
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 3, March 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Data Balancing Scheme for Multi-node 
Heterogeneous Hadoop Cluster 

 

Indresh B. Rajwade
1
, Er. Prateek Singh

2
 

 
1M. Tech. (CSE) Student, Department of Computer Science & IT, SHUATS 

 
2Assistant Professor, Department of Computer Sciece& IT, SHUATS 

 

Abstract: Big data encompasses huge amount of information from multiple internal and external resources such as transactions, 

social media, enterprise content, sensors and mobile devices. It is characterized as volume, velocity, variety and veracity.  MapReduce is 

a parallel computing framework which meets the tremendous needs for large scale data processing. Due to its simplicity, robustness and 

scalability MapReduce has been widely used by the companies such as Amazon, Facebook and Yahoo! to process large volumes of data 

on a daily basis. The MapReduce framework simplifies the complexity of running distributed data processing functions across multiple 

nodes in a cluster. It automatically handles the gathering of results across the multiple nodes and returns a single result or a set. 

Hadoop is an open source implementation of MapReduce which balances the load in a cluster by distributing data to multiple nodes 

based on disk space availability and processing efficiency. In this dissertation, the evaluation of data placement mechanism in a 

heterogeneous Hadoop cluster is performed using Grep tool and WordCount program. These are two MapReduce applications running 

on Hadoop clusters.  A comparison has been done with Grep and WordCount through Ubuntu 14.04 LTS for three nodes in a Hadoop 

cluster and it is observed that the computing ratios of a Hadoop cluster are application dependent and size independent. This means that 

if the configuration of a cluster is updated, computing ratios must be determined again. 

 
Keywords: Big Data, Hadoop, MapReduce, HDFS, Grep, WordCount, Heterogeneous cluster 
 

1. Introduction 
 
Today, the most technological challenges in software 
systems research is to provide solutions for storing, 
manipulating, and information retrieval on large set of data. 
Web services and social media (Facebook, Twitter etc.) 
produce together a huge amount of data, reaching the scale 
of petabytes daily [1]. These large set of data may consist of 
valuable information, which sometimes is not properly 
discovered by existing systems. Most of this data is stored in 
a unstructured fashion, using different languages and 
formats, which, in many cases, are not compatible [2]. 
 
For example, Facebookthat initially used relational database 
management systems (RDBMS) to store its data. Because of 
the growing large volume of information generated on a 
daily basis (2.5 Quintillion bytes) [3]. One of the 
Facebook‟s largest clusters holds more than 100 PB of data, 
processing more than 60000 queries a day [1]. The use of 
traditional platform became impracticable 
particularlybecause, most of its data is unstructured, 
consisting of logs, posts, photos, and pictures [4]. Having 
achieved in April 2016 more than 1.59 billion 
globallymonthly active users [5], Facebook may be 
considered one of the largest and most valuable social 
networks. Big companies like Google, Facebook and Yahoo 
capturing huge amount of user data started to be evaluated 
not just by their applications but also by their large datasets, 
particularly the information that can be extracted from them. 
The companies have an aggregate value for their provided 
services and for the large amount of information stored. This 
data can be used for numerous future applications, such as 
IT infrastructure optimization, manufacturing process 
optimization, legal discovery, social network analysis, 
traffic flow optimization, web app optimization, integration 
of location-based information, churn analysis, natural 

resource exploration, weather forecasting, healthcare, fraud 
detection, life science research, advertising analysis etc. [6]. 
 

1.1 Big Data 

 
The data is being generated from various sources- 
transactions, social media, sensors, digital images, videos, 
audios and click streams for domains including healthcare, 
retail energy and utilities. In addition to business and 
organizations, individual contribute to the data volume. For 
instance, billionsof content are being shared on Facebook 
every month [5]. 
 
International Data Corporation (IDC) terms this as the 
„Digital Universe‟ and predicts that this digital universe is 
set to explode to an unimaginable 8 Zeta bytes by the year 
2015 [7]. The term „Big Data‟ was coined to address the 
massive volume of data storage and processing. The Big 
Data is a huge amount of unstructured data generated by 
companies, organisations and individual every day and these 
data are stored in digital form. 
 
The “Big Data” term is used to refer to a collection of large 
datasets that may not be processed using traditional database 
management tools [8][9]. There are challenges involved to 
deal with large datasets such processing, storage, and 
analysis etc. Regarding data analysis and Big Data, the need 
for infrastructures capable of processing large amounts of 
data, within an passable time and on limited resources, is a 
substantial problem. Probable solutions make use of parallel 
and distributed computing. This model of computation has 
been demonstrated to be essential nowadays to extract 
relevant information from Big Data. Such processing is 
accomplished using clusters and grids, which use generally, 
commodity hardware to combined computational capacity at 
a relatively low cost. 
 

1.2 Hadoop 

Paper ID: 25031702 2088



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 3, March 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Hadoop is software framework for distributed processing of 
large datasets across large clusters of computers. It is a 
popular open-source implementation of the Google‟s 
MapReduce algorithm primarily developed by Yahoo [10]. 
It is used to generate hundreds of TB of data by Yahoo‟s 
servers on more than40,000 processor cores [11].Hadoop is 
used by most popular company Facebook to process more 
than 300 PB of new data every day. Other than Yahoo and 
Facebook, wide range of websites like Amazon and Last.fm 
are usingHadoop to manage large set of data per day [12]. In 
addition to data-intensive applications pertaining to web, 
scientific data-intensive applications such as seismic 
simulations and natural language processing take full 
benefits from the Hadoop system [13][12]. 
 

1.3 Hadoop Infrastructure 

 
Essentially, there are two major layers of Hadoop system. In 
Figure 1, the first layer is the HadoopMapReduce engine for 
processing large datasets[14]. Higher levels in the software 
stack consists of Pig and Hive, user-friendly parallel data 
processing languages, Zoomkeeper a high-availability 
directory and configuration service, and HBase, a web-scale 
distributed column-oriented store designed after its 
proprietary predecessors. The second layer is Hadoop 
Distributed File System (HDFS) [15]. Currently, HDFS 
divides files into blocks that are replicated among several 
different computing nodes with no attention to whether the 
blocks are divided evenly. When a job is initiated, the 
processor of each node works with the data on their local 
hard disks. In the initial phase of this dissertation research, it 
is investigated that how Hadoop works with its parallel file 
system. It divides a large file into small pieces, which are 
evenly distributed across multiple nodes. When the large file 
is accessed, high aggregated I/O bandwidth can be achieved 
by accessing the multiple nodes in parallel. The performance 
of cluster can be improved by Hadoop, because multiple 
nodes work concurrently to provide high throughput. 
 

1.4MapReduce 

 
The MapReduce programming model simplifies the 
complexity of running parallel data processing functions 
across multiple computing nodes in a cluster, by allowing a 
programmer with no specific knowledge of parallel 
programming to create MapReduce functions running in 
parallel on the cluster. MapReduce automatically handles 
the gathering of results across the multiple nodes and returns 
a single result or set. More importantly, the MapReduce 
runtime system offers fault tolerance that is entirely 
transparent to programmers. 
 

 
Figure 1: Hadoop Infrastructure 

 

1.5 MapReduce Framework Architecture 

 
The MapReduce is programming model and an associated 
implementation for processing and generating large data 
sets.  

 
Figure 2: MapReduce Framework 

 
Computations in MapReduce framework are divided into 
map and reduce phases, separated by an internal grouping of 
the intermediate results. The power of MapReduce is that 
the map and reduce functions are executed in parallel over 
hundreds or thousands of processors with minimal effort by 
the user. After user submits a job, MapReduce jobs run as 
follows. Firstly, input data is divided into several fixed-size 
splits, each of which runs a map task. Then after all map 
tasks are finished, the intermediate data is reassigned to 
reduce tasks according to different keys generated in map 
phase. Reduce phase can be divided into three parts, shuffle, 
sort and reduce function. The shuffle phase transfers 
intermediate data generated by map tasks to the 
corresponding reduce tasks. The sort phase merges all the 
intermediate data belonging to the reduce task and maintains 
sort. Then reduce function is called for each key in the sort 
phase, and directly writes output to distributed file system. 
 
The MapReduce framework operates on (key, value) pairs, 
that is, the framework views the input to the job as a set of 
(key, value) pairs and produces a set of (key, value) pairs as 
the output of the job, conceivably of different types. 
 

1.6 HDFS 

 
The Hadoop Distributed File System or HDFS is a 
distributed file system designed to run on commodity 
hardware. HDFS is the primary distributed storage used by 
Hadoop applications on clusters. Although HDFS has many 
similarities with existing distributed file systems, the 
differences between HDFS and other systems are significant. 
HDFS is highly fault-tolerant and is designed to be deployed 
on cost-effective clusters. HDFS offers high throughput 
access to application data and is suitable for applications that 
have large data sets. 
 

1.7 HDFS Architecture 

 
Figure 3 represents a diagram that describes the architecture 
ofHDFS. Diagram describes the master-slave architecture, in 
which a master is called NameNode and slaves are referred 
to as DataNodes [16]. Basically, an HDFS cluster consists of 
a single NameNode, which manages the file system 
namespace and regulates access of clients to files. In 
addition, there are a number of DataNodes. Usually, each 
node in a cluster has one DataNode that manages storage of 

Paper ID: 25031702 2089



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 3, March 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

the node on which tasks are running. HDFS exposes file 
system namespace and allows user data to be stored in files. 
Internally, a file is split into one or more blocks stored in a 
set of DataNodes. The NameNode executes file system 
namespace operations like opening, closing, and renaming 
files and directories. The NameNode also determines the 
mappings of blocks to DataNodes. The DataNodes not only 
are responsible for serving read and write requests issued 
from the file system‟s clients, but also perform block 
creation, deletion, and replication upon instructions from the 
NameNode [17]. 

 
Figure 3: HDFS Architecture 

 
HDFS is designed to support very large files, because 
Hadoop applications are dealing with large data sets. These 
Hadoop applications write their data only once but read the 
data one or more times and require these reads to be 
performed at streaming speeds. HDFS supports write-once-
read-many semantics on files. A typical block size used by 
HDFS is 64 MB/128MB, thus an HDFS file is chopped up 
into 64 MB/128MB chunks. If it is possible, chunks are 
residing on different DataNodes. 

 
2. Related Work 
 

Zaharia et al. proposed the FAIR scheduler, optimized for 
multi-user environments, in which a single cluster is shared 
among a number of users. The FAIR algorithm is used in the 
data mining research field to analyze log files. The FAIR 
scheduler aims to reduce idle times of short jobs, thereby 
offering fast response times of the short jobs. The scheduler 
in Hadoop organizes jobs into pools, among which resources 
are shared. Each pool is assigned a guaranteed minimum 
share, which ensures that certain users or applications 
always get sufficient resources. Fair sharing can also work 
with job priorities, which are used as weights to determine 
the fraction of total compute time allocated to each job. Fair 
scheduling assigns resources to jobs so that all jobs 
consume, on average, an equal share of resources. They also 
address the problem of speculative execution of straggling 
tasks while still concerned with performance [18]. 
 

Leo and Zanetti implemented a solution to make Hadoop 
available to Python programmers called Pydoop. A Python 
package based on CPython provides an API for MapReduce 
and HDFS. This works as an alternative to Hadoop 
Streaming or Jython. Hadoop Streaming uses a 
communication protocol to execute a Python script as the 
Mapper or Reducer via the standard input and output [19]. 
Therefore, it cannot process arbitrary data streams, and the 
user directly controls only the Map and Reduce parts, except 
for HDFS operations. 
 

Shvachko et al. proposed an Hadoop Distributed File 
System is the block storage layer that Hadoop uses to keep 
its files. HDFS was designed to hold very large datasets 
reliably using data replication [20]. This allows HDFS to 
stream large amounts of data to user applications in a 
reasonable time. Its architecture is composed of two main 
entities: NameNode and DataNodes, which work in a 
master-slave fashion. NameNode is responsible for keeping 
the metadata about what and where the files are stored in the 
file system. DataNodes are responsible for storing the data 
itself. HDFS works as a single-writer, multiple-reader file 
system. 
 

Vernica et al. describes solutions to improve Hadoop's 
performance. They focus on the interaction of Mappers, 
introducing an asynchronous communication channel 
between Mappers. In the current implementation of Hadoop, 
Mappers are completely independent. Using a transactional 
distributed meta-data store (DMDS), Mappers can post 
metadata about their state and check the state of all other 
Mappers [21].  
 

Ahmad et al. proposed MaRCO (MapReduce with 
communication overlap), which is directed to the 
overlapping of the Shuffle with the Reduce computation. 
The original Hadoop data flow was modified allowing the 
operation of Reduce tasks on partial data. MaRCO breaks 
Reduce into many smaller invocations on partial data from 
some map tasks, and a final reducing step re-reduces all the 
partial reduce outputs to produce the final output [22]. 
 

Lin et al. have proposed an overlapping model between map 
and shuffle phases. The approach is based on two 
complementary scheduling algorithms called MaxSRPT and 
SplitSRPT. MaxSRPT minimizes the average response time 
of the queue, while SplitSRPT addresses the poor 
performance of MasSRPT when jobs are more unbalanced. 
Moreover, this study presents an analytical model proving 
that the problem of minimizing response time in the 
proposed model is strongly NP-hard [23].  
 

Xie et al. uses a pre-shuffling approach to reduce the 
network overload imposed by shuffle intensive applications. 
To accomplish this, a push model using in-memory buffer 
and a 2-stage pipeline in the pre-shuffling scheme to 
exchange partial data between map and reduce tasks are 
implemented [24]. 
 

Costa et al implemented a new Hadoop version 
incorporating Byzantine fault-tolerance to MapReduce. 
Initially, the approach runs f þ1 map tasks, f being the 
maximum number of faulty replicas. This was the minimum 
number of replicas the authors reached by considering the 
expected low probability of arbitrary faults [25]. The model 
also achieves better performance by using speculative 
execution of reduce tasks. Although the resources used 
practically doubles in this approach, this cost may be 
acceptable for a large number of applications handling 
critical data. 
 
After focusing on the above research works, we have 
evaluated an approach which helps to develop and implement 
an algorithm for balancing the data blocks to the nodes on 

Paper ID: 25031702 2090



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 3, March 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

heterogeneous Hadoop cluster. We have also evaluated 
theperformance of heterogeneous Hadoop cluster using the 
balancing scheme. 
 

3. Proposed Work 
 

3.1Balancing Data in Heterogeneous Hadoop Cluster:  

 
In a heterogeneous cluster, the computing capacities of 
nodes may significantly vary. A most-efficient node can 
finish processing data stored in a local disk of the node 
much faster than its least-efficient nodes. After a fast node 
completes the processing of its local input data, the fast node 
must perform load sharing by handling unprocessed data 
located in one or more slow nodes in cluster. This can be 
achieved by a data balancing scheme that distributes and 
stores data across multiple heterogeneous nodes based on 
their computing capacities. Data placement overheads can 
be reduced if the number data blocks placed on the disk of 
each node is proportional to the node‟s data processing 
capacity. 
 
In our data balancing method, we designed a algorithm and 
incorporated the algorithms into Hadoop‟s HDFS. The 
algorithm is to initially place data blocks to heterogeneous 
nodes in a cluster to balance the data load. When all data 
blocks of an input file required by computing nodes are 
available in a node, these data blocks are distributed to the 
computing nodes. 
 

3.2Data Balancing Algorithm:  

 

INPUT: N, Data, t    

/* N: Number of Nodes, Data: Files of large Data, t: data 
intensive job/task */ 
1. DB  Divide a large file into a number of even-sized 

data blocks 
2. <Nme, Nle, r>GetInfo(N, t) /* Get the information of 

nodes in cluster according to their processing capacity 
after comparing with least-efficient nodes, most-efficient 
nodes are expected to store and process more data 
blocks. An N: node number and the r: rack number of the 
task t. Nme: Most-efficient node, Nle: Least-efficient 
node   */ 

3. For each db in DB do  
      If a replica of db already exists in the Nme(r)/Nle(r) then 
      continue; 
      Else 
      (Nme ,Nle, r)db /* The number of data blocks will  
       be distributed to high-efficient nodes and least-efficient 
nodes respectively according to their processing speed in 
rack r. */ 
       End if 
       Done 
4. Execute the Task/Job : Grep, WordCount 
5. End 

 
 
 
 
 
 
 

3.3 Flow Chart of the above Algorithm:  
 

 
Figure 4: Flow chart 

 
In figure 4, flow chart takes large files (Data Set), number of 
nodes (N) and task/job (T) as input in the hadoop cluster. 
Data is divided into even sized blocks (DB) and total number 
of data blocks are assigned to TotalDB for further use. IDB 
refers to initial data block which is assigned to one. 
Efficiency of nodes (N) is calculated according to their 
computing ratio and response time (Table 2) using node 
configuration files.  Balancer (program) distributes all the 
data blocks to the most efficient and least efficient nodes as 
per their performance along with rack number of the task 
(Grep/WordCount). Finally job (Grep/WordCount) is 
executed and output is stored in the file on the storage of 
computer. 

 

4. Performance Evaluation 
 
We have used Ubuntu 14.04 LTS, Java (jdk1.8), Eclipse 
(Mars) to implement the algorithm. 
 

4.1 Ubuntu 14.04 LTS 

 

It has important features such as stability, speed, open source 
and reliability which motivated us to use it for running the 
Hadoop. 
 

4.2 Java (Jdk 1.8) 

 

It is designed to be simple and architecture neutral, so that it 
could be executed on a variety of hardware. Its main 
characteristics such as easy learning, object oriented, and 
platform independent inspired us to write programs and 
execute them on Hadoop platform. 
 

 

Paper ID: 25031702 2091



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 3, March 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

4.3Eclipse Mars 1 

 

Eclipse provides IDEs and platforms for nearly every 
language and architecture. It is famous for Java IDE, 
JavaScript and PHP IDEs built on extensible platforms for 
creating desktop, web, and cloud IDEs to write and deploy 
variety of programs easily and speedily.  
 

4.4 Proposed Method 
 
To address the limitation of imbalanced data load in 
heterogeneous hadoop cluster we propose a data balancing 
mechanism in the HDFS to initially distribute a large data set 
to multiple nodes in accordance to the computing capacity of 
each node. 
 

4.5Hardware and Software used 

 

Technologies used for evaluating the performance of 
heterogeneous multinodehadoop cluster is described in table 
1. 

 

Table 1: Hardware and Software Specification 
SN. Specifications Master 

Node (A) 
Slave Node1 

(B) 
Slave Node2 

(C) 
1 Hard Disk 60GB 50GB 40 GB 
2 RAM 4GB 2GB 1 GB 
3 Processor Intel Core 

i5-4200U 
Intel 

Pentium 
Dual Core, 

E-6700 

Intel Core 2 
Duo 

E-7500 

4 CPU 2.30GHz 3.20GHz 2.93GHz 
5 Operating 

System 
Ubuntu 

14.04 LTS 
Ubuntu 

14.04 LTS 
Ubuntu 14.04 

LTS 
 

4.6 Measurement of Heterogeneity 

 
Before implementing the data balancing algorithm, we need 
to calculate the heterogeneity of a Hadoop cluster in terms of 
data processing speed. Such processing speed highly depends 
on data-intensive applications. Thus, heterogeneity 
measurements in the cluster may change while executing 
different MapReduce applications. We have used a technique 
to measure each node‟s processing speed I a heterogeneous 
cluster called computing ratios. Computing ratios are 
determined by a describing technique carried out in the 
following steps [17]. 
 
First, the data processing operations of a given MapReduce 
application are separately performed in each node. To 
compare processing capability, we ensure that allthe nodes 
process the same amount of data. For example, in our 
experiments the input file size is set to 2GB. 
 
Second, we noted down the response time of each node 
performing the data processing tasks. 
 
Third, the smallest response time is used as a reference to 
standardize the response time measurements. The 
standardized values are called computing ratios which is used 
by the data balancing algorithm to allocate input data blocks 
for the given MapReduce application.A small computing 
ratio of a node in cluster implies that the node has high 

speed, indicating that the node should process more data 
blocks than other nodes.  
 
An instance to demonstrate how to calculate computing 
ratios that leads the data balancing process.Suppose  there are 
three heterogeneous nodes (i.e. Node A, B and C) in Hadoop 
cluster. After running a Hadoop application on each node, we 
record that the response times of the application on node A, 
B and C are 10, 20, and 30 seconds respectively. The 
response time of the application on node A is the shortest. 
Therefore, the computing ratio of node A with respect to this 
particular application is set to 1, which becomes a reference 
used to determine computing ratios of node B and C. Thus 
the computing ratios of node B and C are 2 and 3, 
respectively. Table 2 shows the response times, computing 
ratios for each node and data blocks to be distributed in a 
Hadoop cluster. Naturally, the fast computing node (i.e. node 
A) has to handle 60 data blocks whereas the slow node (i.e. 
node C) only needs to process 20 data blocks. 

 

Table 2: Response time and computing Ratio 
Node Response 

Time (Sec) 
Computing 

Ratio 
No of Data 

Blocks 
Speed 

A 10 1 60 Faster 
B 20 2 30 Average 
C 30 3 20 Slowest 

 
The data block distribution is governed by a data distribution 
server, which constructs network and calculates disk space 
utilization. The server generates and maintains a 
configuration file containing a list of computing-ratio 
information. The data distribution server applies the round-
robin policy to assign input data blocks to heterogeneous 
nodes based on their computing ratios. 
 

5. Results 
 
We have used the commodity hardware configuration 
showed in table 1 to implement and evaluate the data 
balancing algorithm in a heterogeneous Hadoop cluster. The 
cluster consists of three heterogeneous nodes (Table 1). The 
Grepand WordCount are two Hadoop applications running 
on the cluster. Grep is a searching tool for a regular 
expression in a text file; whereas WordCount is a program 
written in java and used to count the number of words 
consisting set of numbers, letters, special symbols etc. in text 
file. 
 
Computing Ratios of the Three Nodes with respect to Grep 
and WordCount Applications and number of data blocks 
allotted. (File size 2 GB) large data sets are taken from 
website of National Centers for Environmental Information, 
National Oceanic and Atmospheric Administration (NOAA) 
for analysis purpose [26]. 

 

Table 3: Computing Ratio 
Node Ratio for 

Grep (sec) 
Ratio for 

WordCount (sec) 

Number of 
data blocks 

A 1 1 9 
B 2 2 6 
C 3 4 3 

 

Paper ID: 25031702 2092



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 3, March 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

The data allocating server follows the approach of measuring 
heterogeneity to obtain computing ratios of the three nodes 
with respect to Grep and WordCount applications. 
 
Figure 5 and 6 show the response times of the Grep and 
WordCount applications running on each node of the Hadoop 
cluster when the input file size is 2 GB. The results plotted in 
figures suggest that computing ratios are independent of 
input file size, because the response times of two applications 
are proportional to the file size. Figures also depict that the 
input file of same size given, Grep‟s response times are 
shorter than those of WordCount. Consequently, the 
computing ratios of Grep are different from those of 
WordCount. 

 

 
Figure 5: Response time of Grep application on each node 

 

 
Figure 6: Response time of WordCount application on each 

node 

 
Now we are positioned to evaluate the impacts of data 
balancing decisions on the response times of Grep and 
WordCount. Table 4 shows five demonstrative data 
balancing decisions, including two optional data balancing 
decisions ( D1-2-3 and D1-2-4) offered by the data 
balancing algorithm for the Grep and WordCount 
applications. The data blocks of input file are balanced and 
distributed on the three nodes based on fie different data 
balancing decisions, among which two optional decisions ( 
ie. D1.2-3 and D1-2-4) are made by our data balancing 
scheme as per computing ratios stored in configuration file. 
 

5.1 Data Balancing Schemes 

 

Table 4: Data Balancing Schemes 
Notation Data Balancing Schemes 
D1-2-3 Allocating data blocks under the computing ratios of 

the Grep. This is the optimum data balance for Grep 
D1-2-4 Allocating data blocks under the computing ratios of 

the WordCount. This is the optimum data balance 
for WordCount 

All-in-A Allocating all the data blocks to node A. 

All-in-B Allocating all the data blocks to node B. 
All-in-C Allocating all the data blocks to node C. 

 

Figure 7 shows the impacts of data balance on the response 
times of the Grep application. The first (from left) bar in 
represent the response time of the Grep application after 
distributing data blocks based on Grep‟s computing ratios. 
Figure also shows the response time of Grep on the 3-node 
cluster with the other four data balancing decisions. We 
observe from figure 7 that data balancing decision (denoted 
as D1-2-3) leads to the best performance of Grep, because 
the input data blocks are distributed according to the 
computing ratios of nodes. If all the data blocks are given to 
node C decision (All-in-C), Grep performs extremely 
poorly. Grep‟s response time is unsatisfactorily and long 
under the „All-in-C‟ decision, because all the data blocks are 
placed to node C. Node C is the slowest node in the cluster.  

 
Figure 7:   Impact of Data balance on performance of Grep 

 
Figure 8 demonstrates the impacts of data balancing 
decisions on the response times of WordCount application. 
The second bar from left in figure depicts the response times 
of the WordCount application on the cluster under and best 
data balancing decision. In this optimum data balancing 
case, the input data blocks are placed according to the 
computing ratios decided and managed by the data 
distributed server. The result plotted in figure 8 indicate that 
the response time of WordCount under the optimal „D1-2-4‟ 
data balancing decision is the smallest compared with the 
other data balancing decisions. The performance of „All-in-
C‟ data balancing is unacceptably poor. The „D1-2-4‟ data 
balancing decision is proved to be the best, because this data 
balancing decision is made on the heterogeneity 
measurement i.e. computing ratios. 

 

 
Figure 8: Impact of Data balance on the performance of 

WordCount 
 

Our results reported in figures 7 and 8 that our data balancing 
scheme can increase the performance of Grep and 
WordCount by up to 11.9% and 20.87 % respectively. 
 

 

Paper ID: 25031702 2093



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 3, March 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

6. Conclusion 
 
We mentioned a performance problem in HDFS on 
heterogeneous cluster. Motivated by the performance 
decrease caused by heterogeneity, we designed and 
implemented a data balancing mechanism in HDFS. The new 
algorithm balances the data blocks of an input file to 
heterogeneous computers according to their processing 
capabilities. Our approach significantly increases the 
performance of Hadoop heterogeneous clusters. 
 
References 

 
[1] Facebook. Under the hood: Scheduling MapReduce jobs 

more efficiently with Corona: 2012 
[2] Bakshi K. Considerations for beg data: architecture and 

approach. In: Aerospace Conference. IEEE: 2012. P 1-7. 
[3] http://www.vcloudnews.com/every-day-big-data-

statistics-2-5-quintillion-bytes-of-data-created-daily/, 
2015 

[4] IvaniltonPolato, Reginaldo Re, Alfredo Goldman, Fabio 
Kon“A comprehensive view of Hadoop research – A 
systematic literature review” 2014 

[5] Statista, 2016a 
[6] http://download.microsoft.com/download/C/2/D/C2D-

2D5FA-768A-49AD-8957-1A434C6C8126/ 
Microsoft_Modern_Data_Warehouse_white_paper.pdf, 
2016 

[7] https://www.emc.com/collateral/analyst-reports/idc-
extrac -ting-value-from-chaos-ar.pdf, 2011 

[8] Zikopoulos P, Eaton C. Understanding big data: 
analytics for enterprise clasHadoop and streaing data. 
McGraw-Hill; 2011 

[9] White T. Hadoop: The definitive guide, 3rd edition. 
O‟Reilly Media.Inc; 2012 

[10] Apache Software Foundation. 
Hadoop.http://hadoop.apache.org/hadoop. 

[11] Yahoo.Yahoo! launches world‟s largest hadoop 
production application. htttp://tinyurl.com/2hgzv7. 

[12] R.Pike, S.Dorward, R.Griesemer, and S.Quinlan. 
Interpreting the data: Parallel analysis with Sawzall, 
volume 13.IOS Press, 2005. 

[13] C.Olston, B.Reed, U.Srivastava, R.Kumar, and 
A.Tomkins. Pig latin: a not-so-foreign language for data 
processing. In SIGMOD ‟08: Proceedings of the 2008 
ACM SIGMOD international conference on 
Management of data, pages 1099–1110. ACM, 2008. 

[14] Dean and S. Ghemawat. Mapreduce: Simplified data 
processing on large clusters. OSDI ’04, pages 137–150, 
2008. 

[15] D. Borthakur. The Hadoop Distributed File System: 
Architecture and Design. The Apache Software 
Foundation, 2007. 

[16] Apache Software Foundation. 
Hadoop.http://hadoop.apache.org/hadoop. 

[17] https://etd.auburn.edu/bitstream/handle/10415/2962/dis-
sertation.pdf?sequence=2 

[18] ZachariaFadika and MadhusudhanGovindaraju.Lemo-
mr: Low overhead and elastic mapreduce 
implementation optimized for memory and cpu-
intensive applications. In CloudCom, pages 1–8, 2010. 

[19] Leo S, Zanetti G. Pydoop: a Python MapReduce and 
HDFS API for Hadoop. In proceedings of the 19th 

international symposium on high performance 
distributed computing. New York, NY, USA: ACM; 
2010. P. 819-25. 

[20] Shavachko K, Kuang H, Radia S, Chansler R. The 
Hadoop distributed file system. In: proceedings of the 
26th symposium on mass storage systems and 
techonologies. Washingtom, DC, USA: IEEE. P. 1-10. 

[21] Vernica R, Balmin A, Beyer KS Ercegovac V. Adaptive 
MapReduce using situation-aware mappers. In: 
proceedingsof the 15thinternationalconference on 
extending database technology . New York, NY, USA: 
ACM; 2012 p. 420-31 

[22] Ahmad F., Lee S., Thottethodi M. and Vijaykumar T. 
(2013). MapReduce with communication overlap 
(MARCO). J Parallel DistribComput 2013:73(5):608-20. 

[23] Lin M, Zhang L, Wierman A, Tan J, Joint optimization 
of overloading phases in MapReduce. Perform Eval 
2013;70(10):720-35 2013 

[24] Xie J, Tian Y, Yin S, Zhang J, Ruan X, Qin X, 
Adativepreshuffling in Hadoop clusters, Procedia, 
Computer Science 2013: 18(0):2458-67 , 2013  

[25] Costa P, Pasin M, Bessani A, Correia M. O the 
performance of byzantine faulttolerantMapReduce. 
IEEE Trans Dependable Secure Computing 
2013:10(5):301-13 

[26] https://www.ncdc.noaa.gov/orders/qclcd  

Paper ID: 25031702 2094




