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Abstract: Irrational numbers have always been a fascination to mathematiciansfor several millennia. This is because Irrational 
numbers neither terminate nor repeat in their decimal expansion. Hence exploring the next set of digits after a given decimal place has 
kept many mathematicians and computer scientists busy in past few decades. A classic example is exploration of digits of the most 
famous and important real number π.  In this paper, I shall present a novel method with proof using analysis to find the rational 
numbers which are very good approximations to the given Irrational Number and present a more general method of finding 
approximations to all Algebraic numbers.  
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1. Introduction 
 
Let us consider p to be a prime number. We emphasize the 
fact that prime numbers are natural numbers which has 
exactly two divisors. So 1 is excluded from this list. The set 
of primes numbers are 2,3,5,7,11,13, . . .    
 
The study of behaviour of prime numbers has been source of 
investigation for many centuries and till today most 
intelligent minds in history of mathematics have spent 
considerable time in finding the patterns of these mysterious 
numbers.  
 
Euclid in Third Century B.C. in his Ninth volume of “The 
Elements” has proved that there are “Infinitely many 
primes”. The proof provided by Euclid is considered by 
many as one of the most beautiful in proving theorems.  
 
The set of all real numbers R is the union of rational 
numbers and irrational numbers. The ratio of two co-prime 
integers where the denominator is non-zero is called a 
rational number. Hence a rational number can be represented 

as 
p

q
where ( , ) 1, 0p q q  .    

 
The real numbers which are not represented in above form 
are called irrational numbers. Thus, it is impossible to 
express any irrational number as quotient of two integers. 
So, with respect to real number system, the irrationals are 
precisely the complements of rational numbers.  
 
As a consequence of Bolzano-Weierstrass theorem, it is 
known that between any two rational numbers there are 
infinitely many irrational numbers and conversely between 
any two irrational numbers there are infinitely many rational 
numbers. With this idea, we try to explore the irrational 

numbers of the form p , when p is prime through its 
neighbouring rational numbers. I introduce a novel method 
for doing so and prove that this method always yield 

irrational numbers of the form p    

 
 
 
2. The Square Root of Two 
 

The square root of two denoted by 2 has a special 
importance in history of mathematics, since it is the first 
irrational number to be discovered. It was believed that one 
of the followers of Pythagoras, discovered that the length of 

a diagonal of a unit side square is exactly 2 21 1 2  . 
This discovery shattered the belief of Pythagoreans who till 
then claimed that everything in the universe can be 
expressible as ratio of two integers which are rational 
numbers. Legend has it that the discoverer of this idea was 
thrown in the sea.  
 
After this incident, mathematicians like Theodorus proved 
numbers of the form 2, 3, 5, 7, 11, 13, 17 are 

irrationals and stopped at 17 . Today there exist 
innumerable ways of proving the irrationality of these 
numbers.   
 

3. Method for Computing 2 :  
 

We now provide an elegant method to compute 2 .The 

general idea for computing 2 is to iterate with the help of 
a function repeatedly, until we get desired accuracy to 

approximate 2 . The following function is used for this 
purpose.  

2a a b
f

b a b

 
 

 
 

We now begin our iteration with 1, 1a b  and continue 
repeatedly until we get desired rational number closer to 

2  .   
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1 1 (2 1) 3 3 3 (2 2) 7 7 7 (2 5) 17 17 17 (2 12) 41, , ,
1 1 1 2 2 3 2 5 5 7 5 12 12 17 12 29
41 41 (2 29) 99 99 99 (2 70) 239, ,...
29 41 29 70 70 99 70 169

f f f f

f f

              
              

          

      
      

    

 

 
From the six iterate values that are provided above, it is easy 

to see that the numbers 
3 17 99, , ,...
2 12 70

are more than  2

and the numbers 
7 41 239, , ,...
5 29 169

are less than 2 . Now 

these numbers on either side of 2 will in fact can be 

shown to converge to 2 . We see this assertion in the form 
of a theorem.  
 

3.1   Theorem 1:  

 

The function 
2a a b

f
b a b

 
 

 
always produces iterates 

which converge to 2 .    

Proof: Let 1
2,n n

a a b
x x

b a b



 


. Then we can 

express the functionfin the form 1( )n nf x x  . Now 

considering 1nx  and relating it with nx we get  

1

2 22
11

n
n

n

a
xa b bx

aa b x

b






  
 


 

Now considering the difference of 1nx  and nx ,  we get 
2 2

1
1

2 2
1
n n

n n

n n

x x
x x

x x x


 
  

 
, since 1 1x  . Continuing 

in this fashion and considering the difference of subsequent 

terms from nx  we get the following equations: 

2 2 2

2 3 4
2 3 4

2 2 2, ,n n n
n n n n n n

n n n

x x x
x x x x x x

x x x x x x
  

  
     

  
 
In general, for any natural number k, we have 

22 n
n k n

n k

x
x x

x x



 


 

Since , 1n kx x  , we have 
1 1

2n kx x



and so 

22 1
2 2

n

n k n

x
x x


    

In fact, for large values of k. we get n k nx x  . 

Hence  
1nnx





is a Cauchy sequence of real numbers. 

Since any Cauchy sequence of real numbers is convergent, it 

follows that the sequence  
1nnx





is convergent.  

Let lim n
n

x L


 . Since  
11 nnx




is a subsequence of 

 
1nnx





, we should get 1lim n
n

x L


  

Thus from the equation 1
2
1

n
n

n

x
x

x






upon taking the 

limits on both sides we get 
2
1

L
L

L





from which 

2L  .   

So the function 
2a a b

f
b a b

 
 

 
 always produces 

numbers converging to 2 and this completes the proof.  
 

4. Other Square Roots 
 
Similar to Theorem 1, discussed above, we can prove the 
following theorem. 
 

4.1   Theorem 2 

 

The function 
a a nb

f
b a b

 
 

 
always produces iterates 

converging to the irrational number n ,where 
2n k .   

Proof:  Let  1,n n

a a nb
x x

b a b



 


. Then as 

discussed with the case 2 , we can show that  
2 1

2 2
n

n k n

n x
x x


    
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Hence for large values of k, we have n k nx x  . 

Hence  
1nnx





  is a Cauchy sequence of real numbers 

which is convergent. Let lim n
n

x L


 . Since  
11 nnx




is 

a subsequence of  
1nnx





, we should get 1lim n
n

x L




. Hence from 1 1
n

n

n

x n
x

x






upon taking the limits on 

either sides, we get 
1

L n
L

L





. This gives L n . This 

proves our claim.  
 
5. General Case 
 
We now provide sequence of iterates converging to 

 
1

n np p where np k .  For this, we consider the 
following theorem.  
 

5.1   Theorem 3:  

 

The function 

2

1 1

( )n

n n

a b a pb
f

b a b



 

 
 

 
 always 

produces iterates which converge to  
1
np .  

Proof:  Assuming 1 1,
1

n
n n n

n

x pa
x x

b x
 


 


 we find 

that 1
11

n n

n n
n n

n n

p x p x
x x

x x x


 
  

 
since 1 1x  . 

In general, for any natural number k, we have 

1
2 2

n

n

n k n

p x
x x


    

Hence for large values of k, we have n k nx x  . 

Hence  
1nnx





  is a Cauchy sequence of real numbers 

which is convergent. Let lim n
n

x L


 . Hence from 

1 1 1
n

n n

n

x p
x

x
 





, taking limits on either sides we get 

1 1n

L p
L

L 





. This simplifies to 

nL p and so 

 
1
nL p .  

Thus the function 

2

1 1

( )n

n n

a b a pb
f

b a b



 

 
 

 
always 

produces iterates which converges to  
1
np as required.   

 

6. Conclusion 
 
From the three theorems discussed above, we find an elegant 
and novel way of approximating all Algebraic numbers 
(numbers which are roots of polynomial equations with 
rational coefficients) efficiently. The fact that these schemes 
provide easy way of finding the approximations, it would be 
very useful in many Science and Engineering applications. 
From mathematical perspective, this method would have 
made Pythagoreans and Theodorus much happy.  
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