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Abstract: In this research some important parameters of graded index fiber have been studied such as numerical aperture, the 
normalized frequency and their effects on the modal dispersion. The modal dispersion and the propagation delay have been calculated 
and plottedas functions of radial number and azimuthal number. 
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1. Introduction  

As its name implies, multimode fibers propagate more than 
one mode. Multimode fibers can propagate over 100 modes. 
The number of propagated modes depends on the core size 
and numerical aperture NA . However,when the core size 
and NA increase, the number of modes increases. Typical 
values of fiber core size, and NA are 50 to 100  m and 
0.20 to 0.29, respectively.Launched into a multimode fiber 
with more ease. The higher NA and the larger core size 
make it easier to make fiber connections. During fiber 
splicing, core-to-core alignment becomes less critical. 
Another advantage is that multimode fibers permit the 
utilization of light-emitting diodes LEDs. Single mode fibers 
typically must use laser diodes. LEDs are cheaper, less 
complex, and last longer. LEDs are preferred for most 
applications. Multimode fibers also have some 
disadvantages. As the number of modes increases, the effect 
of modal dispersion increases [1]. Modal dispersion 
(intermodal dispersion) means that modes arrive at the fiber 
end at slightly different times. This time difference causes 
the light pulse to spread. Modal dispersion affects system 
bandwidth. Fiber manufacturers adjust the core diameter, 
NA , and index profile properties of multimode fibers to
maximize system bandwidth. Then multimode optical fibers 
are categorized into two types according to their structure, 
Step index fibers (SIFS) and Graded index fiber (GIFS)[2].

2. Parameters of Graded Index Fiber 

The determination of NA  for "graded; index fiber" is more 
complex than that for "step index fiber.In graded index fiber, 
NA is a function of position across the core end face. This is
in contrast to the step index fiber, where NA is constant 
across the core. Geometrical optics consideration shows that 

the light incident on the fiber core at position R  will 
propagate as a guided mode only if it is within the local 
numerical aperture )(RNA at that point. The local 
numerical aperture is defined as [3] 

Whereq the graded order, the axial local numerical aperture 

)0(NA is defined as 1(0) 2NA n  .Where is the 
core-cladding index difference? It is clear that NA of a 
'graded' index fiber; decreases from )0(NA to zero as moves 
from the fiber axis to the core cladding boundary. As the use 
of modal distribution )(R , the fundamental mode in the 
[step index; fiber] is mostly 'approximated' with Gaussian 
distribution of the form [4] 

where the width parameter is determined by curve fitting or
by following a variational procedure. The quality of fit is
generally quite good for values of V (normalized 
frequency) the neighborhood of 2. The spot size can be
determined from an analytical approximation accurate to
within 1% for 405.22.1 V  and given by [5]

The spot size w is different for each q , where the smaller 
q is the larger spot size w .  

From the definition  21aV  , V is proportional to

1 if  is relatively independent of V and 1 . In this 
case, 

2

1 1 2
1 1 1 1 1 1 1 1 1

2                         (4)z z z z   
 

        

            
          

             

Now, using the definition  21aV   and chain rule, one may be found 
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Then we can write
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terms within the brackets can be estimated from the curves 
of 1/z  versusV . For small V  and the fundamental 
mode, the bracketed term can be positive (or negative 
waveguide dispersion), so it is possible to use small V or
a to cancel the material dispersion or to have zero 
chromatic dispersion. This is the basic principal of
dispersion-shifted fibers. Note that, the curve of 1/z 

and V  for the fundamental mode is different for different 
graded order. That is; the waveguide dispersions of" the 
single mode fiber is affected by the graded order. In turn, the 
waveguide dispersion can be controlled by the fiber 
characteristics such as fiber radius and refractive indices as
well as the index profile.  

3. Graded-index Fibers  

The modal dispersion in graded index fibers is computed by
a complicated procedure that depends on many 
approximations. In the present work, we are attempted to
deduce the modal dispersion of graded-; index fibers. 
Multimode optical fibers described by

( )( , , ) ( , ) zii t z
i ir z A r e     

 support a large but finite 
number of modes which are particular solutions of
Maxwell's equations. Each mode propagates at its own 
velocity resulting from its particular propagation constant. 
From the WKB approximation, the modal propagation 
constant was approximated by [6]

where / ( 2)g q q  , 2 1f m    stands for the 

principal mode number and F  represents the total number 
of propagation modes given by Eq.(5), which may be
rewritten as 2 2 2

1 oF g a n k  . Note that, the pair ( , )m

represent the radial and azimuthal numbers. Physically, 
( , )m have the meaning that they count the number of
maximum intensities that may appear in the radial and 
azimuthal directions in the field intensities of a given mode. 
In a strict sense, the mode number f is a discrete integer 
parameter which takes values ranging from unity for 01LP
mode to the total number of mode groups. However, very 
often f can be treated as a continuous variable. This 
approximation is of great interest because it allows one to
replace the discrete mode spectrum by a model continuum. 
As a result, the WKB method can readily be used and modes 
sums can be converted to integrals that are easier to handle 
[3,6].  

From Eq. (5), the unit propagation delay is  

To perform the differentiation, note that F is a function of
w . Let 

where 2 2 2
1( ) / ( )fA fc g a n   that may be assumed does 

not depend onw , ignoring the effect of 1 /n w   because 
it much smaller than the modal dispersion effect. As a 
consequence 

Using Eq.(8) into (6), the unit propagation delay for f
mode will be

Eq.(9) may be rearranged to explain 

The binomial expansion for 1 2 fS   will give 

Substituting this expansion into Eq.(10) will obtain

Ignoring the terms with 3  and higher, the last equation 
will be

To calculate the modal dispersion, we find the propagation 
modes that give the maximum and minimum group delay. 
The minimum dispersion occurs when the delays at the two 
endpoints are (1/ )g

fS F and 1fS  . That is;  

are the same, where  

For multimode fibers 1F  , such that 0 . In this 
case, the optimum g  may be found by equalizing the 
results in Eq.(14) to get 
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Eq.(16) may be reformed to obtain 

Using the definition / ( 2)g q q   and Eq.(17), we will 
get 

Under the above conditions, modal dispersion can be

explained as the difference between 1
g and F

g . That is; the 

modal dispersion modD  represents the difference 

Substituting Eq.(14) into (19) and using the result in Eq.(18),
the modal dispersion will be mod 0D  , while the 

approximation 2(1 )optq    will make 

Like that modD  for graded-index fiber is proportional to 2

, which is much smaller than mod 1 /D n c  , for step;-
index fiber. It is important to note that the above 
approximations are accurate only if the modal dispersion is
considered and the chromatic dispersion is ignored. This 
may be attributed to the frequency dependence of   and 

1n  that assumed constants in the above derivation.  

In general, the modal dispersion is computed using Eq.(13),

where for any mode and any graded order m
g
  may be

determined. The dispersion between two modes will be the 
difference. For the step;-index fiber that is a special case of
graded;-index fiber with q and 0g  , we have 

0fS   for the minimum mode order and hence

cng /1
1  , while the maximum mode order has 1fS 

that gives  

However, the modal dispersion for step index fiber will be

cnD F
gg /1

1
mod   . 

4. Results and Discussion 

Fig. (1) Illustrates the variation of the factor 
2
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    
as a function of V for 

all collection cases of q. All the descriptions pertains the 
LP01 mode because it is the alone mode that is be limited 
within a limited range of V, while the remainder modes will 

be non-limited. The figure shows that the mentioned factor 
be positive with a range of V. Therefore, 0wavD  being 
within this range as a result it may be using the negative 
value to control in chD magnitude to having a  shifted 
custom made. It is noted that from the figure the "step 
index" fiber case; the intentional range is (0.2-2.2) while the 
other cases of "graded index" fiber causes this range to be
shifted to the right. Therefore, wavD depends on graded 
order basically as well as to its dependency on V. In other 
words, the controlling in chromatic dispersion will depends 
on q. From the other hand, as long as wavD is important 
only in the single modefiber, so that there is not needing to
plot the other modes. 
Fig. (2) shows the behavior of modD with the radial number 
for many cases of q where it is using the disparity between 
both the 'maximum and minimum' values which revert to the 
same azimuthal number.However, from the figure, one can 
see that when 0q  the parameter modD  equates to zero, 

while for the cases in which q less than 2, the modD has 

negative values. So, the modD  increases with increasingq
until arriving to its maximum value at 4q   after which, it
is turnabout to decreasing because of the nature of the 
minimum and maximum values that is revert to a specific 
azimuthal number. The physical causation behind this 
behavior reverts to the modes nature, where there is a 
commutation takes place among them when 2q   and this 
significant is because there is an antecedence or slowness for 
the mode relative to the other mode. The continuation in q 
increasing return in modD  value to a stationary case 
deference on zero which is so large in comparison with the 
case 2q  or in comparison with the chromatic dispersion. 

Fig. (3) Shows the behavior of modD with the azimuthal 
number, where the difference gave between the minimum 
and maximum values relating to a specific radial number. 
From the two figures comparison we notice a variation 
behavior symmetrical with modD values varying.  

Fig. (4) Illustrates g as a function of radial numberfor a 
number of q cases and for azimuthal number divers values. 
From figure it isclarified that g has a slight start point and 
a high end point. The perceptive difference in antecedent 
figures in the disparity between 'these two points' except the 
case 1q  in which one can see the reverse occurrence. We 
note that the increasing of L mean the curve elevation except 
the case 1q  occurrences the reverse too. The existence of

2q  conversed caused existence mod 0D  this is
apparent in the two antecedent figures. 
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Figure 1: The factor  
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as a function ofV  for different graded orders. 

Figure 2: modD as a function of radial number for different graded orders 
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Figure 3: modD as a function of azimuthal number for different graded orders 

Figure 4: g as a function of radial number for different azimuthal numbers and different graded orders.
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5. Conclusion 

In graded index fiber some parameters have the following 
behaviors 
1) LP01 mode is the alone mode that is be limited within a 

limited range of V. So, the mentioned factor be positive 
with a range of V. Therefore, 0wavD  being within this 
range 

2) wavD dependon graded order and V. 

3) When 0q  the parameter modD  equates to zero, while 

for the cases in which q less than 2, the modD has 
negative values. 

4) modD increases with increasingq until arriving to its

maximum value at 4q   after which, it is turnabout to
decreasing. 

5) The continuation in q increasing return in modD  value to
a stationary case deference on zero which is so large in
comparison with the case 2q  or in comparison with 
the chromatic dispersion. 

6) The varying of modD  with the radial number is

symmetrical with modD  values varying with the 
azimuthal number. 

7) g have a slight start point and high end point. 
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