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Abstract: In this paper, we study the parameter estimations for the skew Ornstein-Uhlenbeck processes based on continuous 

observations. However, dealing with the skew Ornstein-Uhlenbeck processes are tough because of the appearance of the local time. 

Therefore, we transform the skew Ornstein-Uhlenbeck processes into the standard diffusion processes, and then utilize the measure 

transformation to obtain the log likelihood function. At the same time we derive the formulas for the estimators of the drift parameter. 

Furthermore, we prove their consistency and asymptotic normality. 
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1. Introduction 
 

Over the past few decades, many scholars have studied 

different problems for skew processes. The pioneering work 

by oIt ˆ and McKean [6], which investigated the skew 

Brownian motion as the sign reversing of excursions of the 

standard Brownian motion based on a certain probability. The 

path of a skew Brownian motion behaves like a normal 

Brownian motion until it hits level 0. When arriving at 0, it 

will move upwards or downwards with probability p and 1 − p 

respectively. In particular, when p = 0 or 1, it becomes a 

reflected Brownian motion. For the deeper properties of skew 

Brownian motion, see Antoine Lejay [9]. Now, the skew 

process has received a lot of attention since it has been found 

widespread use in a broad range of application domains, such 

as in physical, Lang [8]; biological, Cantrell and Cosner[3]; 

and mathematical finance models, Decamps et al. [4] and the 

reference therein. 

 

In recent years, more and more new problems appear in our 

field of vision, among those generalizations, parameter 

estimation for the skew process has become an increasingly 

popular discussion. However, as far as we know, there is few 

literature to study this aspect. So our purpose is to find a 

method for estimating the drift parameters. Fortunately, as a 

special case, some significant development about the reflected 

Ornstein-Uhlenbeck process has been made recently, for 

instance, a sequential maximum likelihood estimator for the 

reflected Ornstein-Uhlenbeck process, we can see Lee et al. 

[10] and Lijun Bo and Xuewei Yang [2]. Then Yaozhong Hu 

et al. [5] considered a parameter estimation problem for a 

one-dimensional reflected Ornstein-Uhlenbeck with discrete 

observations. 

 

The main contribution of this paper is to show that parameter 

estimations for skew Ornstein-Uhlenbeck processes. For the 

fist time, we introduce the skew Ornstein-Uhlenbeck process. 

Let 0( , ,{ } , )t t P F F  be a filtered probability space with 

the filtration 0{ }t tF  satisfying the usual conditions. 

Suppose     

}0:{ tX t  is a skew Ornstein-Uhlenbeck process with the 

infinitesimal drift xk   and infinitesimal variance 
2  on 

this space. The process X  is defined to satisfy the following 

stochastic differential equation (SDE): 









，

，

0

)12()(

0X

dLpdWdtXkdX tttt 

 
Where Rk ,  , ),0(  , 10  p , tW  is a 

one-dimensional standard Brownian motion on the 

probability space 0( , ,{ } , )t t P F F ,  tL  is the 

symmetrical local time of  tX
 
at the skew level 0, that is to 

say, the process tL  increases only when X  is zero, so that 

0)0(
),0[

 
tt dLXI , 

where )(I  is the indicator function. More details on the 

skew Ornstein-Uhlenbeck process can be found Suxin Wang 

[13]. 

 

In this paper, we expand the previously known results on the 

parameter estimation problems for a reflected 

Ornstein-Uhlenbeck process in Lijun Bo [1]. However, 

parameter estimation for the skew Ornstein-Uhlenbeck 

process is in general more tractable. To overcome such 

limitations, we give a necessary transformation to simplify 

equation. Moreover, we get the log likelihood function by the 

measure transformation. Hence, for the sake of simplicity, we 

will assume   and p  are known in whole paper. 

 

The remainder of this paper is organized as follows. Section 

two introduce some basic knowledge about seeking 

likelihood function. Section three shows that how can we 

obtain the log likelihood function through a series of 

transformations, and then we explicitly compute the 

estimators of the drift parameter. Section four provides the 

strong consistency and asymptotic normality. 

 

2. Preliminaries 
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In this section, we first introuce a special diffusion process, 

and then give a probability measure transform for the special 

diffusion process, which is useful for seeking a likelihood 

function in the coming section. 

 

Supposing tX  is a solution to the stochastic differential 

equation 

       ttt dWdtXtadX  ),,(  ，    0,00  tX 。   (1)  

We assume that sufficient conditions hold on the coefficient  

),,( a so that there exists a unique solution to equation (1) 

for any fixed  .        

 

Firstly, we study a special diffusion process tX  on the 

probability space 0( , ,{ } , )t t P F F ,  

tt WddX  , 

Where 
tW  is a standard Browniam motion under the 

probability space 0( , ,{ } , )t t P F F . 

 

Now, we define a new probability measure R  as follows: 

]),,(
2

1
),,(exp[

0

2

0  
T

tt

T

t dtXtaWdXta
dP

dR
 . 

According to the measure transformation, it is straight 

forward to see that T

T

tT WdtXtaW  0 ),,(   is a 

standard Browniam motion under the measure R . As a 

consequence, }0:{  tX t   is a diffusion process under 

the measure R , that is  

ttt dWdXtadX  ),,(  . 

Therefore, we can easily obtain the log likelihood function 

dtXtadXXta
dP

dR
t

T

t

T

t ),,(
2

1
),,(log)(

0

2

0
  

 

      

3. The estimators of the skew 

Ornstein-Uhlenbeck process 
 

In this section, we discuss how to estimate the parameter of 

the skew Ornstein-Uhlenbeck process. However, due to the 

appearance of the local time, we deal with this problem is 

quite difficult, so we will remove the symmetric local time 

and get a piecewise tractable process. We can see that as a 

special cases as well when 0p  or 1p , the reflected 

Ornstein-Uhlenbeck process be mentioned in Lijun Bo [1], 

therefore, we just discuss 10  p . For the convenience of 

research, it is necessary to assume   and p  are known in 

the whole paper. 
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Thus, it seems clear that G  is a continuous function with the 

inverse function H : 
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Since )(xG is the difference of convex functions, applying 

the generalized oIt ˆ formula (see e.g., Protter [11]) 

to )G(X =R tt  , we can obtain 

s
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where the last equality holds due to the fact: 

 
)0()21(

2

1
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0

X

t

X

t

t

s LpdLpXG   

         = )0()21(
2

1
)0()12)(0( X

t

X
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2

1 X
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2
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2

1 X

t

X

t LpLppp   

  = 0 

Then, we can derive that 

tdR = tttt dWXGdtXkXG  )())(( 
 

 = tttt dWRHgdtRHkRHg  ))(())())(((   

 = 









.0)1())()(1(

,0))((

xdWpdtRHkp

xpdWdtRHkp

tt

tt

，

，





 
Hence it is necessary to discuss the parameter estimation of 

the drift parameter respectively. First of all, we show that the 

parameter estimation for skew Ornstein-Uhlenbeck when 

0x . That is to say, 

ttt pdWdtRHkpdR   ))((
,
   0x .    (2) 
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Similarly to the conclusion mentioned above, we can define 

the log likelihood function under the measure R as follows: 
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Through a simple derivation calculation, without any doubt 

the fact that 
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With straightforward calculation, we get 
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4. The strong consistency and asymptotic 

normality 

 
In this section, we discuss the strong consistency and 

asymptotic normality of the parameter estimators. 

Theorem 1. The estimator  Tk̂ of k  admits the strong 

consistency, i.e. 

kkT 
ˆ   ].[. Rsa as T . 

Proof: Because the range of the parameter k  is ),0(  . Then 

for any 0 such that ),0( k . According to the 

(3), we can obtain 

   ),(),(  kk  
 

 = TkpdRRHpRkp t

T

tT

22

0
)(

2

1
)()(   

 

    

dtRHpdtRHkp
T

t

T

t

2

0

22

0

2 ))((
2

1
)()(   

  

   

TkpdRRHppkR t

T

tT

22

0 2

1
)([  

     

   

]))((
2

1
)(

2

0

22

0

2 dtRHpdtRHkp
T

t

T

t   
 

 = dtRHpTpTkpRp
T

tT 
0

2222 )(
2

1
 

 

= TkppdWdtRHkpp t

T

t  2

0
]))(([  

 

    

dtRHpTp
T

t
0

222 )(
2

1


 

 = TpWp T

222

2

1
 

 

Let  Tt WpA   and 
2

tT AM  . Then we have 

2

1),(),( 2







T

T

T M

Wp

M

kk  
. 

We can see that, for each 0 , 

TM   ].[. Rsa as T , 

That is to say, 

0
2




T

T

M

Wp 
   ].[. Rsa as T . 

According to the Lepingle’s law of large number (see 

Liptser and Shiryayev [7], Lemma 17.4, page 201), we can get 

2

1),(),(




TM

kk  
   ].[. Rsa as T . 

Similarly to the proof of Theorem 2.21 in Prakasa Rao [12], 

we can conclude that there is an ),(ˆ   kkkT  such 

that 0),ˆ(  Tk  and kkT 
ˆ   ].[. Rsa as T . 

Theorem 2. The estimator T̂ of    admits the strong 

consistency, i.e. 

 T
ˆ   ].[. Rsa as T . 

Proof Similarly to the proof of the Theorem 1.  because the 

range of the parameter   is ),0(  . Then for any 0  

such that ),0(  . we can have that      

    ),(),(  kk    
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That is to say, 

0
)(

0

2


 

T

T

t

N

dtRHp 
   ].[. Rsa as T . 

According to the Lepingle’s law of large number (see Liptser 

and Shiryayev [7], Lemma 17.4, page 201), we can get 

2

1),(),(




TN

kk  
   ].[. Rsa as T . 

Similarly to the proof of Theorem 2.21 in Prakasa Rao [12], 

we can conclude that there is an ),(ˆ  T  such 

that  0)ˆ,( 
Tk  and  T

ˆ   ].[. Rsa as T . 

Now it is sufficient to prove that (4) holds. It is known that the 

Ornstein-Uhlenbeck process 

ttt pdWdtZkpdZ   )(
 

has the property dtZ
T

t0
2

 ].[. Rsa as T . On the 

other hand, recall 0)( ttR defined in (2). It is not hard to 

verify that )( 00 ZReZR t

tt  
. It follows that if 

00 ZR  , for all 0t . Thus we have  dtR
T

t
0

2
 

].[. Rsa as T  , that is to say   dtRH
T

t
0

2 )(  

].[. Rsa as T , which implies (4). The proof of the 

theorem is completed. 

Theorem 3. The estimator 
Tk̂  of  k admits the asymptotic 

normality, i.e. 

)1,0(
)ˆ(

N
Tkk L

T 



  ].[. Rsa as T , 

where L   is the convergence in distribution. 

Proof: According to the above mentioned, we can have the 

fact 
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On the other hand, through the taylor expansion, we can get 

  
),( kk  

)),ˆ(ˆ()ˆ(),ˆ(  TTkTTk kkkkkk  
 

)ˆ(2 kkTp T  , 

where 1 . It is easy to see that 

0][)],([ 2 
T

WpEkE k  , 

and 

     
)),(( kVar k  

2)]],([),([  kEkE kk  
 

2)],([ kE k
 

22 ][ TWpE 
 

Tp42 . 

Paper ID: NOV164558 http://dx.doi.org/10.21275/v5i6.NOV164558 1779



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 

Volume 5 Issue 6, June 2016 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

By central limit theorem(see Prakasa Rao [12], Theorem B.10, 

page 313), we have the conclusion, 
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Hence, we can proof the conclusion. 
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Theorem 4. The estimator T̂  of   admits the asymptotic 

normality, i.e. 
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where L   is the convergence in distribution. 

Proof: Similarly to the proof of the Theorem 3, we can have 

that 
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By central limit theorem(see Prakasa Rao [12], Theorem B.10, 
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At last, we show that the parameter estimation for skew 

Ornstein-Uhlenbeck when 0x . That is to say, 

ttt dWpdtRHkpdR )1())((1  ）（ ， 0x . 
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Similarly to the conclusion mentioned above, we can derive 

the estimators of the drift parameter: 
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Theorem 5. The estimator  
Tk̂ of k  admits the strong 

consistency, i.e. 

kkT 
ˆ   ].[. Rsa as T . 

Theorem 6. The estimator T̂ of    admits the strong 

consistency, i.e. 

 T
ˆ   ].[. Rsa as T . 

Theorem 7. The estimator 
Tk̂  of  k admits the asymptotic 

normality, i.e. 

)1,0(
)ˆ(

N
Tkk L
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where L   is the convergence in distribution. 

Theorem 8. The estimator T̂  of   admits the asymptotic 

normality, i.e. 
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where L   is the convergence in distribution. 

Similary to the above proof, so we omit. 
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