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Abstract: Multi-step generalized differential transform method (MSGDTM) is one of the most proficient and effective method, which 
provides better and improved approximate solution for a system than other numerical and analytic methods for frictional derivatives and 
it’s performance and reliability is superior than other methods. In this research paper we will employ Multi-Step Generalized 
Differential Transform Method (MSGDTM) to find the approximate solution of the frictional order Host-Vector Dengue disease model 
and the non-negativity of the solutions of frictional order Host-Vector model will be presented.  
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1. Introduction  
 
Many authors formulated, investigated and analyzed 
mathematical models in Physical sciences, finance, 
economics, engineering and particular in life science 
(Mathematical-Biology) using the conventional integer order 
system of differential equations and established some 
important results in the past several years [1-12]. On the 
other hand due to the effective nature of fractional 
derivatives and integrals, many epidemiological models and 
other models in engineering and science have successful 
being originated and analyzed [13-21].  
 
To be more specific, Fractional calculus has been 
accustomed to model physical and engineering processes, 
which are found to be best described by fractional 
differential equations. It is worth noting that the standard 
mathematical models of integer-order derivatives, including 
nonlinear models, which fails to work sufficiently in many 
cases. In new era, fractional calculus has played a very 
significant part in various fields such as chemistry, 
mechanics, economics, electricity, control theory, image and 
signal processing [22, 23, 24], and particularly in 
mathematical-biology.  
  
The most important purpose of this paper is to exploit the 
multi-step generalized differential transform method to 
approximate the numerical solution of the frictional order 
Host-Vector model for Dengue disease.  
 
2. Description of Model  
 
A Host-Vector dengue disease transmission model was 
developed by Esteva and Vargas in [25], they supposed that 
a recover individual from the disease will not be re-infected 
by the disease. They also assume that the host population H 
is constant with death and birth rate µh. Where Sh, Ih, Rh are 
susceptible, infective, and recover individuals in the host 
population and Sv, Iv are susceptible, Infective in the vector 
population V. Their model is given as follows:  

 
where βh,βv are the transmission probability from vector to 
host and host to vector. γh represent the recovery rate in the 
host population and b is the biting rate of the vector. Further-
more equation (1) can be reduced to three dimension 
dynamics with the condition Sh + Ih + Rh = H  

 

 
To normalize (2), we set 

 
and get 

 

. 
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3. Fractional Calculus  
 
Fractional calculus is a governing, dominant and attractive 
tool for mathematical modeling. It has been applied in many 
areas of research such as science, economics, finance and 
engineering. Fractional calculus contains several interesting 
and attractive definitions of fractional derivatives [19, 21], 
but here the famous Caputo derivatives is used due its 
advantage on initial value problems. Some important 
definitions related to frictional calculus are given below:  
 
Definition 3.1 A function g(x) for positive x is said to be in 
the space Gα, (where α belongs to R) if it is expressed in the 
form g(x) = xpg1(x) for some p>α where g1(x) is continuous 
in [0, ∞), and g(x) be in the space  

. 
 
Definition 3.2 The Riemann-Liouville integral operator is 
defined as:  

 
  
where α is the order of operator and u ≥ 0, properties of this 
operator are given in [21, 22, 26]. Here, we just required 
the following:  
 
For g ∈ Gα, α, β are positive, u is non-negative, v ∈ R, γ > 
−1, we get  

 
 
where represents incomplete beta function 
and is defined as:  

 
In the real world application Riemann-Liouville has some 
disadvantages with frictional order derivatives, that’s why 
here we use the Caputo frictional derivative . 
 
Definition 3.3 For a function g(x) the Caputo Fractional 
derivative is defined by  

 
 
where α is the order of Caputo frictional derivative with the 
condition p − 1 < α < p, p ∈ N, x ≥ u, g ∈ .  
 
Many authors investigated Caputo frictional derivative for 

         and α ≥−1; we have 

. 
 

4. Multi-step Generalized Differential 
Transform Method  

 
It is known that the generalized differential transform 
method (GDTM) is applied to find the approximate solutions 
for nonlinear problems which gives accurate approximate 
solution for small step of time but for large time it has been 
proved that the approximate solution obtained by GDTM are 
not accurate and applicable [29, 30, 31, 32]. Multi-step 
generalized differential transform method is modified form 
GDTM, which present precise and accurate approximate 
solutions of the model over a longer time frame compared to 
the standard GDTM see [33, 34, 35, 36, 37, 38, 39].  
 
For more explanation we supposed the following IVP for 
systems of the fractional differential equations:  

 
with the initial conditions  

 

are the Caputo fractional derivative of order α1,α2, ..., αn, 
with the condition that 0 <α1,α2, ..., αn ≤ 1. Assume [t0,T ] be 
the interval over which we desire to get the approximate 
solution of the IVP (11, 12). In concrete applications of the 
generalized differential transform method the Kth-order 
approximate solution of the IVP (11, 12) can be expressed 
by the finite series  

 
where Wi(k) satisfied the recurrence relation  

 
 
Wi (0)= ci, and Gi (k,W1, W2,…., Wn) is the differential 
transform of function gi (t, w1,w2,..., wn) for i =1, 2,..., n. The 
fundamental step of GDTM can be found in [31, 32, 38, 40].  
 
Assume that the interval [t0, T] is divided into M 
subintervals [tm−1,tm], m = 1, 2, 3, ... , M of equal step size h 
= (T − t0)/M by using the nodes tm = t0 + mh. The procedure 
and main steps of the MSGDTM are given below:  
 
Initially, we apply the generalized differential transform 
method to the IVP (11, 12) over the interval [t0, t1], we get 
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the approximate solution using the 
initial condition wi(t0)= ci, for i =1, 2, ..., n. For m ≥ 2 and at 
each subinterval [tm−1,tm], we use the initial condition 
wi,m(tm−1) = wi,m−1(tm−1) and apply the GDTM to the IVP (11, 
12) over the interval [tm−1,tm]. With the repetition of this 
process a sequence of approximate solutions wi,m(t),m =1, 2, 
..., M, for i =1, 2, ..., n is generated. At last, the MSGDTM 
assumes the following solution  

 
MSGDTM, the new algorithm, which is obtained from 
GDTM is simple for computational performance for all 
values of h. The solution obtained by MSGDTM converges 
for wide range of time.  
 
5. MSGDTM Algorithm for Solution of 

Frictional Order Host-Vector Dengue Fever 
Model  

 
To show the effectiveness of this method, we consider the 
fractional order Host-Vector model of epidemic. As the 
approximate solutions of MSGDTM are accurate and better 

than other numerical methods, that’s why we want to get a 
better and accurate result of frictional order Host-Vector 
model by using MSGDTM.  
 
Now we established the fractional order dengue disease 
model of the system described by (15). For which we 
replace the integer order derivatives by the fractional order 
derivatives, as follows 

 
  
where (S, Y, Z) are the state variables µ, ρ, η, λ, δ are non-
negative constant and α1, α2, α3 are parameters describing the 
order of the frictional time derivatives in the Caputo sense. 
The general response expression contains parameters 
describing the order of the fractional derivatives that can be 
varied to find and get different responses. Applying the 
multi-step generalized differential transform method to 
system (15), we get 
 
 
 
 
 

 

 
 

where S(k),Y (k) and Z(k) are the differential transforms of 
S(t),Y (t) and Z(t) respectively. S (0) = c1, Y (0) = c2 and 
Z(0) = c3 are the differential transform of the initial 
conditions. In view of the differential inverse transform, the 
differential transform series solution for the system (15) can 
be obtained as  

 
 
According to the MSGDTM, the series solution for the 
system (15) is  
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where Si(n), Yi(n) and Zi(n) for i = 1, 2, ..., M satisfies the following recurrence relations 

 

such that 

 
 
 

 

And 

 
At last, we start with S0 (0) = c1, Y0 (0) = c2 and Z0 (0) = c3 
and using the recurrence relation given in (21), we get the 
multi-step solution given in (18)-(20).  
 
6. Non-negative Solution  
 
Assume R3= {Z ∈ R3: Z ≥ 0}, where Z = (S, Y, Z)T. To show 
the non-negative solution of the model we will apply the 
following lemma presented in [27].  
 
Lemma 6.1 [27], Generalized Mean Value Theorem: Let 
g(x) ∈ C[c, d] and Dαg(x) ∈ C[c, d] for 0 ≤ α ≤ 1, then we 
have 

 
  
   with the condition c ≤ ξ ≤ x, for all x ∈ [c, d].  
 
Remark 3.1: Assume that g(x) ∈ C[c, d] and Dαg(x) 
belongs to C[c, d], for 0 ≤ α ≤ 1. It follows form lemma 3.1 
that g(x) is non-decreasing if Dαg(x) ≥ 0, for all x ∈ [c, d] 
and g(x) non increasing if Dαg(x) ≤ 0 for all x ∈ [c, d].  
 
Theorem 6.1: A unique solution of the fractional order 
initial value problem (15) exists and it remains in  . 
 
Proof 6.1 Existence and uniqueness of the solution of model 
problem (15) in (0, ∞) follows by the use of theorem 3.1 and 

remark 3.2 in [28]. The domain  is positively invariant 
for the model problem, because  

 
 

  
on each hyper-plane bounding the non negative orthant, the 
vector field points into   .  
 
7. Conclusion  
 
Multi-Step Generalized Differential Transform Method is a 
simple method for computing the solution of epidemic 
models and other non-linear problems, it has been proved 
that this method is more reliable and effective than other 
method to find the approximate solution of problems. In this 
research paper, a frictional order Host-Vector dengue 
disease model is formulated and MSGDTM is used to find 
the approximate solution of the model. The approximate 
solutions obtained by MSGDTM are valid for long time and 
highly accurate.  
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