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Abstract: In this paper we consider the price dynamics of a portfolio consisting of risk-free and risky assets. The paper discusses the 
pricing process of a contingent claim, the pricing equation and the risk-neutral valuation under the Martingale representation property. 
A partial differential equation with an unknown price function is formulated. The solution of this PDE gives a unique pricing formula. 

Keywords: Continent claim valuation, Option pricing, Martingale representation, Risk-Neutral Valuation and Stochastic Integrals.

1. Introduction 

The study of pricing on financial markets in continuous time 
is anchored on the use of stochastic processes and stochastic 
differential eq uations as the building blocks. A stochastic 
process is X is a diffusion if its local dy namics can be 
approximated by a stochastic difference equation of the 
following type, 

Here is normally distributed disturbance term which is 
independent of everything which has happened up to time ,
while µ and σ are given determi nistic functions. The 
intuitive content of (1) is that, over the time interval 

 the X- process is driven by two separate terms 
namely 
 A local deterministic velocity 
 A Gaussian disturbance term, amplified by the factor 

The function  is called the (local) (drift) term of the 
process, whereas σ is called the (diffusion) term. In order to 
model the Gaussian disturbance terms we need the concept 
of a Weiner process. 

Definition 1[1] A stochastic process W is called a Weiner 
process if the following conditions hold. 
1)
2) The process  has independent increments, i.e if 

 then  and are 
independent stochastic variables.  

3) For s the stochastic variable  has the 
Gaussian distribution 

4)  has continuous trajectories 

We may now use the Weiner process to in order to write (1) 
as

Where is defined by

Making (2) more precise, we divide the equation by 
and let  tend to zero. 
Formally we would obtain  

where we have added an initial condition and where 

is the formal time derivative of the Weiner process . 

Another possibility of making equation (2) more precise is 
to let  tend to zero without first dividing the equation by 

. We will then obtain the expression 

and it is now natural to interpret equation(4)as a shorthand 
version of the following integral equation 

In equation (5) we may interpret the -integral as an 
ordinary Riemann integral. The natural interpretation of 

-integral is to view it as a Riemann-Stieljes integral for 
each

-trajectory, but unfortunately this is not possible since one 
can show that the -trajectories are of locally unbounded 
variation. 

2. Diffusion Case 

We now introduce the diffusion process that follows a 
Brownian motion process on a probability space 

.We further proceed to show an equivalent 
probability measure  similar to  also has a martingale 
property.Faymann-Kac theorem is applied to a price of an 
attainable contingent claim value process the result of which 
is demonstrated by the Black-Scholes [2] example.  The 
steps in developing a pricing model follow. 

Let us assume that there is a -dimensional Brownian
motion on the filtered probability space. The security 
prices  

follows a diffusion process

Where 
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a diffusion if its local dynamics can be 
stochastic difference equation of the 

is normally distributed disturbance term which is 
independent of everything which has happened up to time ,

hile µ and σ are given deterministic functions. The 
intuitive content of (1) is that, over the time interval 

 the X- process is driven by two separate terms 

A local deterministic velocity 
A Gaussian disturbance term, amplified by the factor 

 is called the (local) (drift) term of the 
process, whereas σ is called the (diffusion) term. In order to 

model the Gaussian disturbance terms we need the concept 

 1[1] A stochastic process W is called a Weiner 
 if the following conditions hold. 

is the formal time derivative of the Weiner process 

Another possibility of making equation (2) more precise is 
to let  tend to zero without first dividing the equation by 

. We will then obtain the expression 

and it is now natural to interpret equation(4)as a shorthand 
version of the following integral equation 

In equation (5) we may interpret the 
ordinary Riemann integral. The natural interpretation of 

-integral is to view it as a Riemann-Stieljes integral for 
each

-trajectory, but unfortunately this is not possible since one 
can show that the -trajectories are of locally unbounded 
variation. 

2. Diffusion Case 

We now introduce the diffusion process that follows a 

Brownian motion process on a probability space 

file:///D:/IJSR%20Website/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 2, February 2017 
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

AndAnd  is a -dimensional column vector, and σ(x, t) is 
a -matrix. Both  and  are assumed to satisfy some 
regularity and growth conditions which make (8) have a 
solution and the Ito’s integral part is square integrable.
Similarly, we assume that S0 is strictly positive and 
absolutely continuous, so we can define

or

Let us now define the discounted price

The dynamics for the discounted security price process can 
be easily shown as the following: 

where 

andand  is a -dimensional vector with each components 
equal to 1. 
Consider the linear equation 

If there is a solution  for (15) for each  (a.s.), we often 
refer  as the market price of risk  process. 

Furthermore, if satisfies the following (Novikov) 
condition:  

Then 

is a martingale, and the defined by

is a probability measure. Moreover, the process defined by 

is a  under the probability measure Q. 
We show that  is in fact an equivalent martingale measure. 
It is obvious that Q is P. 
To show that the discounted security price process Z is a 
martingale under , we write 

Therefore is a martingale under  (since  is a
underunder ). We have thus shown that). We have thus shown that  is indeed an 

equivalent martingale measure. 

Recall that 

abusing the notations, we use S here to represent 
. 

So we have 

We can conclude that under an equivalent martingale 
measure, the security prices have drifts , the instantaneous 
risk-free interest rate, and the volatility matrix  does not 
change. 

Applying the result , we can write 
the time  price of an attain- able contingent claim as

In particular, if we also assume that it can be written as a 
function of  (e.g.,  is a constant), then for an 
contingent claim  Feynman-Kac formula 
suggests that the time  price satisfies the following 
deferential equation: 

where a  with the boundary 
condition 

3. Black-Scholes formula 

Assume  and the 2 securities are given by the 
following processes: 

where  are bounded deterministic functions 
with  and  is a 1-dimensional 

. We have  

and using the integration by parts formula, 

Let us define 

and define a probability  as . Girsanov’s 
Theorem implies that  

is a 1-dimensional  under the probability , and we can 
write 
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-dimensional vector with each components 

Consider the linear equation 

 for (15) for each  (a.s.), we often 
 as the market price of risk  process. 

satisfies the following (Novikov) 

defined by

is a probability measure. Moreover, the process defined by 

function of  (e.g.,  is a constant), then for an 
contingent claim  Feynman-Kac formula 
suggests that the time  price 
deferential equation: 

where a 
condition 

3. Black-Scholes formula 

Assume  and the 2 securities are given by the 
following processes: 

where  are bounded deterministic functions 
with  and 

. We have  
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which implies that the discounted price process  is a 
martingale under the probability measure . In other words, 

 is an equivalent martingale measure. 

An European call option on  with a strike price  and 
expiration  is a contingent claim . Therefore the 
value of the option at time 0 is  

Notice that under the probability

and using Ito’s formula,

By computing the expectation in (8) we can get the Black-
Scholes formula 

with 

4. The Pricing of a Contingent Claim 

We consider a fixed  claim of the form 
.

where  is some given deterministic function. The price 
dynamics of the risky assets are 

The guaranteed income from the risky asset investment is 
assumed in this case to be of the form 

where  is constant. 
The problem to be solved is that of determining the arbitrage 
free price for a  -claim of the form . We therefore 
assume that the pricing function for the claim is a function 
of income  as well as  i.e 

This is then determined in the following steps 
 Assume that the pricing function is of the form 
 Consider  and  as exogenously given 
 Use the general results from the value of a self financed 

portfolio based on a a derivative instrument and the 
underlying stock 

 Form a self-financing portfolio whose value process  has 
a stochastic differential without any driving Weiner 
process of the form 

 Since we assume absence of arbitrage we must have 
 The condition  will have the form of a partial 

differential equation with  as the unknown function. 
 The equation has a unique solution, thus giving a unique 

pricing formula for the derivative which is consistent with 
the absence of arbitrage.  

Let  and  be the weights of the portfolio invested in 
the stock and the derivative respectively, we obtain the value 
of the dynamics as 

where the gain differential is given by 

i.e.

From the Ito formula we have the usual expression for the 
derivative dynamics 

where 

Collecting terms in the value equation above 

and determining the portfolio weights in order to obtain a 
value process without a driving 
Weiner process i.e. we define   and as the solution to 
the system 

Which has the solution 

and leaves us with the dynamics 

Absence of arbitrage implies that we must have the equation 

with probability 1, for all t and, substituting for , ,
and  into this equation, 
We get the equation 

The value of the boundary condition is obvious giving us the 
following resulting pricing formula from which the pricing 
equation is derived. 

The pricing function  of the claim  solves 
the boundary value problem 

Applying the Feynman-Kac representation theorem 
immediately gives us the risk-neutral valuation formula 

5. Pricing Equation 

The pricing function has the representation 

where the dynamics of  are given by 
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The Pricing of a Contingent Claim 

 claim of the form 

 is some given deterministic function. The price 
dynamics of the risky assets are 

The guaranteed income from the risky asset investment is 
assumed in this case to be of the form 

The problem to be solved is that of determining the arbitrage 
 -claim of the form . We therefore 

assume that the pricing function for the claim is a function 
 i.e 

This is then determined in the following steps 

and determining the portfolio weights in order to obtain a 
value process without a driving 
Weiner process i.e. we define  
the system 

Which has the solution 

and leaves us with the dynamics nd leaves us with the dynamics nd

Absence of arbitrage implies that we must have the equation 

with probability 1, for all t and, substituting for 
and  into this equation, 
We get the equation 

The value of the boundary condition is obvious giving us the 
following resulting pricing formula from which the pricing 
equation is derived. 

The pricing function  of the claim 
the boundary value problem 
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6. Risk-Neutral Valuation Formula 

Under the martingale measure Q, the normalized gain 
process  

                
is a martingale. 
It is therefore expected that

As in the discrete case, it is natural to analyse the pricing 
formulas for the special case when we have the standard 
Black-Scholes dynamics

where α and σ are constants.
We also assume that the income function δ is a deterministic 
constant. This implies that the martinagale dynamics are 
given by 

7. Conclusion 

We have demonstrated that to obtain a valuation formula, 
the attainable contingent claim depends directly on the 
definition of a self-financing strategy which also depends on 
the definition of the gains process. The solution to the 
boundary value problem then formulated from the portfolio 
dynamics in equation (14) gives the pricing equation when 
the Faynman-Kac technique is applied to it. The explicit 
formula is thus obtained in equation (15) with the dynamics 
of the underlying assets given by in equation (16). The risk-
neutral valuation is also stated when we have the special 
case of the Black-Scholes dynamics. 
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