheritance, covering variable

hiding, method overriding, the use of super, and definition

of constructor s.

3) Polymorphism: Polymorphism and dynamic binding allow

object references to take on different types in different

executions and at different times in the same execution.

That is, object references may refer to objects whose actual

types differ from their declared types. In most languages

(including Java and C++), the actual type can be any type

that is a subclass of the declared type. Polymorphism allows

the behavior of an object reference to differ depending on

the actual type. Four operators have been developed for this

category.

4) Overloading Method overloading allows two or more

methods of the same class or type family to have the same

name as long as they have different argument signatures.

Just as with method overriding (polymorphism), it is

important for testers to ensure that a method invocation

invokes the correct method with appropriate parameters.

Four mutation operators have been defined to test various

aspects of method overloading.

Language

Features
Operator Description

Access

Control
AMC Access modifier change

Inheritance

IHD Hiding variable deletion

IHI Hiding variable insertion

IOD Overriding method deletion

IOP
Overriding method calling position

change

IOR Overriding method rename

ISK Super keyword deletion

IPC
Explicit call of parent’s constructor

deletion

Polymorphism

PNC
New method call with childe class

type

PMD
Instance variable declaration with

parent class type

PPD
Parameter variable declaration with

child class type

PRV
Reference assignment with other

comparable type

Overloading

OMR Overloading method content change

OMD Overloading method deletion

OAO Argument order change

OAN Argument number change

Java specific

features

JTD This keyword deletion

JSC Static modifier change

JID
Member variable initialization

deletion

JDC
Java supported default constructor

creation

Overloading

EOA
Reference assignment and content

assignment replacement

EOC
Reference comparison and content

comparison replacement

EAM Access method change

EMM Modifier method change

Paper ID: ART20173141 606

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3. Existing systems and Approaches

Roger T. Alexander, James M. Bieman, SudiptoChosh, and

BixiaJi

They develop mutation operators and support tools that can

mutate Java library items that are heavily used in commercial

software. Mutation engine can support reusable libraries of

mutation components to inject faults into objects that

instantiate items from these common Java libraries.

T. Alexander and A. Jefferson Offutt

The emphasis in object-oriented programs is on defining

abstractions that have both state and behavior. This emphasis

causes a shift in focus from software units to the way soft-

ware components are connected. Thus, they are finding that

they need less emphasis on unit testing and more on

integration testing. The compositional relationships of

inheritance and aggregation, especially when combined with

polymorphism, introduce new kinds of integration faults. This

paper presents results from an ongoing research project that

has the goal of improving the quality of object-oriented soft-

ware. New testing criteria are introduced that take the effects

of inheritance and polymorphism into account. These criteria

are based on the new analysis technique of quasi- inter

procedural data flow analysis. These testing criteria can

improve the quality of object-oriented software by ensuring

that integration tests are high quality.

Michelle Cartwright and Martin Shepperd

This paper describes an empirical investigation into an

industrial object-oriented (OO) system comprised of 133,000

lines of C++. The system was a subsystem of a

telecommunications product and was developed using the

Shlaer-Mellor method. From this study, they found that there

was little use of OO constructs such as inheritance and,

therefore, polymorphism. It was also found that there was a

significant difference in the defect densities between those

classes that participated in inheritance structures and those that

did not, with the former being approximately three times more

defect-prone. They were able to construct useful prediction

systems for size and number of defects based upon simple

counts such as the number of states and events per class.

Although these prediction systems are only likely to have local

significance, there is a more general principle that software

developers can consider building their own local prediction

systems. Moreover, we believe this is possible, even in the

absence of the suites of metrics that have been advocated by

researchers into OO technology. As a consequence,

measurement technology may be accessible to a wider group

of potential users.

T. E. Cheatham and L. Mellinger

Object-oriented Software Systems present a particular

challenge to the software testing community. This review of

the problem points out the particular aspects of object-oriented

systems which makes it costly to test them. The flexibility and

reusability of such systems is described from the negative side

which implies that there are many ways to use them and all of

these ways need to be tested. The solution to this challenge

lies in automation. The review emphasizes the role of test

automation in achieving adequate test coverage both at the

unit and the component level. The system testing level is

independent of the underlying programming technology.

H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen

Several techniques have been proposed for class-level

regression testing. Most of these techniques focus either on

white- or black-box testing, although an integrated approach

can have several benefits. As similar tasks have to be carried

out for both white- and black-box testing, an integrated

approach can improve efficiency and cost effectiveness. The

article explains an approach for class-level regression testing,

integrating existing techniques.

P. Chevalley and P. Trevino-Fosse

JavaMut (2001) developed a tool to perform the mutation

analysis. It is a GUI (Graphical User Interface) based tool. The

tool is implemented using compile time reflective system

called OpenJava. One good feature of this tool is that tester

can view the mutated code in the tool. JavaMut implements 26

mutation operators; six selective mutation operators fifteen

from Class Mutation, and five new operators that authors

created.

I. Moore

Jester (2001) developed tool for mutation testing. This tool

provides support for java programs. This is simple as it

supports mutation operator that can be run on single class. It

uses JUnit as base that supports unit testing of java programs.

Due to unit level testing, this can not apply on object oriented

features.

R. T. Alexander, J. M. Bieman, S. Ghosh, and J. Bixia

Object Mutation Engine (2003) it performs mutation testing

on objects of java APIs.This tool has complex architecture.

J. Offutt, Y.-S. Ma, and Y.-R. Kwon

 MuJava this is a GUI (Graphical User Interface) based tool

that allows both generation of mutants and execution of them

automatically. The first version of tool implements 29

mutation operators in total; five selective traditional mutation

operators [10], and twenty-four object oriented mutation

operators from the work of [11]. There are three main modules

in the MuJava tool. First is Mutants Generator (creates

mutants), second module is Mutants Executor (executes

mutants), and third module is Mutants Viewer (displays

results). This tool has been used to perform experiments to

evaluate the object oriented mutation testing and operators

used and results are available in [12].

Authors have launched extended version of MuJava [13] with

some changes, omissions and additions to class mutation

operators (see Section III.F for details). Now MuJava supports

up to 34 mutation operators including 5 mutation operators

from conventional paradigm and 29 mutation operators from

object oriented paradigm.

Paper ID: ART20173141 607

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

J.S. Bradbury, J.R. Cordy, and J. Dingel

ExMan (2006) propose a generalized approach for

experimental mutation analysis. In this approach artifacts and

components can be interchanged with each other in order to

compare quality assurance tools. To use this tool we have to

pass through a setup phase that involves creation of profile

that tells the tools about command-line usage and purpose of

using this application. Secondly, it involves selection of

project to be run. Then it selects original source code and

generates mutants. After that mutants and original source code

are compiled. The benchmarks to compare results or assertions

are provided to the ExMan and finally it performs analysis on

the basis of benchmarks and produces results.

Sourceforge

Jumble (2007) this is mutation testing tool for Java programs.

Jumble is quite simple in nature as it only supports mutation

operators that can be run on a single Unit (class). It uses JUnit

as base that supports Unit testing of Java programs. Due to

unit level testing this tool cannot apply

Mutation operators that are designed for other features like

inheritance and polymorphism and work at integration

(system) level.

B. Grun, D. Schuler, A. Zeller

JavaLanche (2009) propose a framework and have

implemented in a tool called JavaLanche. The main purpose of

the study is to check the impact of equivalent mutants in the

mutation testing. JavaLanche implements selective mutation

operators. This tools uses coverage data about a test set to run

only those test cases that execute the mutated statement in the

code.

4. Proposed System Algorithm

Problem statement

There are problem for identifying mutants that change the

program behavior, parsing the program, change the behavior

of a program during execution and dynamically initiate object.

Methods not invoked dynamically. We analyze there are

several method for mutation testing but those method not

proving the accuracy

Problem solution

This helps solve the first problem in implementing a mutation

analysis system, parsing the program. Second, it provides an

API to easily change the behavior of a program during

execution. This can be used to create mutated versions of the

program. Third, it allows objects to be instantiated and

methods to be invoked dynamically. Java provides a built-in

reflection capability with a dedicated API. This allows Java

programs to perform functions such as asking for the class of a

given object, finding the methods in that class, and invoking

those methods. However, the Java language as defined does

not provide full reflective capabilities. Specifically, Java only

supports introspection, which is the ability to introspect data

structures, but does not support alteration of the program

behavior. Several reflection systems have been proposed to

complement the Java reflection API.

MSG method

The MSG method used to encodes all mutants from Meta

mutants. Meta mutants are one kind of parameterized program.

Meta mutants are identifying from program and Meta mutants

compile using standard compiler used to compile p.

We used MSG for compile-time reflection to generate a Meta

mutant program. To execute mutants, mutants are loaded into

JVM.

Byte code Translation:

This technique used for generating structural mutants.

Structural mutants used to changing the structure of program

like data structure of variable and method declaration. We

used Byte code engineering library and it supports all structure

mutation operator.

Paper ID: ART20173141 608

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure: Proposed system Architecture

5. Mathematical Model

Input: .class

Output: Test Cases and Mutation Score

Process:

 Collects Mutants from Given Program. (We use Java

Reflection API for collecting method name and data

structure of variable.)

 Generate T Test cases from Given Mutants.

 Analyze the Mutant’s Operator.

 Generate Mutants Score MS(p, TS) = K / (T - EQ)

P- Program under Test

TS- Test Suite

K- Killed Mutants

T- Total Mutants

EQ- Number of Test Case

6. Conclusion

In this project two techniques to reduce time for mutant

generation. It requires two compilation one original program

source code compilation and second for compilation of MSG

met mutants. This technique used for improving quality of

software. Byte translation to make system portable because

system can work with any standard java compiler.

References

[1] Roger T. Alexander, James M. Bieman, SudiptoChosh,

and BixiaJi. Mutation of Java objects. In Proceedings of

13th International Symposium on Software Reliability

Engineering, pages 341{351, Annapolis MD, November

2002. IEEE Computer Society Press.

[2] Roger T. Alexander and A. Jefferson offutt. Criteria for

testing polymorphic relationships. In Proceed- ings of the

11th International Symposium on Software Reliability

Engineering, pages 15{23, San Jose CA, October 2000.

IEEE Computer Society Press.

[3] Michelle Cartwright and Martin Shepperd. An empirical

investigation of an object-oriented software system. IEEE

Transactions on Software Engineering, 26(8):786{796,

August 2000

[4] T. E. Cheatham and L. Mellinger. Testing object-oriented

software systems. In 1990 ACM Eighteenth Annual

Computer Science Conference, pages 161{165, February

1990

[5] H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen. In

black and white: An integrated approach to class-level

testing. ACM Transactions on Software Engineering

Methodology, 7(3):250{295, 1998.

[6] P. Chevalley and P. Trevino-Fosse, "A Mutation Analysis

Tool for Java Programs," LAAS Report No 01356,

Toulouse, France, September 2001, M. Daran and P.

Trevino-Fosse. Software Error

[7] I. Moore. Jester. http://jester.sourceforge.net/, 2001.

Accessed April 2012

[8] R. T. Alexander, J. M. Bieman, S. Ghosh, and J. Bixia,

"Mutation of Java objects," In Proceedings of IEEE 13th

International Symposium on Software Reliability

Engineering, 2003

[9] J. Offutt, Y.-S. Ma, and Y.-R. Kwon, "An Experimental

Mutation System for Java," ACM SIGSOFT Software

Engineering Notes, vol.29 no.5, September 2004

[10] J. Offutt, A. Lee, G. Rothermel, R. H. Untch, C. Zapf,

"An experimental determination of sufficient mutant

operators," ACM Trans Software Eng Methodol 5, pp 99–

118, 1996

[11] Y.-S. Ma, Y.-R. Kwon, and J. Offutt, "Inter-class

Mutation Operators for Java," In Proceedings of the 13th

IEEE International Symposium on Software Reliability

Engineering, pp 352-363, Annapolis MD, November 2002

[12] Y.-S. Ma, M. J. Harrold, and Y.-R. Kwon, "Evaluation of

Mutation Testing for Object-Oriented Programs,"

Proceedings of the 28
th

 international conference on

Software engineering, May 20-28, 2006, Shanghai, China

[13] J. Offutt, Y.S. Ma, and Y.R. Kwon. The class-level

mutants of mujava. In AST ’06: Proceedings of the 2006

International Workshop on Automation of software test,

pages 78–84, NY, USA, ACM 2006

[14] J.S. Bradbury, J.R. Cordy, and J. Dingel, "Exman: A

generic and customizable framework for experimental

mutation analysis", Mutation Analysis, Workshop on, 0:4,

2006

Paper ID: ART20173141 609

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[15] Sourceforge. Jumble. http://jumble.sourceforge.net/, 2007.

Accessed April 2012

[16] B. Grun, D. Schuler, A. Zeller, "The impact of equivalent

mutants", In Proceedings of the 4th International

Workshop on Mutation Testing, 2009

Paper ID: ART20173141 610

