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Abstract: Electroencephalogram (EEG) is a noninvasive method to record electrical activity of brain and it has been usedextensively in 

research of brain function due to its high timeresolution. However raw EEG is a mixture of signals, whichcontains noises such as 

Ocular Artifact (OA) that is irrelevant tothe cognitive function of brain. To remove OAs from EEG, manymethods have been proposed, 

such as Independent ComponentsAnalysis (ICA), Empirical Mode Decomposition (EMD), Discrete Wavelet Transform (DWT), Adaptive 

filtering and Adaptive Noise Cancellation (ANC).In this paper, a comprehensive overview of techniques that can be used for the removal 

of artifacts from an EEG. For this purpose, the Wiener and Kalman filters are used to compare to remove OAs in EEG. Firstly, the 

artifact removing method using two filters are applied on synthetic data. Two factors are used to compare the result of filter on EEG 

signal; that is Signal to Artifact Ratio (SAR) and Mean Squared Error (MSE). The SAR value is 4.34 dB for Kalman filter while for 

Wiener filter it is 5.30 dB. The Mean Squared Error (MSE) of Weiner filter is 7.195x10-05, significantly lower compared to results using 

Kalman method is 0.067.Then these approaches isapplied to the contaminated EEG data. The experimental result shows that 

comparatively theWiener filter is more effective in removing the artifact without losing the original information. 
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1. Introduction 
 

Electroencephalography (EEG) records carry information 

about abnormalities or responses to certain stimuli in the 

human brain. However, during recordings, many 

physiological or technical artifacts can be observed. Such 

artifacts might hide the brain information and should be 

removed. Conventional filtering cannot be applied to 

eliminate those types of artifacts because EEG signal and 

artifacts have overlapping spectra. In previous research, 

many simple and complex methods have been proposed for 

detecting and removing artifacts. The simple signal 

processing filter, known as Butterworth bandpass filter is 

used to remove the artifact. The clean EEG signal is easily 

achieved from raw EEG by applying 4th order of bandpass 

Butterworth filter and compare it with DWT. However, this 

type of filter does not suitable for EEG signal processing 

because some of the original information are loss during the 

filtration process.[1]. 

 

Adaptive filter is also used to remove OAs from EEG by 

LMS algorithm [2] and VSSLMS algorithm [3]. These 

methods usually take the output of adaptive filter as OA 

interference, then subtract it from EEG [4]. Adaptive filter 

can automatically adjust parameters under the condition that 

priori knowledge of noise is unknown, and de-noise 

adaptively. The precondition of using adaptive filtering is an 

extra EOG reference channel. Several documents [5-8] use 

independent components analysis (lCA) to attenuate OAs in 

EEG. ICA is a kind of blind signal separation method; it does 

not need EOG reference channel. However, the independent 

components separated by ICA are of uncertainty in terms of 

sorting, which leads to visual classification of components [9, 

10]. In addition, how to determine the number of independent 

components effectively and reducing computation 

complexity is problems which need to be considered [11]. 

 

The artifacts are suppressed by modeling EEG activity by an 

autoregressive model and eye blink by an output-error model, 

and then use Kalman filter to estimate the true EEG based on 

integrating two models [12].Recently, the ocular artifacts are 

suppressed by combining Independent Component Analysis 

(ICA) and an adaptive Wiener filter ("ICAWF"). The idea is 

to obtain pure eye blinking components and suppress them 

from the original independent components in order to remove 

the artifacts and preserve the physiological information. 

These methods are applied to real EEG data from a healthy 

subject [13].  To remove the EOG artifact in real-time 

applications, two filtering methods Wiener filter and Kalman 

filter is illustrated in this paper. To demonstrate the 

performance of two methods, we compare them and obtained 

a conclusion that Wiener filter is better than Kalman filter for 

ocular artifact removing from EEG signal. 

 

This paper is arranged as follows: research background of 

EEG and some methods of OAs removing are stated in the 

first part. In the second part, two models used for comparison 

and described in detail. In the third part, some experiments 

and performance evaluation are made. Lastly, the paper ends 

up with a brief conclusion. 

 

2. Artifact  Reduction  Methods 
 

There are a number of general techniques used for artifact 

separation and removal. This separation can often be 

accomplished using simple classical filtering techniques, 

such as low-pass filtering. However, this can only be 

employed when the frequency bands of the artifact and the 

desired signal do not overlap. When there is spectral overlap, 

alternative techniques must be adopted. Filtering approaches 

such as adaptive, Wiener or Bayes filtering have the 

advantage that they can be automized, however they need a 

measured or reliably estimated reference in order to operate. 

Some of these methods can operate on single channels, a 

characteristic that makes them attractive for the artifact 

removing. 
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2.1 Wiener filter 
 

The Wiener filter is a filter used to produce an estimate of a 

desired or target random process by linear time-invariant 

(LTI) filtering of an observed noisy process, assuming 

known stationary signal and noise spectra, and additive noise. 

The Wiener filter can be used to filter out the noise from the 

corrupted signal to provide an estimate of the underlying 

signal of interest. The Wiener filter is based on a statistical 

approach, and a more statistical account of the theory is 

given in the minimum mean square error (MMSE) estimator 

article. The Wiener filter minimizes the mean square error 

between the estimated random process and the desired 

process [14]. Wiener filters are characterized by the 

following: 

 

1) Assumption: signal and (additive) noise are stationary 

linear stochastic processes with known spectral 

characteristics or known autocorrelation and cross-

correlation. 

2) Requirement: the filter must be physically realizable / 

causal (this requirement can be dropped, resulting in a 

non-causal solution). 

3) Performance criterion: minimum mean-square error 

(MMSE) 

 
Figure 1: Block diagram of the FIR Wiener filter for discrete 

series. An input signal w[n] is convolved with the Wiener 

filter g[n] and the result is compared to a reference signal 

s[n] to obtain the filtering error e[n]. 

 

Figure 1 shows the block diagram of a finite impulse 

response (FIR) Wiener filter. In order to derive the 

coefficients of the Wiener filter, consider the signal w[n] 

being fed to Wiener filter of order N and with coefficients 

}....,{ ,0 Naa The output of the filter is denoted x[n] which is 

given by the expression 

 

].[][
0
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N

i

i 
  

 
The residual error is denoted e[n] and is defined as    e[n] = 

x[n] − s[n] .The Wiener filter is designed so as to minimize 

the mean square error.  

 

So, Wiener filtering is parametric technique used to remove 

unwanted artifacts from the measured signals. The Wiener 

algorithm is based on a statistical approach and thus does not 

require the use of an external reference signal. The signal and 

the (additive) artifact are assumed to be stationary linear 

stochastic processes with known spectral characteristics or 

known autocorrelation and cross-correlation. The desired 

signal and artifact are also assumed to be uncorrelated with 

each other. The purpose of the Wiener filter is to produce a 

linear time invariant filter so that the mean square error 

between the true desired signal s(n) and the estimated one 

ˆs(n) is minimized [15]. Figure 2 shows the block diagrams 

for artifact removing using Wiener filter for EEG signal. 

 

 
Figure 2: Block diagram of artifact removing using Wiener 

filter 

 

2.2 Kalman filter 
 

Kalman filtering, also known as linear quadratic estimation 

(LQE), is an algorithm that uses a series of measurements 

observed over time, containing statistical noise and other 

inaccuracies, and produces estimates of unknown variables 

that tend to be more precise than those based on a single 

measurement alone, by using Bayesian inference 

andestimating a joint probability distribution over the 

variables for each timeframe. Kalman filtering was first 

described by Kalman in 1960 [16]. The Kalman filter 

essentially implements a mathematical predictor-corrector 

type estimator. The filter uses feedback control to estimate a 

process: the filter first estimates the process state at a given 

time and then obtains feedback in the form of (noisy) 

measurements [17]. This creates two layers of calculations: 

time update equations and measurement update equations as 

detailed by Welch and Bishop in [17]. 

 

 
Figure 3: A complete picture of the operation of the Kalman 

filter 

 

The   filter is a widely applied concept in time series analysis 

used in fields such as signal processing. The algorithm works 

in a two-step process. In the prediction step, the Kalman filter 

produces estimates of the current state variables, along with 

their uncertainties. Once the outcome of the next 

measurement (necessarily corrupted with some amount of 

error, including random noise) is observed, these estimates 

are updated using a weighted average, with more weight 

being given to estimates with higher certainty. The algorithm 

is recursive. It can run in real time, using only the present 

input measurements and the previously calculated state and 

its uncertainty matrix; no additional past information is 

required. The Kalman filter does not make any assumption 

that the errors are Gaussian [16].However, the filter yields 

the exact conditional probability estimate in the special case 

that all errors are Gaussian-distributed. Another way of 

thinking about the weighting by K is that as the measurement 

error covariance R approaches zero, the actual measurement 

kz is "trusted" more and more, while the predicted 

measurement 


kxH ˆ is trusted less and less. On the other hand, 
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as the a priori estimate error covariance 


kP approaches zero 

the actual measurement kz is trusted less and less, while the 

predicted measurement


kxH ˆ  is trusted more and more. The 

equations for the Kalman filter fall into two groups: time 

update equations and measurement update equations. The 

time update equations are responsible for projecting forward 

(in time) the current state and error covariance estimates to 

obtain the a priori estimates for the next time step. The 

measurement update equations are responsible for the 

feedback, i.e. for incorporating a new measurement into the a 

priori estimate to obtain an improved a posteriori estimate. 

Figure 3. shows the ongoing discrete Kalman filter cycle. 

The time update projects the current state estimate ahead in 

time. The measurement update adjusts the projected estimate 

by an actual measurement at that time. 

 

After each time and measurement update pair, the process is 

repeated with the previous a posteriori estimates used to 

project or predict the new a priori estimates. This recursive 

nature is one of the very appealing features of the Kalman 

filter--it makes practical implementations much more feasible 

than an implementation of a Wiener filter which is designed 

to operate on all of the data directly for each estimate. The 

Kalman filter instead recursively conditions the current 

estimate on all of the past measurements.   

 

 

Figure 4: Block diagram of artifact removing using Kalman filter

Estimation of the noise covariances Qk and Rk 

 

Practical implementation of the Kalman filter is often 

difficult due to the difficulty of getting a good estimate of the 

noise covariance matrices Qk and Rk. Extensive research has 

been done in this field to estimate these covariances from 

data. One of the more promising and practical approaches to 

do this is the auto covariance least-squares (ALS) technique 

that uses the time-lagged autocovariances of routine 

operating data to estimate the covariances [18,19].The 

meaning of each variable from Figure 3 is as follows. A is 

state variable gain matrix ,k presents observation matrix, Qk 

means covariance of u(k) , Rk is covariance v(k) , 

kP indicates posteriori estimation error covariance, kP  

stands for priori estimation error covariance, kH is Kalman 

gain, kx is estimation of state variable at point k, and kz  

means observed data (approximated OAs) where z(k) = x(k) 

+ u(k). 

 

There are a number of approaches for achieving artifact 

removal using a Kalman filter. First, a model of both the 

desired signal and the contaminating artifact can be 

produced. The recorded signal can be described as the 

summation of these two model signals and, thus, the process 

and measurement models can be determined. The Kalman 

filter can then be implemented to estimate the unknown 

system parameters by reducing the variance of the error 

between the recorded output and the modeled output. With 

the known system parameters, artifact removal can be 

accomplished by setting the parameters affiliated with the 

artifact in the measurement model to zero. Figure 4. Shows 

the block diagram for artifact removing using Kalman filter 

for EEG signal. Finally, we just subtract the output of 

Kalman filtering from raw EEG and clean EEG is obtained. 

 

 

 

 

 

3. Results and Discussion 
 

3.1 Synthetic data 

 

In this section, the different filtering method is tested with a 

synthetic signal. A noisy synthetic signal is created as the 

addition ofthe following components: 

 

vtstx  )()( 1  
 

where, );05.0sin(4)(1 tts  v=additive white Gaussian 

noise 

 

The noisy synthetic signal x(t) (Figure 5) has two 

components which is shown in top panel, the white Gaussian 

noise is second top panel and the original sine wave is shown 

in bottom panel. The two digital filters are used here to 

remove the noise from the noisy synthetic signal. Figure 

5.shows the Gaussian noise removing using Wiener filter and 

Figure 6. is illustrated  the additive  noise removing using 

Kalman filter. From Figure 5, it is observed that Wiener filter 

perfectly remove the noise and the filtering synthetic signal is 

look like same as the original sine wave. On the other hand, 

the sine wave is contained some white noise using Kalman 

filter is illustrated in Figure 6. It is visualized, from time 

domain plot of Figure 7 and Figure 8 that the Wiener filter is 

completely remove the noise than the Kalman filter. 
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Figure 5: The separation of clean EEG from the synthetic 

data using Wiener filter. 

 

3.2 Application to contaminated EEG data 

 

Dataset description: The recorded EEG is modeled as linear 

combination of pure EEG and EOG artifact defined as: 

 

)()()( tAtPtS EOGEEGEEG 
 

 

where, , , and   are measured EEG, 

pure EEG and EOG artifact respectively. The measured EEG 

signal is the superposition of original EEG signal due to brain 

activity and the fraction of EOG signal due to eye blink 

activity. The aim of the proposed scheme is to extract 

required EEG signal  from the measured signal 

  which consists of the required signal  plus 

the ocular artifact signal . In this paper, multichannel 

 is used as the primary input to suppress its EOG 

artifact using wiener and Kalman filter based techniques. No 

reference channel is used to estimate the pure EEG signals. 

 
Figure 6: The separation of clean EEG from the synthetic 

data using Kalman filter 

 

 
Figure 7: The separation of clean EEG from the synthetic 

data using Wiener filter. 

 

4. Experimental Results 
 

In this section we give a comprehensive overview of 

techniques that can be used for the removal of artifacts from 

EEG signal. For each method, we explain the reasoning 

behind its use for the removal of artifacts from an EEG and 

highlight some of its advantages and deficiencies. The 

Wiener filter based artifact reduction method is tested with 

synthetic signal and the artificially corrupted EEG signal and 

after that the signal is comprised with Kalman filter based 

artifact reduction method. 

 

Figure 2. shows the artifact removing using Wiener filter for 

EEG signal. Calibration is needed prior to usage in Wiener 

filter. On the other hand, when properly calibrated, it can 

achieve a better SAR for corrected data as compared to the 

adaptive filter. It eliminates the requirement for additional 

hardware on the recording device necessary with the adaptive 

filter. The output of this filter is electrooculogram (EOG). To 

get the desired clean EEG data, the artifactual component is 

subtracted from contaminated EEG. By subtracting electro-

oculogram from raw EEG, we get the purified 

electroencephalography that reflects the actual neural 

activities. The electro-oculogram suppression results for a 

single channel of recorded electroencephalography are 

illustrated in Figure 9. in which the separated electro-

oculogram and purified electroencephalography signals are 

shown in the second and third rows respectively. From 

Figure 9.it is observed that the purified EEG signal contains 

more original information although the artifact has cancel 

out. When Kalman filter is applied to our dataset, the noise 

variances play an important role in stability and efficacy of 

the Kalman filter. We chose the following values based on 

the experiments performed with different values of variances 

on different signal like synthetic and EEG signal, 

 
22 101 E for synthetic signal 

42 101 E for real EEG  
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Figure 8: The separation of clean EEG from the synthetic 

data using Kalman filter 

 

In other words, there is a tradeoff between how much an 

algorithm removes the artifact and how much it distorts the 

EEG signal. By tuning the Kalman filter parameters, we use 

measurement noise variance R=0.05. It is apparent from 

Figure 10 that using Kalman filter for artifact correction, 

underlying EEG or low frequency cerebral data may be lost 

and EOG signal contains EEG information. 

 

Figure 11. depicts the original EEG and clean EEG using two 

methods. From this Figure, it is observed that the Weiner 

filtering based method is best for reduce the EOG from 

contaminated EEG without cutting the information and assist 

to get clean EEG. The pure EEG do not show any large 

EOG.As a result, the purified EEG signal is found as 

completely artifact free in Wiener filtering method. 

 

 
Figure 9: Mixture of EOG like contaminated EEG signal and 

pure EEG. (Top): contaminated EEG signal. (Middle): EOG 

signal. (Bottom): the pure EEG signal using Wiener filter. 

 

Performance metrics: 

 

In order to determine whether the method is successful at 

removing ocular artifact (OA) from EEG, the performance is 

assessed using two statistical parameters i.e. signal to artifact 

ratio (SAR) and mean square error (MSE). 

 

Signal to artifact ratio (SAR):  

The metrics commonly employed to represent the energy of 

the signal compared to the energy of the artifact is the signal 

to artifact ratio (SAR) 

 

 
 

Here, is the clean EEG signal.  stands for 

contaminated EEG signal, )(ˆ ts  is artifact free EEG signal 

and N for the signal length or the number of samples. 

 

 
Figure 10: Mixture of EOG like contaminated EEG signal 

and pure EEG. (Top): contaminated EEG signal. (Middle): 

EOG signal. (Bottom): the pure EEG signalusing Kalman 

filter. 

 

 
Figure 11: Visual comparison of the original EEG signal and 

the corrected EEG signals after applying different ocular 

artifact removal methods 

 

Mean square error (MSE): 

It is used to describe similarity between the original signal 

and de-noised signal. 





N

i

ii tsts
N

MSE
1

2)](ˆ)([
1

 

)(tsi stands for original signal, )(ˆ tsi estimates signal de-

noised by mentioned filter , N for the signal length or the 

number of samples. 
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Table 1: A comparative summary of the Wiener and Kalman 

filter for synthetic data 
No. Methods SAR in dB MSE 

1. Wiener filter 5.30 7.195x10-05 

2. Kalman filter 4.34 0.061 
 

 

TABLE I and TABLE II shows the comparison results of the 

SAR and MSE values from Wiener filter and Kalman filter, 

respectively. TABLE I shows the comparison between 

Wiener filter and Kalman filter for synthetic signal. In 

TABLE II, the table shows that the Wiener filter based 

technique yields the best SAR (lower the SAR value able to 

clean more artifact) result than Kalman filter. The SAR value 

is -0.0405 dB for Wiener filter while for Kalman filter it is -

5.6158 dB. The Wiener filter shows lower MSE value 

compared to the Kalman filter. Based on the MSE and SAR 

values, it is observed that the Wiener filter is able to filter out 

more noise compare to Kalman filter. Because higher the 

SAR value better the artifact removing. And lower the MSE 

value, better the method for the artifact removing. 

 

Table 2: A comparative summary of the Wiener and Kalman 

filter for contaminated EEG data 
No. Methods SAR in dB MSE 

1. Wiener filter -0.0405 3.5516 

2. Kalman filter -5.6158 7.9914 

 

5. Conclusions 
 

In this paper, we aim at suppressing the ocular artifacts by 

Wiener filter and compare it with Kalman filter. A 

comparison between two methods to suppress eye blinking 

artifacts in EEG signal. These methods are applied to real 

EEG data. The Wiener filter algorithm causes a little less 

EEG signal distortion. The eye blinking and also the eye 

movement artifacts have been suppressed, while the 

physiological information is preserved. Kalman filter shows 

similar graphical results but the artifactual components have 

been completely removed, physiological information is lost. 

Wiener filter removes the segments where the ocular artifacts 

are present and preserves the physiological information. The 

performance of this method is evaluated based on two 

differentmetrics. The MSE and SAR is a popular parameter 

to determine the quality of signal after filtering.  From 

TABLE I, it is understandable that the SAR value of Wiener 

filter is 5.30 dB which is higher than 4.34 dB in Kalman 

filter. Similarly, the MSE value of Wiener filter is 7.195x10
-

05 
which is lower than 0.061in Kalman filter. According to a 

visual inspection of the signals, the Wiener filter yields the 

best results. In all cases, artifacts are adequately attenuated, 

without removing significant useful information. We 

conclude that Wiener filter based artifact reduction method is 

an efficient processing technique for improving the quality of 

EEG signals in biomedical signal analysis. 
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