Architectural Solutions Effect on Energy Efficiency at College Buildings

Dr. Reham El-Dessuky Hamed
Architectural Lecturer, Beni-Suef University, Faculty of Engineering, Beni-Suef, Egypt

Abstract: Architectural design solutions can be employed to achieve greater energy efficiency at any building. However, currently this possibility is not sufficiently utilized. The paper provides a comparative analysis of architectural solutions in college building, presenting the ones that not only allow for a reduction in energy losses through the external envelope especially the roof of a building considering the local climatic conditions; but also make it possible to increase the energy efficiency. The research problem represents the absence of a clear methodology for assessing the energy performance of college buildings after the Works. The study aims to raise the energy efficiency in Universities and Colleges Buildings via create architectural design solution and building design tools which estimating the design interactions within a building. These interactions include the use of energy (electricity for lighting, heating and cooling), climatic conditions (ventilation, daylight and thermal loads) and heat generated by building’s occupants.

Keywords: College Building Design Tools, Architectural Solutions, Energy Efficiency, Design Process, Costs.

1. Introduction

Egyptian Universities and Colleges Buildings represent a high share of energy consumption reaching about 5.4% of the total energy consumption. The high rates of consumption necessitated an urgent action to be taken where studies have been conducted recently to study and investigate the energy efficiency and conservation opportunities within the Egyptian Government Buildings. As a result of this study the cabinet has issued a directive to apply energy efficiency measures in colleges’ buildings starting energy audits and by applying efficient applications. Colleges and universities in Egypt spend an average of $1.10 per square foot (ft2) on electricity and 18¢/ft2 on ventilation annually. In a typical college or university classroom building, lighting represents 31 percent and space ventilating accounts for 28 percent of total energy use, making those systems the best targets for energy savings. While most colleges and universities have tight facility budgets, so it’s especially important to find low- or no-cost architectural solutions to reduce energy expenditures. One of the most important challenges facing architects today is to design and create a sustainable building design that can not only minimize the impact on the environment, but also remain practical, economical and comfortable for use. Energy efficiency is one of the most essential aspects of the sustainability of college buildings depends on architectural design & thermal comfort requirements to avoid consumption increase and reduce energy waste via create environmental integration systems such as: insulation, ventilation, solar Acquisition, natural lighting, thermal mass, heating and cooling. Implications of building energy standard for sustainable energy efficient design in campuses not only save money, but are also comfortable contribute a more effective learning environment.

2. Literature Survey

Building design tools is the tools of estimating the design interactions within a building. These interactions include the

3. Problem Definition

The problem researched on "Architectural Design Solutions Affecting Energy Efficiency in College Building ". This meant the Quantity and Quality of Energy Saving Efficiency and Environmental Comfort Requirements (according to Egyptian code standards). The Causes of the problem are: the stress of traditional concepts of architectural design that must be in proportion to the climate and the identity, the lack of the environmental design awareness about energy saving strategies, environmental strains and the zone's climatic potentials. It is also for overcoming the high energy...
consumption in the universities sector by new and renewable energy tools.

4. Methodology / Approach

In early stages of the design process, designer can estimate the energy consumption which achieve the occupants comfort factors of the building using the design simulation programs, which can help the designer to have more reliable prediction because it is able to simulate the building, the weather conditions, the thermal behavior and the operating schedules of the building, and then correct some of the architectural features of the college building, to improve the climatic and energy performance. Achieving better energy efficiency in the building has become more important, as approximately one third of the primary energy supply is consumed in buildings, so buildings are a primary contributor to global warming and ozone depletion. The comfort requirements of the building depend not only on the individual performance of the building envelope components (walls, windows and roofs), HVAC and lighting systems; but also on an overall performance as an integrated system in the whole building. Design tools is performed to analyze the energy performance of a building and to understand the relationships between the design parameters and climatic characteristic of the site, and energy use characteristics of the building. The effects of all kinds of changes can be simulated in a fraction of time and with a fraction of cost it would take to be studied in real life. In practice, simulation tools can be utilized for the following functions: evaluate design options and investigate design optimization, facilitate the investigation of new ideas, check compliance with building energy codes and determine the impact of energy conservation measures. The selection of the simulation program for a given task depends on the project requirements, time and cost. It also depends on type of input and output data, the capability of the program to deal with the required application and how easy it is to deal with the program, it is more compactable to use Ecotect software with plugins Radiance for lighting analysis and CFDesign for ventilation, as a tool to improve that architectural solutions effect on energy efficiency at college buildings, ECOTECT. Was selected for the following reasons: complete environmental design tool which gives extensive solar, thermal, lighting and ventilation analysis functions, which matches the project requirements, provides essential feedback analysis which guides the user as more detailed design information becomes available, allows user to "play" with design ideas and different applications, it can import 3DS and DXF files, and it can export to: RADIANCE for lighting analysis, and export to CFDesign for ventilation and airflow analysis. The program gives Informative graphs and table which is easy to understand. And finally, It is easy to deal with the program as it has 3D CAD interface allows validation of the simplest sketch design to highly complex 3D models.

The purpose of the research study is to provide a comparative analysis of architectural solutions on the new heightening floor of the Faculty of Literature (fourth floor). While the success of the functional performance of educational building depends on two main determinants that are the realization of users’ objectives and need besides respecting the surrounding natural and built environment. Archtectural program works as a design tool for environmental principles solutions and more effectively in simulating the design processes stages through analyzing the building solar performance (Air Temperatures, Heat Gain and Loss, Thermal Resistance), Natural lighting and ventilation and air flow in the building and their energy consumption. And thus can determine the extent of comfort within the building spaces in order to reach the optimal design. The functional performance of the college integrates through four systems: building usage system, prevalent climate system, building effecting & affecting system (thermal-lighting-ventilation…etc.) and air-conditioning mechanical system and modern systems. Fourth floor area around 2000 m², college lower floors designed as a traditional concept of architectural solutions depend only on windows. View of the need an upper floor to meet the functional needs of users beside the need to reduce construction loads, Structural engineer recommend to use gypsum board for walls and corrugated sheets for roof. Selected architectural solutions affect on energy efficiency as shown in simulation matrix which including: skylights, false ceiling covering some of the class rooms, adding extra upper windows opening at the corridors, wind catchers, operable sky light windows and adding a long hangover in the inlet window of the wind catcher. Design tools are performed to analyze a set of design and modification matrix as following:

A- Thermal Analysis:

1. The Building Envelope Material Properties as shown in following:

<table>
<thead>
<tr>
<th>Material Layers</th>
<th>U-value/Thermal lag</th>
<th>Material Layers</th>
<th>U-value/Thermal lag</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Walls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Designed Case (gypsum board)</td>
<td>The Alternative Case (brick)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Results & Discussion

Table 1: Comparative Analysis between using usual brick and gypsum board for external and internal walls.
U-value=0.28 W/m².K, Thermal lag=640.35 hrs.

Internal Walls:

<table>
<thead>
<tr>
<th>Material Layers (gypsum board)</th>
<th>U-value/Thermal lag</th>
<th>Material Layers (brick)</th>
<th>U-value/Thermal lag</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-value=0.26 W/m².K, Thermal lag=182.26 hrs.</td>
<td></td>
<td>U-value=0.34 W/m².K, Thermal lag=105.26 hrs.</td>
<td></td>
</tr>
</tbody>
</table>

The Roof:

<table>
<thead>
<tr>
<th>Material Layers (gypsum board)</th>
<th>U-value/Thermal lag</th>
<th>Material Layers (brick)</th>
<th>U-value/Thermal lag</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-value=0.34 W/m².K, Thermal lag=105.26 hrs.</td>
<td></td>
<td>U-value=2.79 W/m².K, Thermal lag=15.11 hrs.</td>
<td></td>
</tr>
</tbody>
</table>

For the Designed Case only, Table 2: the used Skylights Windows Properties as shown in:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U-value=1.8 W/m².K, Solar Heat Gain Coeff.= 0.78</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Comparing Table between different Materials U-values and the CODE required U-value:

<table>
<thead>
<tr>
<th>The Designed Case U-value</th>
<th>The Alternative Case U-value</th>
<th>Egyptian CODE U-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>External walls</td>
<td>0.28</td>
<td>WE 0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N 1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S 1.3</td>
</tr>
<tr>
<td>Roof</td>
<td>0.34</td>
<td>0.4</td>
</tr>
<tr>
<td>Roof Skylights</td>
<td>1.8</td>
<td></td>
</tr>
</tbody>
</table>

Results: The U-value rates of the building envelope layers in the Designed Case which the program given, are within the CODE rates. However in the Alternative Case are out of the CODE rates.

Figure 2: Key Plan of the Calculated Zones

Volume 4 Issue 8, August 2015

www.ijsr.net

License Under Creative Commons Attribution CC BY

Paper ID: SUB157942

2067
2. Temperature Analysis Table: (In case of Naturally Ventilated spaces)

Hourly Temperature Profile as shown in following Table 4.

<table>
<thead>
<tr>
<th>Case</th>
<th>The Designed Case</th>
<th>The Alternative Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This Zone reaches the highest Temp. 35.5° at 17:00, when the outer Temp. is 36.1°</td>
<td>This Zone reaches the highest Temp. 34.9° at 19:00, when the outer Temp. is 35.5°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This Zone reaches the highest Temp. 32.8° at 17:00, when the outer Temp. is 38.3°</td>
<td>This Zone reaches the highest Temp. 35.0° at 13:00, when the outer Temp. is 38.2°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This Zone reaches the highest Temp. 35.3° at 17:00, when the outer Temp. is 38.3°</td>
<td>This Zone reaches the highest Temp. 36.2° at 19:00, when the outer Temp. is 35.5°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This Zone reaches the highest Temp. 35.3° at 17:00, when the outer Temp. is 38.3°</td>
<td>This Zone reaches the highest Temp. 34.6° at 19:00, when the outer Temp. is 35.5°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This Zone reaches the highest Temp. 32.5° at 14:00, when the outer Temp. is 39.6°</td>
<td>This Zone reaches the highest Temp. 35.1° at 14:00, when the outer Temp. is 39.6°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Temperature Analysis Profile
This Zone reaches the highest Temp. 32.5˚C at 17:00, when the outer Temp. is 38.3˚C
This Zone reaches the lowest Temp. 12.8˚C at 6:00, when the outer Temp. is 0.3˚C
This Zone reaches the highest Temp. 34.6˚C at 19:00, when the outer Temp. is 35.5˚C
This Zone reaches the lowest Temp. 9.7˚C at 7:00, when the outer Temp. is 0.6˚C

This Zone reaches the highest Temp. 32.7˚C at 17:00, when the outer Temp. is 38.3˚C
This Zone reaches the lowest Temp. 13.3˚C at 6:00, when the outer Temp. is 0.3˚C
This Zone reaches the highest Temp. 35.0˚C at 19:00, when the outer Temp. is 35.5˚C
This Zone reaches the lowest Temp. 9.7˚C at 7:00, when the outer Temp. is 0.6˚C

This Zone reaches the highest Temp. 32.1˚C at 14:00, when the outer Temp. is 39.6˚C
This Zone reaches the lowest Temp. 13.0˚C at 6:00, when the outer Temp. is 0.3˚C
This Zone reaches the highest Temp. 34.9˚C at 14:00, when the outer Temp. is 39.6˚C
This Zone reaches the lowest Temp. 10.1˚C at 7:00, when the outer Temp. is 0.6˚C

This Zone reaches the highest Temp. 34.1˚C at 17:00, when the outer Temp. is 38.3˚C
This Zone reaches the lowest Temp. 12.1˚C at 23:00, when the outer Temp. is 10.3˚C
This Zone reaches the highest Temp. 35.5˚C at 19:00, when the outer Temp. is 35.5˚C
This Zone reaches the lowest Temp. 9.4˚C at 7:00, when the outer Temp. is 0.6˚C

This Zone reaches the highest Temp. 34.3˚C at 17:00, when the outer Temp. is 38.3˚C
This Zone reaches the lowest Temp. 12.2˚C at 23:00, when the outer Temp. is 9.1˚C
This Zone reaches the highest Temp. 35.0˚C at 19:00, when the outer Temp. is 35.5˚C
This Zone reaches the lowest Temp. 9.8˚C at 7:00, when the outer Temp. is 0.6˚C

Table 5: Temperature Profile Summary

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NW 1</td>
<td></td>
<td>NW 1</td>
<td></td>
</tr>
<tr>
<td>NW 2</td>
<td></td>
<td>NW 2</td>
<td></td>
</tr>
<tr>
<td>M 1</td>
<td></td>
<td>M 1</td>
<td></td>
</tr>
<tr>
<td>M 2</td>
<td></td>
<td>M 2</td>
<td></td>
</tr>
</tbody>
</table>

The Thermal Comfort Zone (the relationship) The Thermal Comfort Zone in the Designed The Thermal Comfort Zone in the

Volume 4 Issue 8, August 2015

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: SUB157942

2069
After studying the lowest and highest Zone's temperatures in the hottest and coldest days, it is found that, in the Designed Case the zones reached its highest temperature of 35.5°C and reached its lowest temperature of 11.6°C although there are horizontal Skylights in the roof. And by comparing these results with the Alternative Case the zones reached its highest temperature of 35.5°C and reached its lowest temperature of 9.1°C even there isn't any skylights.

As in the Designed Case by adding Pergolas over the Roof's Skylights, these Pergolas could prevent unwanted direct sun rays which increases the gained heat, and in the same time let the wanted indirect sun rays which enhances the natural light inside the spaces without increasing the inside temperature.

And for Hourly Heat Losses (under zero level) its highest cause is due to building envelope Conduction (Red color) equals 67.5%, and Lake of Ventilation (Light Green color) causes 27.1%.

6. Discomfort Hours Graph (Figure 8):

As it is shown from the previous Hourly Heat Gains/Losses Graphs (Figures 6, 7), while the designed and the Alternative Design Cases and by comparing the results shown in them, it is obviously found that due to the modifications done in the Design case the amount of Hourly Heat Gain and Loss is sharply decreased to a very small quantities, lower than 140 Wh/m² unlike in the Alternative design which reaches higher than 1120 Wh/m².
Figure 9, represents hours out of thermal discomfort of the year, 3446.3 hour outside of the building thermal comfort equivalent to 39.3% of the year hours. Almost 80% of them are for hot hours and the other are for cool hours.

<table>
<thead>
<tr>
<th>MONTH</th>
<th>TOO HOT (Hrs)</th>
<th>TOO COOL (Hrs)</th>
<th>TOTAL (Hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>27.48</td>
<td>293.03</td>
<td>320.52</td>
</tr>
<tr>
<td>Feb</td>
<td>26.71</td>
<td>160.97</td>
<td>187.68</td>
</tr>
<tr>
<td>Mar</td>
<td>56.74</td>
<td>34.66</td>
<td>91.40</td>
</tr>
<tr>
<td>Apr</td>
<td>205.27</td>
<td>6.88</td>
<td>208.95</td>
</tr>
<tr>
<td>May</td>
<td>230.65</td>
<td>0.00</td>
<td>230.65</td>
</tr>
<tr>
<td>Jun</td>
<td>333.89</td>
<td>0.00</td>
<td>333.89</td>
</tr>
<tr>
<td>Jul</td>
<td>107.90</td>
<td>0.00</td>
<td>107.90</td>
</tr>
<tr>
<td>Aug</td>
<td>108.00</td>
<td>0.00</td>
<td>108.00</td>
</tr>
<tr>
<td>Sep</td>
<td>393.15</td>
<td>0.00</td>
<td>393.15</td>
</tr>
<tr>
<td>Oct</td>
<td>327.85</td>
<td>0.00</td>
<td>327.85</td>
</tr>
<tr>
<td>Nov</td>
<td>68.37</td>
<td>7.92</td>
<td>76.29</td>
</tr>
<tr>
<td>Dec</td>
<td>28.56</td>
<td>211.44</td>
<td>240.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2737.6</td>
<td>708.7</td>
<td>3446.3</td>
</tr>
</tbody>
</table>

Figure 9: Hours out of thermal Discomfort of the year

Figure 10: Discomfort degree Hours for the Whole Building in the Designed case

Figure 11, represents hours out of thermal discomfort of the year, 875 hour outside of the building thermal comfort equivalent to 10% only of the year hours. Almost 37% of them are for hot hours and 63% are for cool hours.

<table>
<thead>
<tr>
<th>MONTH</th>
<th>TOO HOT (Hrs)</th>
<th>TOO COOL (Hrs)</th>
<th>TOTAL (Hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>0.00</td>
<td>130.00</td>
<td>130.00</td>
</tr>
<tr>
<td>Feb</td>
<td>0.00</td>
<td>114.00</td>
<td>114.00</td>
</tr>
<tr>
<td>Mar</td>
<td>0.00</td>
<td>82.00</td>
<td>82.00</td>
</tr>
<tr>
<td>Apr</td>
<td>19.00</td>
<td>33.00</td>
<td>52.00</td>
</tr>
<tr>
<td>May</td>
<td>48.00</td>
<td>0.00</td>
<td>48.00</td>
</tr>
<tr>
<td>Jun</td>
<td>59.00</td>
<td>0.00</td>
<td>59.00</td>
</tr>
<tr>
<td>Jul</td>
<td>66.00</td>
<td>0.00</td>
<td>66.00</td>
</tr>
<tr>
<td>Aug</td>
<td>69.00</td>
<td>0.00</td>
<td>69.00</td>
</tr>
<tr>
<td>Sep</td>
<td>36.00</td>
<td>0.00</td>
<td>36.00</td>
</tr>
<tr>
<td>Oct</td>
<td>7.00</td>
<td>3.00</td>
<td>10.00</td>
</tr>
<tr>
<td>Nov</td>
<td>1.00</td>
<td>71.00</td>
<td>72.00</td>
</tr>
<tr>
<td>Dec</td>
<td>0.00</td>
<td>117.00</td>
<td>117.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>325.0</td>
<td>550.0</td>
<td>875.0</td>
</tr>
</tbody>
</table>

Figure 11: Hours out of thermal Discomfort of the year

7. Results of Discomfort degree Hours Analysis:
As it is shown from the previous Discomfort degree Hours Graphs for the designed and the Alternative Design Cases and by comparing the results shown in them, it is obviously found that due to the modifications done in the Design case the number of Discomfort Hours is sharply decreased to a small number of discomfort hours during the whole year.

B- Daylight Analysis:
Building daylight analysis is at 9:00 in the morning in the most thermal loads days (1st August) because in these days the sun is in the highest level inside the space, and it is almost perpendicular to the building's facade, so it penetrate to the space in its higher level and have the most natural light. Figures from 12 to 16 show architectural solution for increase the efficiency of daylight inside building.

Figure 12: Daylight Factor inside spaces, without the designed skylights and false ceiling covering the class rooms

Figure 13: Daylight Factor inside spaces, by having the designed skylights and false ceiling covering the class rooms

Figure 14: Daylight Factor inside spaces, by having the designed skylights + false ceiling covering the class rooms and having extra upper windows opening at the corridors

Figure 15: Daylight Factor inside spaces, by having the designed skylights + without false ceiling covering the class rooms.

Marked areas have too much Glare (uncomforted light) for a studying room

Figure 16: Daylight Factor inside spaces, by having the designed skylights, designed false ceiling covering some of
the class rooms and having extra upper windows opening at the corridors

C- Ventilation Analysis:
The Ventilation was taken in the Hottest day in this climate zone (1st August) at 9:00am. Figure 17 shows Horizontal and Vertical Sections was taken to prove the effect of the Designed Wind Catchers and Operable Skylight Windows on improving the airflow rate inside the building spaces. Figures from 17 to 32 show architectural solution for increase the efficiency of ventilation inside building.

Figure 17: Key Plan of the taken Vertical Sections positions

Figure 18: Airflow Rate inside spaces without adding the Designed Wind catchers and Operable skylight windows.

Figure 19: The effect of adding the Designed Wind catchers and Operable skylight windows on Enhancing Airflow Rate inside spaces.

Figure 20: Section (A-A) shows airflow rate inside spaces without adding the designed operable skylight windows.

Figure 21: Section (A-A) shows effect of adding the designed operable skylight windows on enhancing airflow rate inside spaces.

Figure 22: Section (A-A) shows also by adding upper windows in the inner classes’ effect on Enhancing Airflow Rate inside these spaces.

Figure 23: Section (B-B) shows airflow rate inside spaces without adding the designed wind catchers.

Figure 24: Section (B-B) shows the effect of adding the designed wind catchers on enhancing airflow rate inside spaces.

Figure 25: Section (B-B) shows that using a higher wind catcher, this affects more effective on enhancing airflow rate inside these spaces.

Figure 26: Section (B-B) shows that adding upper windows in the inner classes effect on enhancing airflow rate inside these spaces.
Figure 27: Section (C-C) shows airflow rate inside spaces without adding the designed operable skylights windows.

Figure 28: Section (C-C) shows the effect of adding the designed operable skylights windows on enhancing airflow rate inside spaces.

Figure 29: Section (D-D) shows airflow rate inside spaces without adding the designed wind catcher.

Figure 30: Section (D-D) shows the effect of adding the designed high wind catcher on enhancing airflow rate inside spaces.

Figure 31: Section (D-D) shows adding a Long Hangover in the inlet window of the wind catcher effects on enhancing airflow rate inside these spaces.

Figure 32: The effect of adding the designed wind catchers and operable skylight windows after adding the last modifications on enhancing airflow rate inside spaces.

D- Electricity usage before adding skylights (Figure 33):

![Electricity usage graph]

Figure 33: Electricity usage before adding skylights.

D- Electricity usage after adding skylights (Figure 34):

![Electricity usage graph]

Figure 34: Electricity usage after adding the designed skylights.

It is observed from figures 33, 34, that the electricity was decreased 50% by using skylights in the roof that’s for decreasing the artificial lights usage from 8:00 am to 16:00 pm and depending on the natural lights coming from the designed skylights.
E- Material Costs:
In the case 1: using false ceiling covering the whole spaces and without adding any skylights in the roof.

![Figure 35: The ceiling cost is 43.8% of the whole project cost while the false ceiling cost is 55.5%](image)

In the case 2: using designed false ceiling covering some class rooms and with adding skylights in the roof.

![Figure 36: Using the false ceiling caused GREENHOUSE GAS 7806.9 kg (Figure 36).](image)

In the case 2: using designed false ceiling covering some class rooms and with adding skylights in the roof.

F- Electricity Usage and Light Lamps cost:

- Watt/Lamp = 36 watt
- Expected Life time (hrs) = 10,000 h
- Used energy (KW\h) = (36*10,000)/1000 = 360 KW\h
- Cost of KW\h = 0.18 EGP
- Cost of used Energy\h = 0.18*360 = 64.8 EGP

In the case 1:
- Light usage period = 8:00 to 21:00 = 13 h/day = 3640 h/year
- Annual Electricity usage = 235,872 EGP

In the case 2:
- Light usage period = 16:00 to 21:00 = 5 h/day = 1400 h/year
- Annual Electricity usage = 90,720 EGP

6. Conclusion

1) Architectural design solutions affecting on increase the energy efficiency reduction in energy losses through the external envelope especially the roof of a building considering the local climatic conditions.

2) The major elements of building design simulation system; two basic models are used to present the major components that affect the building’s design decision: Building model and Control system model.

3) Simulation tools can be utilized for the following functions: evaluate design options and investigate design optimization, facilitate the investigation of new ideas, check compliance with building energy codes and determine the impact of energy conservation measures.

4) The success of the functional performance of educational building depends on two main determinants that are the realization of users’ objectives and need besides respecting the surrounding natural and built environment.

5) Architectural program works as a design tool for environmental principles solutions and more effectively in simulating the design processes stages through analyzing the building solar performance (Air Temperatures, Heat Gain and Loss, Thermal Resistance), Natural lighting and ventilation and air flow in the building and their energy consumption.
6) Architectural solutions effect on energy efficiency as shown in simulation matrix which including: skylights, false ceiling covering some of the class rooms, adding extra upper windows opening at the corridors, wind catchers, operable sky light windows and adding a long hangover in the inlet window of the wind catcher.

7) Architectural design approach are summarized in three main sectors; Environment, Climate and Energy. The sequence of the design process appeared in three stages: forward analysis stage, design development stage and element design stage. These stages are used in explaining the types of activities inside the building and its fundamental importance in terms of climatic impact on the building design degree of thermal comfort, natural lighting and natural ventilation define the comfort zone.

8) Prove the importance of the building envelope, shading, natural lighting and natural ventilation systems to achieve thermal comfort for the user on a year-round to access the results of energy consumption lowest rates.

9) Results associated with the use of ECOTECT program as a tool for analysis and design of studying samples, include the following: Ecotect don’t calculate the building material Thermal Lag, in a naturally ventilated the program gives an output of discomfort hotcool hours, but in a full air-conditioned it gives a monthly heating/cooling loads, zones operation hours schedule has to input in the program manually, and airflow analysis depends on user's visual observations.

10) Results associated from the analyzed case study: The U-value rates of the building envelope gypsum board layers are within the CODE rates. However bricks are out of the CODE rates, Pergolas could prevent unwanted direct sun rays which increases the gained heat, and in the same time let the wanted indirect sun rays which enhances the natural light inside the spaces without increasing the inside temperature but it doesn't prevent the wanted sun rays in the early morning or in the end of the day time, in order to enhance the inside daylight in these periods.

11) In Beni-Suef Buildings, daylight analysis is at 9:00 in the morning in the most thermal loads days (11 August) because in these days the sun is in the highest level inside the space, and it is almost perpendicular to the building's facade, so it penetrate to the space in its higher level and have the most natural light.

12) The effect of adding the Designed Wind catchers and Operable skylight windows after adding the last modifications on Enhancing Airflow Rate inside spaces.

13) The electricity was decreased 50% by using skylights in the roof that’s for decreasing the artificial lights usage and depend ing on the natural lights coming from the designed skylights.

14) Energy efficiency improvements using to achieve the design requirements & thermal comforts to avoid consumption increased and reduce energy wastage. As well as environmental integration systems such as: insulation, ventilation, solar Acquisition, natural lighting, thermal mass, heating and cooling.

15) Enhancing the efficiency architectural solutions in education buildings using Ecotec simulation software to improve quality and quantity of comfort levels which affect efficiency of architectural energy saving design approach.

References

Author Profile

Dr. Reham El-Desuky Hamed is Lecturer in Architecture Engineering in Beni-Suef University & researcher in National Research Center (NRC) Architecture Department, interested in expanding my knowledge in the field of Architecture Engineering, Environmental Control, New & Renewal Energy, Green Architecture, Building sustainability, Building Performance & Energy Efficient, Daylight & Energy Software Simulation. Having good experience in teaching Architecture Courses, searching, design & implementation supervision of Architectural Projects and ready to take challenges and handle new tasks.

MSc. Faculty of Engineering, Cairo University, May 2004.” The Role of Natural Lighting in Raising the Efficiency of Reading in Libraries: An Analytical Study Using Lumen Micro Computer Program”. Under the supervision of Prof. Dr. Ahmed Reda Abdin, Prof of Environmental Engineering, Faculty of Engineering, Cairo University, Giza, Egypt (Co. MSc, PhD Supervisor).
Ph.D. Faculty of Engineering, Cairo University, November
2007, titled by "Toward Developing Light-Design Approach to
Increase The Daylight Efficiency in New Administrative Buildings
(An Analytical study using a package of Computer Programs)."
Under the supervision of Prof. Dr. Ahmed Reda Abdin, Prof. Dr.
Ahmed Ahmed Fekry, Prof of Environmental Engineering, Faculty
of Engineering, Cairo University, Giza, Egypt, and Prof. Dr.
Ahmed Hossney Abd El-Rahmain, Prof of Civil Engineering,
National Research Center, Giza, Egypt.

Job Title: Lecturer.
Academic Organization: Beni - Suef University.
From: 2010
To: In progress.

Achievements: Teaching Architecture and Environmental Courses
in American and Beni- Suef University.

Teaching Post Graduate environmental courses: natural and
artificial lighting, new & renewable Energy, Cairo University,
Giza, Egypt.

Member in charge of environmental design and methods of energy
conservation in (HNRC) project titled by: "Adaptation of Building
Techniques to the Egyptian Environmental Conditions".

Project Manager: Design and supervise the execution of Beni-Suef
University and private architectural office.