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Abstract: The year 2016marks the 52th anniversary tothe discovery of bereitschaftspotentials by Kornhuber and Deecke.Using a unique 

opisthochronic averaging technique, the discoverers found a consistent negative cortical potential that developed about 1500 to 1000 

milliseconds prior to the onset of a self-paced movement. For the first time, it was possible for the scientific world to study the activity of 

the brain prior to an actual onset of movement. Their discovery changed the outlook of scientific world towards human brain from a 

passive reflexive organ to an active planner. Ever since this technique has opened new doors to unravel the secrets of motor physiology 

of the human brain. In this review article, we discuss in details the use of the bereitschaftspotentials to understand the temporal pattern 

of cortical activity prior to movement in health and in disease, including the study of brain areas and factors influencing motor planning 

and execution.  
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1. Introduction: Concept, Terminology and 

Components 
 

Bereitschaftspotentials (BP) represent the cortical activity 

that comprises the planning and execution phase before the 

actual onset of movement (2). The name of these potentials 

derives from a German word “bereitschafts potentials” 

literally meaning readiness potentials. Indeed, BP is an 

event-related potential that is locked to the onset of 

movement or electromyography. Thus, BP can be 

considered as a motor-related cortical potential (MRCP), but 

there is wide consensus not to use these two terms 

interchangeably. The MRCPs include both the pre-

movement as well as the post-movement related cortical 

potentials (3); and the term bereitschaftspotential is to be 

restricted to former. The large amplitudes of BP from scalp 

recordings suggest that these potentials represent the 

summated activity of the postsynaptic potentials arising 

from apical dendrites of the cortex(4). The slow negative 

potential found in BP represents the excitability rather than 

the absence of facilitation of the underlying cortical tissue, 

and such a cortical excitability is regulated by feedback 

loops arising from the subcortical structures especially the 

basal ganglia(5). Interestingly, the bereitschaftspotentials 

can be recordedprior to voluntary movements of any part of 

the body like hand, fingers, leg, tongue, pharyngeal muscles 

(swallowing), eye movements(6–10).Thus, these cortical 

potentials can be viewed as the fundamental principle in 

motor physiology that applies to all voluntary motor actions. 

A vast number of experiments have identified that the 

waveform of BP has multiple components (Figure 1).This is 

evident by the change in slope observed in the BP waveform 

with time orby comparing the BP waveform in patients with 

neurodegenerative diseases or lesions. Broadly, the BP is 

subdivided into two components (11). The early component 

of BP is the first negative slope of BP that starts about -1500 

milliseconds prior to movement onset (i.e. at the onset of 

bereitschaftspotentials) and lasts up to -500 milliseconds as 

the slope of the potential change at around this time(2,11). 

While the late BP consists of rapidly increasing second 

negative slope that begins -500 milliseconds prior to 

movement(2,11).Many past studies have referred to these 

components with various names like BP, RP, NS, etc. 

creating confusion for referral in future studies but as 

described in the original description the nomenclature 

should be standardized for the early component as early BP 

or BP1 and for the late component as late BP or 

BP2(1,11).Another third component of BP that begins about 

-60 milliseconds prior to movement onset represents the 

activity of the contralateral cortex is MP (Motor Potential) 

or Peak BP (12). 

 

 
Figure 1: (a) shows a typical record of BP at various scalp 

sites according to 10-20 electrode placement system along 

with EMG response at the top. This graph represents an 

average response of 100 artifacts free trials recorded prior to 

self-paced wrist extension with EMG from extensor carpi 

radialis used for back averaging EEG signal. Note the 

waveform at site Cz shows the maximum amplitude. (b) 

This is a schematic diagram of BP; note the different 

components of BP relative to EMG onset. (111) 

 

2. BP recording technique and analysis  
 

Bereitschaftspotentials can be recorded for any voluntary 

motor activity. The trigger for the averaging the 

electroencephalography (EEG) can be an electromyograph 

(EMG) or movement onset; though using an electric event 

would be more specific. The volunteer is usually asked to 

repeat the movement once for every 10-20 seconds. Interval 
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time less than 5 seconds tend to give smaller duration on BP 

and overlapping records. The EEG record during rest 

(between the trials or 6 seconds before movement) is used to 

obtain the baseline for BP parameter calculations. Artifact 

removal before averaging the data is as important step to get 

a clean data. Simultaneous recording of EOG 

(electrooculography) and EMG from neck muscles is used to 

remove such disturbances and along with visual inspection 

must be performed to remove any shift in EEG record or 

potentials larger than 100 microvolts. Averaging of at least 

100 or more artefacts free EEG records 5 seconds prior to 

and 2 seconds after the EMG is adequate to get a good BP 

record. 

 

Onset times of the potential is the first parameter to be noted 

(109). Complex or sequential tasks tend to have onset times 

must more prior to movement than simple motor tasks. 

Intend of movement and even training affects the onset 

times. An earlier onset time necessarily indicates more 

preparedness by the cortex. Many parameters are used to 

analyze the various components of BP. From the onset of BP 

or -1.5 seconds prior to movement onset to -0.5 seconds 

prior to movement is the duration of early component (2). 

Average/maximum amplitude, slope as calculated by linear 

regression, or area during this duration have been used as 

parameters to quantify early BP (54,106,110). About -0.6 to 

-0.5 seconds prior to movement the slope of BP increases 

this marks the start of late component. Similar to early BP; 

average/maximum amplitude, slope, and area have also been 

used for late BP (54,106,110). Peak amplitude of BP 

generally occurs -0.05 seconds prior to movement is Peak 

BP or motor potential (12). Also post-peak slope change and 

topography of BP are measures used to compare within the 

subjects (46,72). It is worthwhile to note that intrasubject 

variability is low for late BP, Peak BP and even for 

amplitude at 0 seconds (110). A method to increase power of 

the study is to generate lab specific control data (age and 

gender matched) for comparison between disease groups. 

The peak time and amplitude after movement form other 

subsets of parameters of post-movement potentials.  

 

Bereitschaftspotentials can be recorded from the scalp as 

well as directly from the cortex (13,14) Direct intra-cerebral 

recordings demonstrate BP over the bilateral supplementary 

cortex and the contralateral primary motor cortex (15). 

These potentials can also be recorded from sub-cortical areas 

like thalamus (16), subthalamic nucleus (17), 

pedunculopontine nucleus (18), caudate (19), putamen (19), 

pallidum (19).The polarity of BP recorded subcortically is 

reverse of that recorded at scalp implying the generator 

sources of these potentials in the cortices. Though doubted, 

the subcortical BP recordings do not necessary mean volume 

conduction from cortical regions; as lesions in these 

subcortical structures do produce a reduction in amplitudes 

or waveform abnormalities in BP (20). Apart from this, 

lesion or degeneration of other motor-related brain regions 

like the prefrontal cortex or cerebellum also affects the BP 

(21,22). Thus, an intricate network of cortical and 

subcortical areas is important in modulating the motor 

cortices and in the generation of BP. The study of 

bereitschaftspotentials provides us with an easy method to 

understand motor physiology in health and in disease. 

3. Bereitschaftspotentials as a tool to study 

Motor Neuroscience 
 

Neurophysiological recording of potentials prior to and after 

movement helps in understanding the temporal sequence of 

activation of various cortical areas involved in movement. 

The higher temporal resolution of movement related cortical 

potentials provides an excellent research tool to understand 

motor physiology(23). Voluntary activity precedes by 

bilaterally activation of supplementary cortex (pre as well as 

proper SMA) followed by contralateral activation of 

premotor area and primary motor cortex (24). The location 

of BP and their topographical differences during finger and 

toe movement imply the role of both supplementary as well 

contralateral primary motor cortex in genesis of BP(25).We 

discuss below the contribution of BP in understanding the 

role various motor related brain areas prior to and during 

motor activity. 

 

Supplementary motor area: Supplementary motor area 

(SMA) plays an essential role prior to voluntary movement 

during the preparation phase. It organizes, co-ordinates, and 

plans the order of movement (26–31). One of the 

commonest use of measuring bereitschaftspotentials is to 

study the activity of the supplementary motor cortex as 

suggested by the discovers of these potentials (1,2). The 

study of these potentials have helped in exploringthe role of 

supplementary cortex prior to and during movement. 

Topographical organization of the BP recorded prior to 

finger or toe movement show that it is maximum at the 

vertex, just above the location of supplementary motor area 

(25). Onset of BP is earliest over supplementary motor 

cortex in both simple as well as complex writing tasks (32); 

this in fact suggests the fundamental role of SMA in motor 

planning.Amplitude of BP is more for complex motor tasks 

involving simultaneous or sequential movements than 

simple motor tasks (33)and is restricted to the vertex (Cz) 

(34) which reflects increased activation of SMA with 

increasing complexity. At times supplementary motor area is 

more active than primary motor cortex when tasks are 

demanding and complex (35) and alongside the onset of BP 

is earlier in complex tasks (32). Even neurophysiological 

studies using single unit recording technique demonstrate 

activity in the neurons of bilateral supplementary motor 

cortex before movement. The firing patterns of these 

neurons is of two types; some start firing almost 2 seconds 

before movement while others have short lead times (36). 

No wonder the cortical potentials can be recorded over this 

part of cortex. Direct recording from the supplementary 

cortex with the use of subdural electrodes has shown that BP 

is somatotopically distributed in SMA-proper while a region 

anterior to SMA-proper, supplementary negative motor area 

had BP recordings independent of movement site (37). 

SMA-proper is the caudal part of supplementary motor area 

and like primary motor cortex has directs projections to the 

motor neurons in the cervical and lumbosacral regions 

(38,39). Stimulation study showed somatotopic organization 

in human supplementary motor cortex and most projections 

to spinal motor neurons are from contralateral SMA (40). 

While, the rostral part or supplementary negative area 

appears to play a general role in motor planning of all body 

parts. Thus differential functions are assigned to the caudal 

and the rostral parts of SMA during motor preparation and 
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execution with former involved primarily during execution 

while latter during preparation (41). Among all the 

subcortical areas, the supplementary motor cortex receives 

extensive inputs from the output nuclei of basal ganglia(42). 

Imaging studies have found decreased activation of SMA 

prior to movement during basal ganglia dysfunction 

(Parkinson’s disease)(43). The decrease in amplitude of 

early part of BP in Parkinson’s disease (PD) is in fact due to 

SMA under-activation(44–46). The reduction in BP 

amplitude correlates with the severity of Parkinson’s disease 

rather than the duration(47). The reduced early component 

of BP is increased to recordable level in de novo patients of 

PD after levodopa administration (48). Levodopa increases 

the activation of SMA prior to movement in the disease (49). 

Again justifying the result that the reduced activation of 

supplementary motor cortex by pallido-thalamo-cortical 

projections due to dopaminergic loss in PD is the reason for 

reduced BP amplitude in the disease(47). Lesions of SMA 

have shown that the topography of the potentials is affected 

globally with reduction in the amplitude of BP at vertex and 

contralateral SMA contribute more to BP generation than 

ipsilateral (50). Deecke et al discovered of an another 

potential called pre-motion positivity (PMP)(51). This PMP 

starts after the late BP but before motor potential and is 

bilaterally symmetrical; probably an index for movement 

initiation(51,52).The generator source for PMP is SMA (53); 

which also justifies the role of SMA in movement initiation. 

 

Primary motor cortex: Voluntary movements are preceded 

by activation of contralateral primary motor cortex. The 

activity contributed by contralateral motor cortex in BP 

starts after the bilateral activity of SMA (54). The late BP 

and peak BP (motor potentials) have their genesis sources 

principally from the contralateral motor cortex 

(11,12,55,56). Increasing surface negativity (Motor 

potential/ Peak BP) is found about 56 milliseconds before 

onset of movement which is maximum over the contralateral 

precentral area (51).  Motor potentials have even been 

recorded directly from the hand area of contralateral primary 

motor cortex in humans undergoing epilepsy surgery(57). 

Recording of BP using subdural electrodes is very useful 

tool to functional map the contralateral motor area during 

surgeries like epileptogenic resection and tumors (58). 

Another use of BP is to study the difference in motor 

cortical activity during actual movement versus imagination. 

Late component of BP is same on both sides of the scalp 

during imaginary motor task (54); as there is no 

lateralization of activity during imagination the role of 

primary motor cortex is minimal during such situations. 

While, the execution related component found when BP 

recorded during actual movement is subtracted from 

imaginary task is lateralized over the contralateral primary 

motor cortex (54). However, neuronal recordings in primate 

study do demonstrate activity of primary motor cortical 

neurons during anticipation in a sequential motor task (59); 

implying an important role of motor cortex prior to 

sequential tasks. Indeed a human TMS study has shown that 

the primary motor cortex activity is more for complex tasks 

than simple (60).The exact contribution of primary motor 

cortex and supplementary motor area during imagination of 

sequential motor task is yet to be explored. BP can be used 

to evaluate insufficiencies or deficiencies in activation of 

contralateral motor cortex during movement in diseases like 

writer’s cramp where these patients show decrease in 

amplitude of BP over contralateral sides (61). 

 

Basal ganglia: Basal ganglia consist of multiple segregated 

circuits including motor, occulomotor, associative and 

limbic circuits (62).The motor circuit is implicated in 

pathophysiology of both hypokinetic and hyperkinetic 

movement disorders (63). Abnormal basal ganglia activity 

due to dopamine depletion results in delay in preparatory 

activity within SMA and changes in BP (64). Both early and 

late components of BP is reduced in lesions to basal ganglia 

with unilateral lesions in basal ganglia reducing the BP on 

the impaired side (20). Certainly, the feedback loops from 

basal ganglia to motor cortices have an important role in 

genesis of BP. Taking the advantage of electrodes implanted 

during various surgeries; BP has been recorded in various 

nuclei of basal ganglia. The input nuclei of basal ganglia, 

caudate and putamen, receive extensive glutaminergic input 

from the cortex (65). Such input is somatotopically 

organized with contribution both from SMA and primary 

motor cortex neurons and such a somatotopy is followed 

throughout all the basal ganglia nuclei-thalamus and back 

again to the cortex (66). During epilepsy surgery, Rektor et 

al., demonstrated recording of BP simultaneously from 

motor cortex, caudate, putamen, and pallidum. The BP were 

recorded in contralateral caudate and putamen and had onset 

latencies slightly late than those recorded over cortex (19). 

Paradiso et al. recorded movement potentials using 

electrodes implanted from subthalamic nucleus. Movement 

related potentials were observed in subthalamic nucleus 

prior to both unilateral as well as bilateral movement and 

had same latencies as that of scalp recorded BP (17). The 

already known information about subthalamic neurons 

having direct input from motor cortex (67) plus having 

increased firing pattern associated with movement (68) and 

the finding of recordable BP in subthalamic nucleus has 

helped in establishing the role of STN in movement 

preparation (17).  

 

Cerebellum: Cerebellum does play a role in motor planning 

as evident by recording of movement related potentials prior 

to voluntary contractions in the ventro lateral part of 

thalamus which predominantly receives inputs from dentate 

nucleus (16). The reduced late BP in patients of essential 

tremors may in turn be contributed by dysfunctional 

cerebellodentate-thalamo-cortical pathway (69). Cerebellar 

degeneration also leads to abnormal topography of BP prior 

to movement with loss of contralateral dominance of initial 

slope of Peak BP or MP and also shift frontal peak MP 

(fpMP) more posterior than in normal individuals (70). 

Lesions in efferent pathways of cerebellum affects BP  

suggesting the role of cerebellum in genesis of BP(71). Peak 

BP amplitude is reduced and topographic maximum over Cz 

site is changed in location in cebellar atrophy patients during 

goal directed self-paced motor task; this definitely suggests 

the role of cerebellar inputs to cerebral cortex in genesis of 

BP (72).  

 

Prefrontal Cortex& Premotor cortex: Though study using 

subdural electrodes has failed to record BP over prefrontal 

cortex(73); lesions in prefrontal cortex results in reduction in 

BP prior movement (22) and reduction in later component of 

CNV (74). This late component of CNV shows striking 
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relations to BP as in varying similarly with subjective 

factors and speed as well as having almost similar 

topography (75). Patients suffering from prefrontal cortex 

lesions have differential effect on early and late components 

of BP; implying role of prefrontal cortex in motor planning 

(22). Along with SMA, premotor cortex may also play a role 

in volitional movement and in genesis of BP (44,76). The 

exact nature of how prefrontal cortex and premotor area 

influence motor physiology as reflected in BP is yet unclear. 

These areas may play a role while studying the effect of 

various factors on BP. 

 

4. Factors affecting Bereitschaftspotentials 
 

Recording the cortical activity in the form of motor related 

cortical potentials may be used as a tool to understand the 

supraspinal influences on motor activity (93). 

 

Actual or imagined tasks: Amplitude of BP is more when 

actual self-paced movement is performed rather just 

planning the task (94). Also amplitude of BP is more when 

the task is performed versus imagining or watching the 

motor task (46). Both early and late component of BP are 

larger during actual movement tasks than imagined ones 

(95). Early component of BP is recorded not only during 

actual movement but also during imaging the movement 

(54). Late component of BP was found to be the same on 

both sides of the scalp during imaginary motor task (54); as 

there is no lateralization of activity during imagination the 

role of primary motor cortex is minimal during such 

situations. The presence of the BP prior to imaginary 

movement can be used as an efficient predictor in brain 

computer communications in paralysis (96).  

 

Training: Resistant training exercises decrease the 

amplitude of BP and result in earlier onset times (93). 

Reduction is seen in motor potential after 3 week resistant 

training exercise regime; this would necessary mean that 

there less activation of motor cortex required to perform the 

same task as less motor units need to be recruited (93). 

Earlier onset times and reduced amplitude of BP is also seen 

in elite rifle shooters compared to controls suggesting better 

and efficient planning of motor actions in elite group (97). 

Motor related potentials start late and have smaller 

amplitude in athletes than controls and this might be due 

specific or economic use of motor neural circuits by the 

former group especially when time to do motor activity is 

crucial (97,98). Recording BP can be used clinically as an 

exercise guide in Parkinson’s disease and can additionally 

provide a neuro-feedback to the patient to monitor his/her 

progress. Such a technique has already shown to increase 

early BP amplitude subsequent to training in healthy 

individuals (99). 

 

Force, Intend and Fatigue: The amplitude of BP correlates 

positively with the force and rate of force of contraction 

(100–102). Larger amplitude in early and late component of 

BP is observed during high torque than low torque actual or 

imagined plantar flexion tasks in healthy subjects (95). BP 

amplitude is more during forceful and fatiguing contractions 

than less forceful non-fatiguing ones (100). Precise 

contractions at lesser force produced increase in BP 

implying the role of more motor cortical involvement in 

such situations (100). Factors like force of contraction, rate 

of force development, fatiguing contractions, and types of 

actions affected the magnitude of BP (103). The amplitude 

of BP is dependent on the level of involvement of the 

subject in the motor task as boredom or repeated stereotypic 

automated motor tasks result in smaller BP (1,104). 

Amplitude of BP is reduced if the movement is auto 

triggered with painful shock; such an observation points 

toward the important of intention or state of preparedness in 

genesis of BP and this may also denote that individual has 

ability to suppress the cortical activity in anticipation of pain 

(105). The amplitude of late component of BP is larger when 

individuals are asked to do freely selected joystick 

movements than fixed direction movements (106).High time 

pressure to solve arithmetic tasks leads to increase in 

amplitude of BP prior to movement (107). BP does not 

differ whether the agonist or antagonist muscles are used; 

neither does it differ between simultaneous or sequential 

movements of finger (108). 

 

5. Bereitschaftspotentials in disorders 
 

The potentials have been widely studied in various motor 

disorders, particularly the Parkinson’s disease. The 

degeneration of dopaminergic neurons in Parkinson’s 

disease alters the output of basal ganglia leading to 

prominent motor and non-motor symptoms in the disease. 

Some of the studies have shown near normal BP in 

Parkinson’s disease compared to age matched controls 

(77,78); however many other studies have found 

abnormalities in the potentials (20,44,46,47,54,79,80). There 

is reduction in amplitude of BP throughout the waveform 

development in bilateral and unilateral Parkinson’s 

disease(47). Dopaminergic medications can improve the 

reduced peak amplitude of BP in healthy individuals as well 

as in patients suffering from Parkinson’s disease (48,81). 

Amplitude or slope of early BP as well as peak amplitude is 

lower in patients with PD compared to controls during self-

initiated movement task (44–46), but not for externally 

triggered tasks (44), thus the patients compensate for 

movement initiation by relying more on external cues during 

motor tasks (82). Advanced stages of the disease is 

associated with reduced slope of BP as compared to early 

stages in PD (54) and reduction in BP amplitude correlates 

with the severity of Parkinson’s disease rather than the 

duration (47). The BP waveforms are completely abolished 

after unilateral thalamotomy (intermedioventral part) in PD 

(21); thus the basal ganglia output via this region in 

thalamus plays an important role in BP genesis. While, 

posteroventral pallidotomy improves the late component of 

BP in Parkinson’s disease and thus improves the motor 

execution phase in these patients while levodopa improves 

the early component and increasing the supplementary motor 

cortex activity (83). BP abnormalities found in the 

Parkinson’s disease are reversed back to some extend using 

levodopa, but it is still unclear whether newer treatment 

modalities like deep brain stimulation or newer medications 

also modulate the BP waveform and thus the motor planning 

phase of movement. 

 

Amplitude of BP is decreased in idiopathic torsion dystonia 

and there is no lateralization of late component of these 

potentials in the disease (84). Lateralization of BP to the 
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contralateral motor cortex is also absent in patients with 

persistent mirror movements (85). While the former disease 

dystonia, represents a dysfunction in basal ganglia leading to 

abnormal brain motor networks and the symptoms (86); the 

latter persistent mirror movement disorder may be due to 

abnormal cross talk between the two motor cortices via 

corpus callosum (87,88).Yet in both disorders, the 

lateralization of BP to the contralateral cortex is affected. 

Most of the diseases result in decrease in BP amplitude, but 

BP amplitude is significantly more in schizophrenic patients 

with tardive dyskinesia than controls or schizophrenics 

without dyskinesia (89). While psychiatric disorders like 

schizophrenia show BP abnormalities; the potentials are 

normal in children with bipolar disorders (90). BP is absent 

prior to involuntary jerks in myoclonus; present in some of 

the jerks in Gilles de la Tourette syndrome with smaller 

waves and increased in patients with psychogenic jerks(91). 

Presence of BP prior to psychogenic jerks can thus be used 

to aid in its diagnosis differentiating from other jerky 

movements  (91,92). 

 

6. Conclusion 
 

Human brain learns to plan earlier for complex or sequential 

tasks (like archery) and at times,it learns to delay the 

planning for quick and automated responses (required by 

sprint athletes) as reflected by onset latencies of BP. Indeed 

the study of bereitschaftspotentials has been a good temporal 

evaluator to cortical activity prior to movement. Bilateral 

SMA preferentially contributes the early part of BP and 

while contralateral primary motor cortex contributes to the 

late part of BP with somatotopic activity in SMA-proper and 

M1. The potentials are influenced by intricate neuronal 

circuitry from basal ganglia and cerebellum via thalamus, 

and probably directly from prefrontal and parietal areas onto 

the SMA. Diseases affecting any parts of this system thus 

reflects in abnormalities in BP waveform. Future studies can 

be directed towards modelling of these circuits using 

characteristics of BP waveform as training parameters to 

better understand motor planning in health and disease. 
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