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Abstract: We study dynamics of solitons under the rotating wave approximation by considering a weak quartic nearest neighbour 

interparticle interaction potential. Also we discussed qualitative analysis of dynamical system in the phase plane where localised 

solutions correspond to a separatrix curve. 
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1. Introduction 
 
Most natural systems are nonlinear and aretherefore 
modelled by nonlinear systems of equations. The essential 
difference between linear and nonlinear systems is that 
linear systems satisfy a simple superposition principle, that 
is, any two solutions of a linear system added together form 
a new solution to the same equations, and this is not the case 
for solutions of nonlinear systems. This superposition 
principle allows the solution of a linear problem to be 
broken into pieces, which are then solved independently by, 
for example, the Fourier or Laplace transform, and then 
added back to form a solution to the original problem. 
 
Despite the difficulty caused by the lack of superposition 
principles, the last 60 years have seen revolutionary progress 
in solving nonlinear systems, guided by advances in 
experiments, phenomenal success in the computer 
simulation of nonlinear systems, and new mathematical 
analytical tools, such as the inverse spectral transform and 
methods based on Hamiltonian systems. The synergy 
between theory, computation, and experimental sciences 
continues to lead researchers to new levels of understanding. 
One field of nonlinear science that has experienced some of 
the most spectacular progress is wave propagation 
phenomena. In this class of problems, asymptotic procedures 
that take advantage of small parameters in physical regimes 
of interest often result in a few "universal" partial 
differential equations (PDEs). It is one of the mysteries of 
nature that many of these equations turn out to be integrable, 
which essentially means that their solutions can be 
represented as a superposition of special wave modes. Thus 
some manifestly nonlinear problems can after all be broken 
down and solved via a nonlinear decomposition in a manner 
analogous to the way that linear wave equations are solved 
with Fourier or Laplace transforms. The most famous of 
these special wave modes are perhaps the solitons, localized 
waves that collide elastically, suffering only a shift in phase. 
This robustness of solitons to overcome strong perturbations 
is largely due to a subtle balancebetween the tendency of 
nonlinearity to increase the wave slope and the linear 
dispersion that tends to flatten a wave. The occurrence of 
this type of balance is widespread in fluid mechanics. 
 
In spite of the great progress made in the theoretical studies, 
there remain many problems awaiting further development 
and analysis. Although many suggestions about potential 

physical realizations of the theoretical findings for the 
solitons in nonlinear lattices have been put forward in optics, 
nanophotonics, and matter waves in BECs, most predictions 
are still awaiting experimental implementation. Thus far, 
experimental observations that are relevant to nonlinear 
lattices have been reported only in photorefractive crystals 
with photo induced lattices, and in photonic-crystal fibers 
filled with an index-matching liquid. No specific 
experimental studies of nonlinear lattices have been reported 
in the realm of BECs, nor in nanophotonics systems, such as 
nanowire arrays. It is expected that the theoretical 
predictions that may be most plausible for experimental 
realization are those involving 1D settings. These include 
the creation of solitons and their bound states above the 
predicted existence threshold, the demonstration of their 
mobility and collisions, the realization of the predicted 
sp0ontaneous symmetry breaking in nonlinear double-well 
potentials, etc. An essentially more challenging problem for 
experimental implementation is the creation of 2D solitons 
that may be supported by nonlinear lattices. Ultimately, an 
entire field waits experimental and theoretical exploration. 
 
Since the work of Sievers and Takeno[1] reported a kind of 
intrinsic localized modes in a homogenous nonlinear 
monoatomic chain in 1988, there has been a substantial and 
increasing interest in the study of such modes for other 
similar physical systems[2,3], especially for the nonlinear 
diatomic chain[4,5-9]. Although the diatomic chain is one of 
the simplest physical models, it is related to many real 
physical systems such as two-component hydrogen-bonded 
dimers[10,11], oxidicperovskite ferroelectric crystals (e.g. 
SrTiO3 , BaTaO3, etc.) along the (100) direction[12], and the 
Josephson superlattice[13]. Strongly localized anharmonic 
modes can occur in a perfect diatomic chain when a quartic 
term is added to the harmonic potential to characterize the 
nearest-neighbor restoring force between particles[4,6], and 
the localized modes are different from those of monoatomic 
chain[14] with the nearest-neighbor interaction nonlinearity. 

 

2. Model Hamiltonian and Equations of 

Motion 
 
The model taken is a 1D diatomic lattice with a two-body 
nearest-neighbor interaction potential. The Hamiltonian of 
the system is given by 
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𝐻 =   
 

1

2
𝑚𝑖  

𝑑𝑢𝑖

𝑑𝑡
 

2

+  𝑉 𝑢𝑖+1 − 𝑢𝑖  
𝑖 …………………(2.1) 

where𝑢𝑖 =  𝑢𝑖(𝑟) is the displacement from its equilibrium 
position of the i

th particle with the mass  𝑚𝑖 =  𝑚𝛿𝑖,2 𝑘 +

 𝑀𝛿𝑖 ,2𝑘(M>m, k is an integer). The potential V(r) is quite 
general; typically it can be a standard two-body potential of 
Toda, Born-Mayer-Coulomb, Lennard-Jones, or Morse type 
(for their detailed expressions, see Reference [15]). We 
focus on displacements with smaller amplitude; thus we 
Taylor expand the potential V(r) at the equilibrium position r 

= 0 in a power series of the displacements to fourth order. 
As a result we have an approximate K2-K3-K4 potential 
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2 + 
1
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3 + 
1

4
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4…………..(2.2) 
 

Denoting by 𝑠𝑛(𝑡) the displacement of atom n,the equation 
of motion of the harmonic atomic chain subjected to a 
nonlinear force may be written generally in the form 

  𝑚𝑛

𝑑2𝑢𝑛

𝑑𝑡2
= 𝑘 𝑠𝑛+1 +  𝑠𝑛−1 −  2𝑠𝑛 +  𝝀𝑓(𝑠𝑛+1, 𝑠𝑛−1, 𝑠𝑛) 

……………………(2.3) 
wherek is the harmonic coupling constant, 𝜆 is a parameter 
of nonlinearity and  f  is a nonlinear function. We assume the 
diatomic chain consists of atoms of two masses periodically 
located, i.e., 𝑚𝑛 = 𝑚 for n=2j and 𝑚𝑛 = 𝑀 for n=2j+1. 

In the linear case (𝜆=0) model (2.3) has two branches of 
frequency of vibration: 
 

 𝜔±
2 =  

𝑘

𝑀𝑚
  𝑀 + 𝑚 ±   𝑀 − 𝑚 2 + 4𝑀𝑚 cos2 𝑎𝑞   

…………….(2.4) 
whereqandaare the wave number and lattice spacing, 
respectively, and the minus sign corresponds to lower-
frequency acoustic modes and the plus sign to upper-
frequency optical modes. At 𝑞 = 𝜋

2𝑎  these two modes are 
separated by the spectrum gap ∆𝜔2 = 𝜔02

2 − 𝜔01
2  =

 2𝑘(𝑀 − 𝑚)/𝑀𝑚 , where 𝜔01
2 =  2𝑘

𝑀  and 𝜔02
2 = 2𝑘

𝑚  
are the gap edge frequencies, and with a cutoff frequency 
𝜔0𝑚

2 = 𝜔01
2 + 𝜔02

2 = 2𝑘(𝑀 + 𝑚)/𝑀𝑚 at q=0 due to the 
discreteness of the system. The gap width is proportional to 
the mass difference (M-m), so that we expect the properties 
of soliton solutions to strongly depend on this parameter. 
Solutions of a diatomic chain with of quartic 

nonlinearity:For simplicity, we only consider a weak 
quartic nearest-neighborinterparticle interaction potential 
and a quartic substrate potential for the model of the 
nonlinear diatomic chain. In the former case model (2.3) 
becomes 
 
𝑚𝑛𝑠 𝑛 = 𝑘 𝑠𝑛+1 + 𝑠𝑛−1 − 2𝑠𝑛 + 𝜆  𝑠𝑛+1 − 𝑠𝑛 

3 +  𝑠𝑛−1 − 𝑠𝑛 
3  

 
…………..(2.5) 

We look for the monochromic and stationary solution of the 
form 
 

𝑠𝑛 𝑡 = 𝜑𝑛 cos 𝜔𝑡,…………….…(2.6) 
where𝜑𝑛 is the amplitude of the nth atom. Therefore equation 
(2.5) is transformed into 
 

−𝑚𝑛𝜔
2𝜑𝑛 = 𝑘 𝜑𝑛+1 + 𝜑𝑛−1 − 2𝜑𝑛 

+  
3𝜆

4
   𝜑𝑛+1 − 𝜑𝑛 

3 + (𝜑𝑛−1 − 𝜑𝑛)3  
……………..(2.7) 

under the rotating-wave approximation, i.e., neglecting the 
higher-harmonic terms. 
As has been mentioned above, in the linear limit the motion 
of the heavy and light atoms is exactly decoupled at 
 𝑞 = 𝜋

2𝑎  . Although the nonlinearity breaks the 
symmetry, we make the following ansatz under the 
condition of weak nonlinearity according to Refs. [3,16,17] 

𝜑𝑛 =  −1 𝑗𝑣2𝑗  ,               𝑛 = 2𝑗;          
𝜑 = (−1)𝑗𝜔2𝑗 +1 ,                   𝑛 = 2𝑗                ………(2.8) 

 
This means that the particle displacement is split into two 
fields by introducing different variables for heavy and 
lightatom oscillations. Then Equation(2.7) can be rewritten 
as 

 

− 𝑚𝜔2 − 2𝑘 𝑣𝑛 = 𝑘 𝑤𝑛 − 𝑤𝑛−1 

+  
3𝜆

4
  (𝑤𝑛 − 𝑣𝑛)3 − (𝑤𝑛−1 + 𝑣𝑛)3 , 

− 𝑀𝜔2 − 2𝑘 𝑤𝑛 = 𝑘 𝑣𝑛 − 𝑣𝑛+1 

+  
3𝜆

4
  (𝑣𝑛 − 𝑤𝑛)3 − (𝑤𝑛 + 𝑣𝑛+1)3 . 

      
   …………….(2.9) 

 
Assuming that both fieldsv and ware slowly varying in space 
and time, it appears to be sufficient to keep only the first 
derivatives. Then Equations (2.9) are reduced to the 
following system of coupled ordinary differential equations 
 

𝑑𝑣

𝑑𝑥
=  −∆2𝑤 + 𝛽𝑤 𝑤2 + 3𝑣2 ,      

𝑑𝑤

𝑑𝑥
=  ∆1𝑣 − 𝛽𝑣 𝑣2 + 3𝑤2 .          

                                                                                                         
……………………(2.10) 

where the lattice spacing is set to unity and the parameters 
are defined as 
 

∆1=
(𝑚𝜔2 − 2𝑘)

𝑘
 ,        ∆2=

(𝑀𝜔2 − 2𝑘)

𝑘
 ,         𝛽 =

3𝜆

2𝑘
 

…………………….(2.11) 
Equation (2.10) describes the dynamics of a Hamiltonian 
system with one degree of freedom and the conserved 
energy 
 

𝐸 = −
1

2
 ∆1𝑣

2 + ∆2𝑤
2 +

𝛽

4
 𝑣4 + 6𝑣2𝑤2 + 𝑤4 ,        

…………………(2.12) 
where functions w and v may be considered as the 
generalized coordinate and momentum, respectively. 
Fortunately, Equation (2.10)can be exactly integrated with 
the help of an auxiliary function[16,17]𝑧 = 𝑤

𝑣 , with which 
the following general solutions are obtained for the 
dynamical system (2.10) 
 

 
𝑑𝑧

𝑑𝑥
 = (∆1 + ∆2𝑧

2)2 + 4𝛽𝐸(𝑧4 + 6𝑧2 + 1) 
     

 ……………(2.13) 
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𝑣2 =
(∆1+∆2𝑧2)±  ∆1+∆2𝑧2 2+4𝛽𝐸 (𝑧4+6𝑧2+1)

𝛽(𝑧4+6𝑧2+1)
……………(2.14) 

𝑤2 = 𝑣2𝑧2 ……………(2.15) 
 
We mention that most of the results in this section appeared 
in references [16,17]. Moreover, fittingpotentials always 
contain asymmetrical terms in the Taylor expansion near 
equilibrium. These asymmetrical terms will bring different 
features to the solution of the diatomic chain and should be 
treated by different methods.[8,9,18] Through qualitative 
analysis of dynamical systems in the phase plane (w,v), 
where the localized solutions correspond to a separatrix 
curve, different kinds of solutions can be obtained. If the 
nonlinear parameter is fixed, say 𝜆>0 (or > 0), then the 
solutions are characterized bydifferent values of the 
conserved quantity E, as well as of theparameters ∆1 and ∆2. 
 
When ∆1 , ∆2< 0, i. e. , 0 < 𝜔 < 𝜔1 , there is only a centre 
point v=w=0 in the phase plane for two dynamical systems. 
In this case separatrix curves and, subsequently, nontrivial 
localized solutions are absent. However, when ∆1<
0 and ∆2> 0, i. e. , 𝜔1 < 𝜔 < 𝜔2, the system (2.10) has a 

saddle point at v=w=0 and two center points at  ± 
∆2

𝛽
  , 0 . 

As shown in figure 1, the separatrix curve on the phase plane 
correspond to E=0, and equation (2.13) is easily integrated 
to give the same expression: 
 

𝑧 = ±  
 ∆1 

∆2
  

1
2 

coth 𝑦 ,  𝑦 =   ∆1 ∆2𝑥 .   ….(2.16) 

 
Phase diagram of dynamical system 

 
Substituting this result into (5.12), we have the following 
localized solution of v and w for system (2.10): 
 
𝑣2

=
2 ∆1 ∆2

2 sinh2 𝑦

𝛽 ∆1
2 cosh4 𝑦 +  6 ∆1 ∆2 cosh2 𝑦 sinh2 𝑦 + ∆2

2 sinh4 𝑦 
, 

 
𝑤2

=
2∆1

2∆2 cosh2 𝑦

𝛽 ∆1
2 cosh4 𝑦 +  6 ∆1 ∆2 cosh2 𝑦 sinh2 𝑦 + ∆2

2 sinh4 𝑦 
. 

………………(2.17) 
looking at the behavior of solution (2.17) near the bottom of 
the linear spectrum gap we find, Near the gap bottom 
𝜔 = 𝜔1+∈  0 <∈≪ 1 , the parameter∆2~ ∈, neglecting ∈2 
terms in (2.17), the amplitudedistribution of vibration of 
heavy atoms for the solution tends to 
 

𝑤 =  2 ∈
𝛽  

1
2 

sech   ∆1 ∈ 𝑥 ,          …………….(2.18) 

which is a standard form of the single stationary nonlinear 
Schrodinger soliton. This kind of localized vibration of 
particles with frequency within the forbidden band of the 
linear spectrum is called a gap mode or gap soliton and is 
essentially a nonlinear effect. 
 
3. Conclusion 
 
In this work, we have studied vibrations of a pure one-
dimensional crystal lattice with (positive) quartic 
anharmonicity by paying particular attention to localized 
modes with frequencies above the harmonic frequency band. 
We have studied the concept of anharmonicself localized 
modes in much wider areas in one-dimensional lattice as 
compared with the previous studies, where only the quartic 
anharmonicity was taken care of[18,19,20,21,23]. The 
theory was formulated by making extensive use of the 
Lattice-Green’s function method which provides us with a 
natural theoretical basis of studying the localization 
properties of anharmonic vibrations and for justifying the 
use of the so called rotating wave approximation RWA. 
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