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Abstract: In this paper, we established a travelling wave solution by using the proposed Tan-Cot function algorithm for non-linear
partial differential equations. The method is used to obtain new solitary wave solutions for non-linear partial differential equations such
as, for the Mikhailov-Shabat( MS ) equation, and Classical Boussinesq (CB) equation, which are the important Soliton equations.
Proposed method has been successfully implemented to establish new solitary wave solutions for the non-linear PDEs.
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1. Introduction 
  
Large varieties of physical, chemical, and biological 
phenomena are governed by non-linear partial differential 
equations. One of the most exciting advances of non-linear 
science and theoretical physics has been the development of
methods to look for exact solutions of non-linear partial 
differential equations [1] .Exact solutions to non-linear 
partial differential equations play an important role in non-
linear science, especially in non-linear physical science since 
they can provide much physical information and more 
insight into the physical aspects of the problem and thus lead 
to further applications. Non-linear wave phenomena of
dispersion, dissipation, diffusion, reaction and convection 
are very important in non-linear wave equations.In recent 
years, quite a few methods for obtaining explicit travelling 
and solitary wave solutions of non-linear evolution equations 
have been proposed. A variety of powerful methods, such as, 
tanh-sech method [2,3, 4],extended tanh method 
[5,6,7],hyperbolic function method [8,9], Jacobi elliptic 
function expansion method [10], F-expansion method [11],
and the First Integral method [12,13].The sine-cosine 
method [14,15,3] has been used to solve different types of
non-linear systems of PDEs. In this paper,we applied the 
Tan-Cot method [6–8] to solve the Mikhailov-Shabat (MS) 
equation, and Classical Boussinesq(CB)equation given 
respectively by: 

𝑝𝑡 = 𝑝𝑥𝑥 +  𝑝 + 𝑞 𝑞𝑥 −
1

6
 𝑝 + 𝑞 3 ; 

−𝑞𝑡 = 𝑞𝑥𝑥 −  𝑝 + 𝑞 𝑝𝑥 −
1

6
 𝑝 + 𝑞 3               (1) 

𝑢𝑡 + [ 1 + 𝑢 𝑣]𝑥 = −
1

4
𝑣𝑥𝑥𝑥 ; 

 𝑣𝑡 + 𝑣𝑣𝑥 + 𝑢𝑥 = 0                                 (2) 

2. The Tan-Cot Function Method 

Consider the non-linear partial differential equation in the 
form 

 F (u, ut, ux, uy, uxy, utt, uxx, utx………)=0              (3)  

where𝑢(𝑥, 𝑦, 𝑡) is a travelling wave solution of non-linear 
partial differential equation Eq.(3).We use the 
transformations 
 𝑢 𝑥, 𝑦, 𝑡 = 𝑓 𝜉 
where 

𝜉 = 𝑥 + 𝑦 − 𝜆𝑡. 
This enables us to use the following changes, 

 
𝜕

𝜕𝑡
 .  = −𝜆

𝑑

𝑑𝜉
 .  ,

𝜕

𝜕𝑥
 .  =

𝑑

𝑑𝜉
 .  ,

𝜕

𝜕𝑦
(. ) =

𝑑

𝑑𝜉
(. )      (4)  

Using Eq.(4) to transfer the non-linear partial differential 
equation Eq.(3) to non-linear ordinary differential equation 

𝑄 𝑓, 𝑓′ , 𝑓′′ , 𝑓′′′ , …… = 0                    (5)
The ordinary differential equation (5) is then integrated as
long as all terms contain derivatives, where we neglect the 
integration constants. The solutions of many non-linear 
equations can be expressed in the form: 

𝑓 𝜉 = 𝛼 tan𝛽 𝜇𝜉 ,  𝜉 ≤
𝜋

2𝜇

𝑓 𝜉 = 𝛼 cot𝛽 𝜇𝜉 ,  𝜉 ≤
𝜋

2𝜇
                   (6)  

Where α,µ,β parameters to be determined, µ and 𝜆are the 
wave number and the wave speed respectively 
We use 
𝑓 𝜉 = 𝛼 tan𝛽 𝜇𝜉 

𝑓′ = 𝛼𝛽𝜇 𝑡𝑎𝑛 𝛽−1  𝜇𝜉 + 𝑡𝑎𝑛 𝛽+1  𝜇𝜉  

𝑓′′ = 𝛼𝛽𝜇2 (𝛽 − 1)𝑡𝑎𝑛 𝛽−2  𝜇𝜉  

+ 2𝛽 tan𝛽 𝜇𝜉 +(𝛽 + 1)𝑡𝑎𝑛 𝛽+2  𝜇𝜉  

 (7) 
And their derivatives or use, 
𝑓 𝜉 = 𝛼 cot𝛽 𝜇𝜉 

𝑓′ = −𝛼𝛽𝜇 𝑐𝑜𝑡 𝛽−1  𝜇𝜉 + 𝑐𝑜𝑡 𝛽+1  𝜇𝜉  

𝑓′′ = 𝛼𝛽𝜇2 (𝛽 − 1)𝑐𝑜𝑡 𝛽−2  𝜇𝜉  

+ 2𝛽 cot𝛽 𝜇𝜉 +(𝛽 + 1)𝑐𝑜𝑡 𝛽+2  𝜇𝜉  

 (8) 
and so on. We substitute (7)or (8)into the reduced equation 
(5),balance the terms of the tan functions when (7) are used, 
or balance the terms of the cot functions when(8)are used 
,and solve the resulting system of algebraic equations by
using computerized symbolic packages. Next we collect all 
terms with the same power in tank(µξ) or cotk(µξ) and set to
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zero their coefficients to get a system of algebraic equations 
with the unknowns α,β,µ and solve the subsequent system of
equations. 

3. Applications 
 
3.1 The Mikhailov-Shabat (MS) Equation 

In this section we deal with the Mikhailov-Shabat 
(MS)equations

𝑝𝑡 = 𝑝𝑥𝑥 +  𝑝 + 𝑞 𝑞𝑥 −
1

6
 𝑝 + 𝑞 3

−𝑞𝑡 = 𝑞𝑥𝑥 −  𝑝 + 𝑞 𝑝𝑥 −
1

6
 𝑝 + 𝑞 3                 (9)

In order to solve MS system (9) we now introduce the
transformation

𝑢 𝑥, 𝑡 = 𝑝 𝑥, 𝑡 + 𝑞 𝑥, 𝑡 ,
 𝑣 𝑥, 𝑡 = 𝑞𝑥 𝑥, 𝑡 − 𝑝𝑥 𝑥, 𝑡                  (10)

Then the MS system (9) becomes
𝑢𝑡 + 𝑣𝑥 − 𝑢𝑢𝑥 = 0

𝑣𝑡 + (𝑢𝑣)𝑥 − 𝑢2𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0                  (11)
Substituting

 𝑢 𝑥, 𝑡 = 𝑢 𝜉 , 𝑣 𝑥, 𝑡 = 𝑣 𝜉 , 𝜉 = 𝑥 + 𝜆𝑡          (12)
Where 𝜆 is a real constant.
Hence, substitute (12) in Eq.(11),we get the following ODEs

𝜆 𝑢′ + 𝑣′ − 𝑢 𝑢′ = 0                              (13)
 𝜆 𝑣′ + (𝑢𝑣)′ − 𝑢2𝑢′ + 𝑢′′′ = 0                       (14)

Integrating Eq.(13)and (14) once with zero constants to get:
𝜆 𝑢 + 𝑣 −

𝑢2

2
 = 0                               (15)

 𝜆 𝑣 + 𝑢𝑣 −
𝑢3

3
 + 𝑢′′ = 0                       (16)

Assume the following solution in (7)
 𝑢 𝜉 = 𝛼1 tan𝛽1 𝜇𝜉                        (17)
 𝑣 𝜉 = 𝛼2 tan𝛽2 𝜇𝜉                       (18)

Substitute Eq.(17) and(18) and there derivatives in Eqs.(15)
and (16)to get:

 𝜆𝛼1 tan𝛽1 𝜇𝜉 + 𝛼2 tan𝛽2 𝜇𝜉 −
1

2
𝛼1

2 tan2𝛽1 𝜇𝜉 = 0

(19)

𝜆𝛼2 tan𝛽2 𝜇𝜉 + 𝛼1𝛼2 tan(𝛽1+𝛽2) 𝜇𝜉 −
1

3
𝛼1

3 tan3𝛽1 𝜇𝜉  

+ 𝛼1𝛽1𝜇
2 (𝛽1 − 1)𝑡𝑎𝑛 𝛽1−2  𝜇𝜉 

+ 2𝛽1 tan𝛽1 𝜇𝜉 + 𝛽1 + 1 𝑡𝑎𝑛 𝛽1+2  𝜇𝜉  = 0 
(20)

From Eqs.(19) and (20) we have
2𝛽1 = 𝛽2; 
𝛽1 + 𝛽2 = 𝛽1 + 2 
Then, 𝛽2 = 2; 𝛽1 = 1.
From Equations (19) and (20) we get the following system

𝛼2 −
1

2
𝛼1

2 = 0                                (21)

𝛼1𝛼2 −
1

3
𝛼1

3 + 2𝛼1𝜇
2 = 0                       (22)

Solving the system in Eq.(21) and (22),we get
𝛼1 = 2 3𝑖𝜇;  𝛼2 = −6𝜇2                    (23)

Then
𝑢 𝑥, 𝑡 = 2 3𝑖𝜇  𝑡𝑎𝑛{ 𝜇 (𝑥 + 𝜆𝑡)}             (24)
 𝑣 𝑥, 𝑡 = −6𝜇2 tan2{ 𝜇  𝑥 + 𝜆𝑡 }             (25)

Figure (1) and (2)respectively represent u(x,t) in (24)
andv(x,t) in (25)forλ = 2;µ = 1 and −10 ≤ x ≤ 10 ; −1 ≤ t ≤ 1.

Figure 1: Presentation of u(x,t) in (24) for −10 ≤ x ≤ 10 and -
1 ≤ t ≤ 1.

Figure 2: Presentation of v(x,t) in (25) for −10 ≤ x ≤ 10 and -
1 ≤ t ≤ 1.

3.2. The Classical Boussinesq (CB) equation 

Now we deal with the Classical Boussinesq(CB) equations 
[18], 

𝑢𝑡 + [ 1 + 𝑢 𝑣]𝑥 +
1

4
𝑣𝑥𝑥𝑥  = 0 

𝑣𝑡 + 𝑣𝑣𝑥 + 𝑢𝑥 = 0                           (26)
In order to obtain travelling wave solutions of equation (26),
we make the transformations

𝑢 𝑥, 𝑡 = 𝑢 𝜉 ;  𝑣 𝑥, 𝑡 = 𝑣 𝜉 ;  𝜉 = 𝑥 + 𝜆𝑡      (27)
Where λ is real constant

Hence, substitute Eq.(27) in Eq.(26),we get the following
ODEs

𝜆𝑢′ +   1 + 𝑢 𝑣 ′ +
1

4
𝑣′′′ = 0                     (28)

𝜆𝑣′ + 𝑣𝑣′ + 𝑢′ = 0                            (29)
Integrating Eq.(28)and (29)once with zero constants we
have,

𝜆 𝑢 +  1 + 𝑢 𝑣 +
1

4
𝑣′′ = 0                        (30)

𝜆𝑣 +
𝑣2

2
 + 𝑢 = 0                              (31)

Assume the following solution in Eq.(7)
𝑢 𝜉 = 𝛼1 tan𝛽1 𝜇𝜉                         (32)
𝑣 𝜉 = 𝛼2 tan𝛽2 𝜇𝜉                        (33)

Substitute Eq.(32) and (33) and there derivativesinEqs.(30)
and (31) we have,

𝜆𝛼1 tan𝛽1 𝜇𝜉 +  𝛼2 tan𝛽2 𝜇𝜉 + 𝛼1 𝛼2tan𝛽1+𝛽2 𝜇𝜉  +
1

4
𝛼2𝛽2𝜇

2 (𝛽2 − 1)𝑡𝑎𝑛 𝛽2−2  𝜇𝜉 +

2𝛽2tan𝛽2𝜇𝜉+𝛽2+1𝑡𝑎𝑛𝛽2+2𝜇𝜉= 0 (34)
𝜆𝛼2 tan𝛽2 𝜇𝜉 +

1

2
𝛼2

2 tan2𝛽2 𝜇𝜉 + 𝛼1 tan𝛽1 𝜇𝜉 = 0(35)
From Eq.(34) and (35) we have,

𝛽1 + 𝛽2 = 𝛽2 + 2
𝛽1 = 2𝛽2

.Then, 𝛽1 = 2; 𝛽2 = 1.
From Equations (34) and (35) we get the following system

𝛼1𝛼2 +
1

2
𝛼2𝜇

2 = 0                                  (36)
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1

2
𝛼2

2 + 𝛼1 = 0                                      (37) 
Solving the system in Eq.(36) and (37),we get 

𝛼1 = −
𝜇2

2
;  𝛼2 𝜇                           (38) 

Then 
𝑢 𝑥, 𝑡 = −

𝜇2

2
tan2{ 𝜇 (𝑥 + 𝜆𝑡)}                    (39) 

𝑣 𝑥, 𝑡 𝜇 tan {𝜇  𝑥 + 𝜆𝑡 }                     (40) 

Figure (3) and (4) respectively represent u(x,t) in (39) 
andv(x,t) in (40)forλ = 2;µ = 1.5 and −1≤ x ≤ 1 ;0≤ t ≤ 1. 

Figure 3: Presentation of u(x,t) in (39) for −1 ≤ x ≤ 1 and 0 ≤
t ≤ 1.

Figure 4: Presentation of v(x,t) in (40) for −1 ≤ x ≤ 1 and 0 ≤
t ≤ 1

4. Conclusions 

In this paper, new method called the Tan-Cot function 
method has been successfully implemented to establishnew 
solitary wave solutions for the Mikhailov-Shabat 
(MS)equations and the Classical Boussinesq (CB) equations 
which are the non-linear PDEs.We can say that the new 
method can be extended to solve the problems of non-linear 
partial differential equations which arising in the theory 
ofsolitons and other areas; see [19-25].  
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