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Abstract: In this paper, the problem of an unsteady magnetohydrodynamic viscous incompressible electrically conducting fluid flow 
subjected to a constant pressure gradient in the presence of a uniform transverse magnetic field applied parallel to one axis with the 
plates moving with a time dependent velocity is analyzed. Two cases where the plates are moving (i) in the same direction, (ii) in the 
opposite direction with different directions of the transverse magnetic field while fluid suction /injection takes place through the walls of 
the channels with a constant velocity for suction and injection has been investigated. The nonlinear partial differential equation 
governing the flow are solved numerically using the finite difference method. The results obtained are presented in graphs. The velocity 
profiles, the effect of the magnetic field direction, time and suction /injection on the flow are discussed. A change on the parameters is 
observed to either increase, decrease or to have no effect on the velocity profile. The MHD flow between porous plates studied in this 
work has many important applications in areas such as in controlling boundary layer flow over aircraft wings by injection or suction of 
fluid out of or into the wing, designing of cooling systems with liquid metals, in petroleum and mineral industries, in underground 
energy transport, accelerators, MHD generators, pumps, flow meters, purification of crude oil, geothermal reservoirs, and polymer 
technology. 
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1. Introduction 
 
MHD Couette flow is studied by a number of researchers 
due its varied and wide applications in the areas of 
geophysics, astrophysics and fluid engineering. The MHD 
flow between porous plates has many important applications 
in areas such as the designing of cooling systems with liquid 
metals, geothermal reservoirs, in petroleum and mineral 
industries, in underground energy transport, MHD 
generators, pumps, flow meters, purification of crude oil, 
polymer technology and in controlling boundary layer flow 
over aircraft wings by injection or suction of fluid out of or 
into the wing among many other areas. MHD flows are 
characterized by a basic phenomenon which is the tendency 
of magnetic field to suppress vorticity that is perpendicular 
to itself which is in opposite to the tendency of viscosity to 
promote vorticity. Researchers have studied unsteady 
channel or duct flows of a viscous and incompressible fluid 
with or without magnetic field analyzing different aspects of 
the problem. Katagiri [1] investigated unsteady 
hydromagnetic Couette flow of a viscous, incompressible 
and electrically conducting fluid under the influence of a 
uniform transverse magnetic field when the fluid flow within 
the channel is induced due to impulsive movement of one of 
the plates of the channel. Muhuri [2] considered this fluid 
flow problem within a porous channel when fluid flow 
within the channel is induced due to uniformly accelerated 
motion of one of the plates of the channel. Soundalgekar [3] 
investigated unsteady MHD Couette flow of a viscous, 
incompressible and electrically conducting fluid near an 
accelerated plate of the channel under transverse magnetic 
field. The effect of induced magnetic field on a flow within a 

porous channel when fluid flow within the channel is 
induced due to uniformly accelerated motion of one of the 
plates of the channel, studied by Muhuri [2]. Mishra and 
Muduli [4] discussed effect of induced magnetic field on a 
flow within a porous channel when fluid flow within the 
channel is induced due to uniformly accelerated motion 
when one of the plates starts moving with a time dependent 
velocity. In the above mentioned investigations, magnetic 
field is fixed relative to the fluid. Singh and Kumar [5] 
studied MHD Couette flow of a viscous, incompressible and 
electrically conducting fluid in the presence of a uniform 
transverse magnetic field when fluid flow within the channel 
is induced due to time dependent movement of one of the 
plates of the channel and magnetic field is fixed relative to 
moving plate. Singh and Kumar [5] considered two 
particular cases of interest in their study viz. (i) impulsive 
movement of one of the plates of the channel and (ii) 
uniformly accelerated movement of one of the plates of the 
channel and concluded that the magnetic field tends to 
accelerate fluid velocity when there is impulsive movement 
of one of the plates of the channel and when there is 
uniformly accelerated movement of one of the plates of the 
channel. Katagiri [1] studied the problem when the flow was 
induced due to impulsive motion of one of the plates while 
Muhuri [2] studied the problem with accelerated motion of 
one of the plates. Both had considered that the magnetic 
lines of force are fixed relative to the fluid. Singh and Kumar 
[5] considered the problem studied by Katagiri [1] and 
Muhuri [2] in a non-porous channel with the magnetic lines 
of force fixed relative to the moving plate. Rudraiah et al., 
[6] studied the natural convection of an electrically 
conducting fluid in a rectangular enclosure in the presence of 
a magnetic field numerically where two vertical side walls 
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are held isothermally at different temperatures, while the 
horizontal top wall and bottom wall are adiabatic. The 
numerical results showed that the effect of the magnetic field 
is to decrease the rate of convective heat transfer while the 
average Nusselt number decreases with an increase of 
Hartmann number. Seth et al. [7], studied the problem 
considered by Singh and Kumar [5] when the fluid flow is 
confined to porous boundaries with suction and injection 
considering two cases of interest, viz (i) impulsive 
movement of the lower plate and (ii) uniformly accelerated 
movement of the lower plate. Seth et al. [7] concluded that 
the suction exerted a retarding influence on the fluid velocity 
whereas injection has accelerating influence on the flow 
while the magnetic field, time and injection reduce shear 
stress at lower plate in both the cases while suction increases 
shear stress at the lower plate. Ismail et al. [8].   MHD flow 
between two parallel plates through porous medium with one 
in uniform motion and the other plate at rest and uniform 
suction at the stationary plate. They used the Similarity 
transformation method to solve the problem and concluded 
that the axial velocity of the fluid decreases as density, time, 
and Hartmann number increases. The Axial velocity of the 
fluid increases as average entrance velocity increases 
Transverse velocity of fluid increases as density, Hartmann 
number and suction increases. Kimeu et al [9] considered the 
steady, two dimensional laminar free convective flow of an 
electrically conducting viscous incompressible fluid between 
two infinite parallel porous plates with a transverse magnetic 
field. They concluded that the magnetic field parameter and 
the suction parameter when increased, led to the increase in 
the amplitude of the magnetic field lines. Kandelousi [10] 
studied the effect of spatially variable magnetic field on 
Ferro fluid flow and heat transfer considering constant heat 
flux boundary condition. Their results show that the Nusselt 
number increases with an increase in magnetic number, 
Rayleigh number and nanoparticle volume fraction, while it 
decreases with an increase in the Hartmann number. Heat 
transfer enhancement increases with an increase in the 
Hartmann number but it decreases with an increase in 
Rayleigh number and Magnetic number. Joseph et al. [11] 
studied Unsteady MHD couette flow between two infinite 
parallel porous plates in an inclined magnetic field with heat 
transfer with the lower plate considered porous. They 
concluded it shows that magnetic field has significant effect 
to the flow of an unsteady MHD couette flow between two 
infinite parallel porous plates in an inclined magnetic field 
with heat transfer. Kiema et al. [12] considered laminar 
viscous incompressible fluid between two infinite parallel 
plates when the upper plate is moving with constant velocity 
and the lower plate is held stationary under the influence of 
inclined magnetic field and concluded that the increase in 
magnetic field strength and magnetic inclination results into 
decreases in the velocity profiles. Rajesh et al., [13] studied 
the problem of transient free convection flow and heat 
transfer of nano fluid past an impulsively started semi-
infinite vertical plate in the presence of magnetic field. One 
of their finding was that as the magnetic parameter 
increased, the skin friction coefficient and the Nusselt 
number at the surface decreased for all nanofluids aluminium 
oxide, copper, titanium oxide and silver. Onyango et al. [14]  
considered magneto hydrodynamic flow between two 
parallel porous plates with injection and suction in the 

presence of a uniform transverse magnetic field with the 
magnetic field lines fixed relative to the moving plate with a 
constant pressure gradient and concluded that the magnetic 
field, pressure gradient, time and injection have an 
accelerating influence on the fluid flow with a constant 
pressure gradient in the direction of the flow on both cases 
of suction and injection while viscosity and suction exert a 
retarding influence. Extensive researches have been done on 
the flow between parallel plates. Rathod et al., [15] 
investigated the effect of a magnetic field on peristaltic 
transport of blood in a non-uniform two-dimensional 
channels under zero Reynolds number with long wavelength 
approximation. They concluded that pressure decreases with 
increase in magnetic field, time-average of flow over one 
period of wave& couple stress parameter and increases with 
increasing in amplitude. Pressure with averaged flow rate 
increases with increase in magnetic field, amplitude & 
couple stress parameter while the variations of friction force 
with time and averaged flow rate shows opposite behavior to 
that of pressure. This study is with consideration when both 
plates are in motion with the same velocity in the same 
direction and in opposite directions with different directions 
for the transverse magnetic field lines fixed relative to the 
moving plates with suction and injection on the plates. 
 
2. Mathematical Formulation 
 
This study considers the flow of unsteady viscous 
incompressible electrically conducting fluid between two 
parallel porous plates 0y  and hy  of infinite length in 
x  and z directions with a constant pressure gradient in the 

presence of a uniform transverse magnetic field oH applied 
parallel to the y  axis in the positive direction of y . 

 
Figure 1: Physical model of the problem 

 
Initially (when time 0t ), the fluid and the porous plates 
of the channel are assumed to be at rest. When time 0t , 
the lower plate ( 0y  ) and the upper plate ( hy  ) starts 

moving with time dependent velocity n

otu  (where ou is a 
constant and n  a positive integer) in the x  direction with 
the fluid suction/injection takes place through the walls of 
the channel with uniform velocity oV  where 0oV  for 

suction and 0oV  for injection. 
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The velocity and the magnetic fields are given as 

0( , ,0)q u v  and 0(0, ,0)H H


 respectively. 

The magnetic forces 2
0e H Velocity   

 
From the Navier Stokes equation  

2u
u u P u F

t
  


      


   (1) 

2u
u u P u J B

t
  


       


  (2) 

 
The flow is incompressible (the density  , is considered a 
constant) and is considered in one dimension along the x- 
axis hence the Navier stokes equation along the x-axis is 
given as 

2 2

2 2

u u u P u u
u v J B

t x y x x y
  

       
         

        
 (3) 

For a Couette flow 0P

x


 


 but for the analysis 
P

x





= a 

constant   . The two plates are infinite in length hence 

0u

x





.The fluid is injected on the lower plate with a 

constant velocity 0V  and is also sucked from the upper plate 

at the same constant velocity 0V .The general equation 
governing the flow reduces to  

2 22
0

2

( )e H uu u u
v

t y y

 

  

   
   
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 (4) 

Where  






 , and 

2 22
0

2
e H uu u u

v
t y y


 



  
   
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  (5) 

where 





   

The magnetic field lines are fixed relative the moving plates 
(The upper plate and the lower are accelerating uniformly–a 
function of time) hence the velocity is considered as a 
relative velocity and reflects how fast the fluid is moving 
relative to the moving plates. The general equation 
governing the flow  

 2 22
0 0

2

n

e H u u tu u u
v

t y y


 



  
   

  
(6) 

For consideration of the two cases of interest viz. (i) 
movement of the plates in the same direction (i.e. n = 1) and 
(ii) movement of the plates in the opposite direction (i.e. n = 
1). 
 
Case I. Movement of the plates in the same direction 

with magnetic field in the positive direction of the y-axis 

(i.e. n = 1) 

 
Taking 1n  , for a case of uniform acceleration, the 
governing equation for the flow becomes  

 2 22
0 0

2
e H u u tu u u

v
t y y


 



  
   
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 (7) 

With the boundary conditions defined as;  
0u    0 y h   0t   

0
nu u t  at   y h  0t       (8) 

0
nu u t  at   0y   0t   

 

3. Numerical Computation 
Non-Dimensionalization of the Equations 

The non dimensionalization of the governing equation is 
performed by selecting characteristic dimensionless 
quantities. The dimensionless quantities used in non 
dimensionalization of the governing equation (6) and the 
boundary condition (8) are    

y
y

h
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uh

u

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t
t

h

   (9) 
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 (12) 

Replacing on the governing equation (7) 
 2 22 2
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Non dimensionalizing the relative velocity in equation (2.2) 

by setting  
u u

u h u
h






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2

2

t t h
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Substituting in (13) to non-dimensionalize the relative 
velocity  

2 22 2 2
0

0 03 2 3 2. . e Hu u u u t h
V u

h t h y h y h

   
 

 

    

  

   
     

    

(14)  

and multiplying the equation by  
3
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(17) 
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The expression
2 2 2

20e H h
M
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squared, and 0u h


 is the Reynolds number Re   and hence 

substituting in Equation 20, this gives 
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 Equation (22) is the governing equation in non-dimensional 
form. 
Dimensionalizing the boundary conditions from (8) using the 
non-dimensional parameters from equations (10), (11) and 
(12) are obtained as  
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Ret h
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
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Case II. Movement of the plates in the opposite direction 

(i.e. n = 1) 

 
For case (ii) where the parallel porous plates of the channel 
are in motion in the opposite directions. 
The governing equation is given by  
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The boundary conditions are as follows  

0u   0 1y   and  0t   
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The governing equations in non-dimensional form together 
with the boundary conditions for both cases will be 

presented in their finite difference forms consistent with the 
method of solution. 
 

4. Governing Equation in Finite Difference 

Form 
 
The finite difference analogues of the PDEs arising from the 
equation governing this flow are obtained by replacing the 
derivatives in the governing equations by their 
corresponding difference approximation .The following 
substitutions are done for the derivatives for the Crank 
Nicolson, we have the proposed averages as 
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(3.8)  
Replacing in the governing equation, Multiplying through by 

t and rearranging (24) gives 
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Letting 0

4 ( )
V h t

y





 


,

3

2

h t
 




 , 

 
2

1
2

t

y






,

2

2
M t




  , 2 Re h
M t


   and the 

suction/ injection  parameter 0V h
S


 .   

Substituting the values of  ,  ,  ,  ,   and S  in (25) 
gives  

   

   
, 1 , 1, 1 1, 1 1, 1,

1, 1 , 1 1, 1 1, , 1, , 1 ,2 2

i j i j i j i j i j i j

i j i j i j i j i j i j i j i j

j

u u u u u u

u u u u u u u u

t

 

 



      

       

      

         

(26) 
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Rearranging (26) gives 
, 1 , 1, 1 1, 1 1, 1,

1, 1 , 1 1, 1 1, , 1,

, 1 ,

2 2
i j i j i j i j i j i j

i j i j i j i j i j i j

i j i j j

u u u u u u

u u u u u u

u u t

    

     

  

      

      



      

    

  

 (27) 

Rearranging equation (27) gives 
, 1 1, 1 1, 1 1, 1 1, 1 , 1 , 1

, 1, 1, 1, , 1, ,

2
2

i j i j i j i j i j i j i j

i j i j i j i j i j i j i j j

u u u u u u u

u u u u u u u t

      

      

          

   

       

      
  (28) 

Collecting the like terms form equation (28) gives     
    
     

   

, 1 1, 1 1, 1

, 1, 1,

1 2

1 2
i j i j i j

i j i j i j j

u u u

u u u t

     

      

    

 

     

       
  

 (29) 
Rearranging equation (29) 
     

   

1, 1 , 1 1, 1

1, , 1,

1 2

1 2
i j i j i j

i j i j i j j

u u u

u u u t

     

      

    

 

       

      
  

 (30) 
The finite difference equations obtained at any space node, 
say, i  at the time level 1jt   has only three unknown 

coefficients involving space nodes at 1i  , i  and i i  

at 1jt  . In matrix notation, these equations can be expressed 

as AU B where U  is the unknown vector of order 
( 1)N   at any time level 1jt  . B  is the known vector of 

order ( 1)N  which has the value of U at the thn time level 
and A is the coefficient square matrix of order 
( 1) ( 1)N N    which is a tridiagonal structure. 
The coefficients of the interior nodes will be represented as: 

   

 

1,

,

1,

( ) ( )
1 2 1 2

j j i j j j

j j i j

j j i j

a d u g t

b e u h

c f u

    

    

  





     

      

  

  

 (31) 
For 2,3,4....( 1)j N  , then the equation   (30) becomes  

1, 1 , 1 1, 1j i j j i j j i j j j j ja u b u c u d e f g h          

 
(32) 

The system of equations resulting from equation (32) are 
represented in a tridiagonal matrix form as  

 

2 2 2
1, 1 2 2 2 2

3 3 3
2, 1 3 3 2 3

3, 1 1 1 1 1
1 1 1

0 0 0 0
0 0 0
0 0 0
0 0 0
0 0 0 0

j

j

j N N N N

N N N

a b c
u d e f g h

a b c
u d e f g h

u d e f g h
a b c





    

  

 
            
           
                
           
           
             



   
     

   






       

                                      (33) 
Equation (33) is implemented in matlab to obtain the results 
 
5. Results and Discussions 
 

The effects of various flow parameters on the flow regime 
are depicted graphically and discussed. The simulations are 
curried out using ISO FLUIDS 3448 which are industrial 
oils whose kinematic viscosities range between 2 and 10. 

 

 

 
Figure 2: Varying the Reynolds number for both ((+ 0H ) 

and (- 0H )) with plates moving in the same direction. 
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Figure 3: Varying the Magnetic number for both ((+ 0H ) 

and (- 0H )) with plates moving in the same direction. 

 

Figure 4: Varying the Reynolds number for both ((+ 0H ) 

and (- 0H )) with plates moving in the opposite direction 

 

 

 
Figure 5: Varying the Magnetic   number for both ((+ 0H ) 

and (- 0H )) with plates moving in the opposite direction. 
 
From fig 2. And fig 4. The velocity profiles for both cases of 
((+ 0H ) and (- 0H ) where the transverse magnetic field is in 
the direction of the y axis and in the opposite direction 
increase with increase in the Reynolds number but the 
velocities of the case of + 0H  are greater than the velocities 

of - 0H .The direction of the transverse magnetic field leads 
to increased velocities of the fluid or decreased velocities of 
the fluid since the direction determines the direction of the 
induced transverse Lorentz force into the fluid. If the force is 
in the direction of the motion of the plate, the velocities are 
increased and vice versa. An increase in the Reynolds 
number leads to an increase in the velocity of the fluid due to 
decreased viscous drag on the fluid.  
 
From fig 3. And fig 5. The velocity profiles increase with 
increase in the magnetic number in the (+ 0H ) transverse 

magnetic field and decreases with the increase in the (- 0H ) 
transverse magnetic field. The velocity of the fluid near the 
plate with injection are greater than the velocity of the fluid 
near the plate with suction since injection of the fluid 
through the plate destabilizes the boundary, increasing the 
pressure and leading to a decrease in the viscous forces 
hence increase in the motion of the fluid.   
 
6. Conclusions 
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This study leads to a conclusion that the direction of the 
transverse magnetic field is important as it leads to increased 
or decreased velocity of the fluid between the parallel plates 
due to the direction of the induced magnetic field. The 
magnetic field, pressure gradient and injection have an 
accelerating influence on the fluid flow with a constant 
pressure gradient on both cases of suction and injection. The 
injection and suction of fluid from either of the plates has a 
significant effect on the velocity profiles with injection 
leading to increased velocities and suction leading to 
decreased velocities of the fluid. 
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