
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Survey Paper on Adding System Call in Linux
Kernel 3.2+ & 3.16

Atiya Mumtaz

Computer Science and Engineering, Shivalik College of Engineering, Uttrakhand Technical University

Abstract: This paper explain how to add a system call in Linux Kernel 3.2 & 3.16 and covers prerequisites to add any system call in

Linux Kernel, Paper also include Explanation of Process and commands required in kernel compilation, and briefly explain the process

of system call addition, commands and packages used to do so.

Keywords: Linux Kernel, System calls, Ubuntu 12.04, Ubuntu 14.04, System Call Table, Macro Definition, Prototype, Userspace
Program, and Kernel Compilation

1. Introduction

System call addition process broadly involves adding a
system call in system call table with its unique number,
defining its structure (what system call will do, it can be any
program) and its Macro definition, then compiling the edited
kernel and rebooting system with new compiled kernel.
There are simple steps which should be followed to add
system call in Linux kernel but before that there are certain
conditions or prerequisites which must be followed before
starting with system call addition process, failure in any of
the prerequisite step may create problem/error at the time of
kernel compilation and hence addition of system call. This
paper is divided into five sections, First section include
perquisites to add system call, Second includes Steps to add
system call in Linux kernel 3.2, third section provide with
steps to add system call in Linux kernel 3.16, fourth explains
steps to compile kernel and Userspace program to check
added system call and fifth section explains briefly about
system calls and process of system call execution.

2. Prerequisites

There are certain requirements which must be fulfilled
before adding a system call in Linux kernel
a) Get Kernel Source Code from kernel.org
b) Set root password: After installation set root password by

command: sudo passwd root and then execute sudo
passwd –u root to unlock account.

c) Access to root folder: There are many ways to do so, one
among them is to go to terminal (by alt+tab+T) and type
the following command: sudo chmod –R 777/root, after
running this command one might see some error but when
one will go to root folder, can have access to that folder
but even after one gain access to root folder one can‘t
create, delete or make changes in any existing file in root,
usr or src folder.(to get this liberty refer next point)

d) Permission to alter files in root, usr or src folder: There
are various ways to get this but one may easily get this by
typing command: sudo nautilus, in the terminal. After
running this command, automatically a window will open
and one will be able to do whatever one wants to do in
root, src or usr folder.

e) Installation of required packages: go to terminal and
type command: sudo apt-get install gcc, sudo apt-get

update, sudo apt-get install ncurses-devel (if this
doesn‘t work try using command sudo apt-get install
libncurses5-dev), sudo apt-get upgrade.

f) Extract your downloaded kernel source code in usr/src
directory.

3. Steps to add system call in Linux kernel 3.2

(Assuming that one has followed all the prerequisite steps)
1) Add system call to system call table, Open file

syscall_table_32.s, path
arch/x86/kernel.syscall_table_32.s, in the end of the
file(EOF) append .long sys_hello

2) Define Macro which are associated with system call,
Open file unistd_64.h, path
arch/x86/include/asm/unistd_64.h, in EOF append new
line #define __NR_hello 312 then in next line
__SYSCALL(__NR_hello, sys_hello).

3) Increment the value of Macro, Open file unistd_32.h,
path arch/x86/include/asm/unistd_32.h, Go to line
#define NR_syscall 349 (you can search for this line by
cntrl+F and by typing any word from the line) change
this line to #define NR_syscall 350.

4) Add prototype of the system call, Open file syscalls.h,
path include/linux/syscalls.h, in the EOF add line
asmlinkage long sys_hello(void);.

5) Create a directory named hello in the root directory of
the kernel i.e folder of the source co

6) de.
7) In this hello directory create two files named hello.c

and Makefile.
8) In hello.c write a program #include<linux/kernel.h>

asmlinkage long sys_hello(void){printk(“Hello
world”\n);return 0;}

9) Open Makefile and write obj := hello.o
10) Now open Makefile in the root directory and go to

line ‗core-y += kernel/m/fs/ipc/security/crypto/block‘
(find it with the help of Cntrl+F) and change it to ‗core-
y += kernel/m/fs/ipc/security/crypto/block’/hello/‘

11) System call is added, now follow kernel Compilation
steps. (Mentioned in section 4).

Paper ID: 5011702 1155

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

4. Steps to Add System Call in Linux Kernel
3.16

(Assuming that one has followed all the prerequisite steps)
1) Create a directory named hello within the directory

linux-3.16, path usr/src/linux-3.16
2) Create two files within hello directory, hello.c and

Makefile
3) In hello.c write a program
#include<linux/kernel.h>
asmlinkage long sys_hello(void)
{
printk(―hello\n‖);
return 0;
}
4) In Makefile within hello directory write obj-y := hello.o
5) Edit Makefile in the kernel’s root directory, goto line
‗core-y += kernel/mm/fs//ipc/security/crypto/block‘ and

change it to
core-y += kernel/mm/fs//ipc/security/crypto/block/hello/
6) Add new system call into system call table, open file

syscall_32.tbl (if your system is a 64 bit alter the
syscall_64/tbl file) path arch/x86/syscalls/syscalls_64.tbl,
add following line in the end of the file(EOF) 354 i386
hello sys_hello

7) Add new system call (sys_hello()) in the system call
header file, Open file syscalls.h, path
include/linux/syscalls.h and add following in the EOF
asmlinkage long sys_hello(void)

8) System call is added, Now follow Kernel compilation
steps. (Mentioned in next section)

5. Steps to Compile Kernel

1) Go to terminal(Cntrl+Alt+T) and go to directory where

kernel source code is i.e type command: cd
/usr/src/linux-3.2 or linux-3.16 according to kernel
source directory name, to get path automatically open
kernel source code directory then press Cntrl+L and copy
highlighted path.

2) Type command sudo make menuconfig (pop up will
come navigate to file system check whether ext4 is
selected or not, if not select it and exit).

3) Type command sudo make oldconfig
4) Type command sudo make, this may take a while like

30-40 mins to compile kernel.
5) Type command sudo make modules_install install
6) Reboot system with compiled kernel.

5.1 Userspace Program

After rebooting system make a Userspace program which
can test that system call is successfully added or not.
Whenever we make library functions or system calls we
should always check the return status of the call in order to
determine its successful execution.
Userspace.c

#include<stdio.h>
#include<sys/syscall.h>
#include<linux/kernel.h>
#include<unistd.h>

int main()
{
long int ana =syscall(312);// kernel 3.2.82 64 bit – 312, 32
bit- 349, kernel 3.16- 354 (according to system call
number in the system call table)
printf(―system call sys_hello returned %d‖, ana);
return 0;
}

1) Compile and run userspace program
2) On successful compilation and execution it will print

―system call sys_hello returned 0‖
3) To check message of the kernel
4) Type command dmesg and on its execution in the end

hello world will be displayed.

6. System Call Addition Process

This section briefly explains what are a system calls, how it
works and what are the various function running when any
system calls are executed.

6.1 System Call

System call is a controlled way of entering into kernel, when
process requests that kernel should perform some process on
its behalf. System call API (Application Programming
Interface) make this service available to program, these
service include, New Process Creation, Performing Input/
Output, Creating a pipe for Inter Process Communication.
When System call is going to be executed process‘s state
change from user mode to kernel mode, to make CPU access
protected kernel memory. System call has fixed set and is
uniquely identified by a unique number (which is not
normally visible to program, which identify system call by
its name).

Process of system call execution
1) Application Program invokes a system call by wrapper

function.
2) Wrapper function makes assurance that trap handling

routine get system call arguments.
3) Generally arguments are passed to wrapper function

using stack, but kernel looks for specific registers for
these arguments, hence wrapper function also copies
these arguments to specific registers.

4) Kernel need to identify each system call to know which
system call is invoked and so each system call has its
unique number. The wrapper functions copies system
call number into CPU‘s specific registers

5) Then Trap Instruction (int 0x80) is executed by wrapper
function, which causes the process to switch to kernel
mode from user mode.

6) Then code pointed by location 0x80 is executed.
7) Kernel Invokes a system call routine which is located in

assembler file as a response to trap location 0x80.
8) Register‘s values are saved onto stack by handler and

some validation are done, like verifying system call
number etc.

9) Handler uses system call table to invoke appropriate
system call service routine and also validates the
arguments if there are any. A system call table is a map

Paper ID: 5011702 1156

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

of system call number as a key and appropriate system
call value.

10) Service routine performs various actions like
transferring data between user memory and kernel
memory or modifying values at address specified in
arguments after proper validations from service
routines.

11) After this service routine returns status of execution to
the system call routine.

12) Returning process to user mode handler retuned to
wrapper function.

13) If system call‘s return value indicated error then
wrapper function sets ‗errno‘ on global variables and
then returns to called process providing integer value
indicating execution state.

7. Conclusion

This paper can help anyone to add system call in Linux
kernel and to understand what system call is and how it is
executed.

References

[1] Linux Open Projects http://nevonprojects.com/year-

projects-for-computer-engineering/
[2] ts honor thesis project

http://ts.data61.csiro.au/students/theses.pml#ug-GH
[3] Wagner, D. and Soto, P. 2002. Mimicry Attacks on

Host-Based Intrusion Detection Systems. In
Proceedings of the 9 th ACM Conference on Computer
and Communications Security. Washington DC, USA,
255–264.

[4] Tan, K. and Maxion, R. 2002. ‖Why 6?‖ Defining the
Operational Limits of Stide, an AnomalyBased
Intrusion Detector. In Proceedings of the IEEE
Symposium on Security and Privacy. Oakland, CA,
188–202.

[5] Stolcke, A. and Omohundro, S. 1993. Hidden Markov
Model Induction by Bayesian Model Merging.
Advances in Neural Information Processing Systems.

[6] FREE SOFTWARE FOUNDATION. cvs - Concurrent
Versions System. http://www.nongnu.org/cvs/.

[7] McConnell, S (1999). Open-Source Methodology:
Ready for Prime Time ? In IEEE Software, 16 (4), 6-11.

[8] linux Vulnerbility trends
https://www.cvedetails.com/product/47/Linux-Linux-
Kernel.html? vendor_id=33

[9] arstechnica
http://arstechnica.com/security/2016/09/linux-kernel-
security-needs-fixing/

[10] sL4 Projects
https://wiki.sel4.systems/Getting%20started

[11] L4 kernel
https://en.wikipedia.org/wiki/L4_microkernel_family

[12] linux uses
http://www.comparebusinessproducts.com/fyi/50-
places-linux-running-you- might-not-expect

[13] Greg heley explaining FreeBSD
https://www.freebsd.org/doc/en_US.ISO8859-
1/articles/explaining- bsd/article.html

[14] Comparison of operating systems
https://en.wikipedia.org/wiki/Comparison_of_operating
_systems

[15] Mount DM (2004). Bioinformatics: Sequence and
Genome Analysis (2 Ed.). Cold Spring Harbor, NY:
Cold Spring Harbor Laboratory Press. ISBN 0- 87969-
712-1. OCLC 55106399 .

[16] System call addition Mount DM (2004). Bioinformatics:
Sequence and Genome Analysis (2 Ed.). Cold Spring
Harbor, NY: Cold Spring Harbor Laboratory Press.
ISBN 0-87969-712-1. OCLC 55106399 .

[17] D. Gao, M. Reiter, and D. Song. Gray-box extraction of
execution graphs for anomaly detection. In Proceedings
of the 11th ACM Conference on Computer and
Communications Security, pages 318–329, October
2004.

[18] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W.
Gong. Anomaly detection using call stack information.
In Proceedings of the 2003 IEEE Symposium on
Security and Privacy, May 2003.

[19] D. Endler. Intrusion detection: applying machine
learning to solaris audit data. In In Proc. of the IEEE
Annual Computer Security Applications Conference,
pages 268–279. Society Press, 1998.

[20] S. Basu and P. Uppuluri. Proxi-Annotated Control Flow
Graphs: Deterministic Context-Sensitive Monitoring for
Intrusion Detection, pages 353–362. Springer, 2004.

[21] M. K. Aguilera, M. Lillibridge, and X. Li. Transaction
rate limiters for peer-to- peer systems. IEEE
International Conference on Peer-to-Peer Computing,
0:3– 11, 2008

[22] D. Anderson, T. Frivold, and A. Valdes. Next-
generation intrusion detection expert system (nides): A
summary. Technical Report SRI-CSL-95-07,

[23] Computer Science Laboratory, SRI International, May
1995.

[24] S. Chen, J. Xu, and E. C. Sezer. Non-control-data
attacks are realistic threats. In 14th Annual Usenix
Security Symposium, Aug 2005

[25] L. Zhen, S. M. Bridges, and R. B. Vaughn. Combining
static analysis and dynamic learning to build accurate
intrusion detection models. In Proceedingsof the 3rd
IEEE International Workshop on Information
Assurance, March 2005.

[26] H. Xu, W. Du, and S. J. Chapin. Context sensitive
anomaly monitoring of process control flow to detect
mimicry attacks and impossible paths. In Proceedings of
the International Symposium on Recent Advances in
Intrusion Detection (RAID, pages 21–38. Springer,
2004.

[27] E. H. Spafford. Computer viruses—a form of artificial
life? In C. G. Langton, C. Taylor, J. D. Farmer, and S.
Rasmussen, editors, Artificial Life II, pages 727–745.
Addison-Wesley, Redwood City, CA, 1992.

Paper ID: 5011702 1157

https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html
http://www.comparebusinessproducts.com/fyi/50-places-linux-running-you-
http://www.comparebusinessproducts.com/fyi/50-places-linux-running-you-
https://www.freebsd.org/doc/en_US.ISO8859-1/articles/explaining-
https://www.freebsd.org/doc/en_US.ISO8859-1/articles/explaining-

