
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Hadoop Distributed File System and Map Reduce

Processing on Multi-Node Cluster

Dr. G. Venkata Rami Reddy
1
, CH. V. V. N. Srikanth Kumar

2

1Assistant Professor, Department of SE, School Of Information Technology, JNTUH, Kukatpally, Hyderabad, Telangana state, India

2M.Tech Student, Department of SE, School Of Information Technology, JNTUH, Kukatpally, Hyderabad, Telangana state, India

Abstract: Big Data relates to large-volume of growing data which are stored at multiple and autonomous sources. It is a collection of

both structured and unstructured data that is too large, fast and distinct to be managed by traditional database management tools or

traditional data processing application models. The most fundamental challenges for Big Data applications is to store the large volumes

of data on multiple sources and to process it for extracting useful information or knowledge for future actions. Apache Hadoop [1] is a

framework that provides reliable shared storage and distributed processing of large data sets across clusters of commodity computers

using a programming model. Data Storage is provided by Hadoop Distributed File System (HDFS)[3] and data processing is provided

by Map Reduce[2]. The main goal of the project is to implement the core components of Hadoop by designing a multimode cluster and

build a common base platform HDFS for storing of huge data at multiple sources and perform Map Reduce processing model on data

stored at these multiple nodes.

Keywords: Apache Hadoop, Hadoop Distributed File System, Map Reduce.

1. Introduction

Data has grown tremendously to Tera Bytes, Peta Bytes. This

large amount of data is beyond the of software tools to

capture, manage and process with in elapsed time. Exploring

the large volume of data and extracting useful information

and knowledge is a challenge, and sometimes, it is almost

infeasible. The unprecedented data volumes require an

effective data analysis and prediction platform to achieve fast

response and real-time classification for such Big Data.

1.1 Characteristics of Big Data

Volume

The name „big data‟ itself contains a term related to size, so

the quantity of generated data is important in big data. The

size of the data determines the value and potential of the data

under consideration.

Variety

Variety is a category of big data, and an essential fact that

data analysts must know. This helps the people to analyze the

data effectively by knowing the variety of data. It is used to

its advantage to uphold the importance of the big data.

Velocity

The Velocity is the speed/rate at which the data are created,

stored, analyzed and visualized. In the big data era, data are

created in real-time referred to streaming data.

Veracity

The quality of captured data can vary greatly i.e. the structure

of the data can be changed. Accurate analysis depends on the

veracity of source.

2. Literature Survey

Apache Hadoop is a framework that provides reliable shared

storage and distributed processing of large data sets across

clusters of commodity computers using a programming

model. Data Storage is provided by Hadoop Distributed File

System and data processing is provided by Map Reduce.

2.1 Hadoop High Level Architecture

Figure 1 : Hadoop Architecture

2.2 Hadoop Distributed File System (HDFS)

When data can potentially grow day by day, the storage

capacity of a single machine cannot be sufficient so

partitioning it across a number of separate machines is

necessary for storage or processing. This is achieved using

Apache storage named Hadoop Distributed File systems [3].

2.2.1 Design of HDFS

Paper ID: SUB157601 1424

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

HDFS is designed for storing very large files* with

streaming data access* patterns, running on clusters of

commodity hardware*.

Very large Files

Very large in this context means files that are hundreds of

megabytes, gigabytes or terabytes in size. There are Hadoop

Clusters running today that store petabytes of data.

Streaming Data Access

HDFS is built around the idea that the most efficient data

processing pattern is a write-once, read-many-times pattern.

A dataset is typically generated or copied from source, then

various analyses are performed on that dataset over time.

Commodity Hardware

Hadoop doesn‟t require expensive, highly reliable hardware

to run on. It‟s designed to run on clusters of commodity

hardware that for which the chance of node failure across the

cluster is high, at least for large clusters.

Figure 2: Hadoop Distributed File System

HDFS has a master and slave kind of architecture. Namenode

acts as master and Datanodes as worker. All the metadata

information is with Namenode and the original data is stored

on the Datanodes. Keeping all these in mind the below figure

will give idea about how data flow happens between the

Client interacting with HDFS, i.e. the Namenode and the

Datanodes.

2.2.2 The Read Anatomy of HDFS

Figure 2: Read Anatomy of HDFS

2.2.3 The Write Anatomy of HDFS

The writing of the file is done on HDFS with write once

principle, once the file is stored it cannot be updated.

Figure 3: Write Anatomy of HDFS

2.3 Map Reduce

Framework for processing parallel problems across huge

datasets using a large numbers of computers (nodes), called

Cluster: If all nodes are on same local network and uses

similar network. Or

Grid: If the nodes are shared across geographically and use

more heterogeneous hardware.

Map Reduce [2] Consists Two Steps:

I. Map Step- The namenode i.e. master node takes the input

given input and divides it into smaller sub-problems it then

distributes them to worker nodes. A worker node may

perform the step again in turn which leads to a multi-level

tree structure. The worker node processes the job assigned

and passes the solution back to its master node.

II. Reduce Step -The master node then receives the solutions

from all worker nodes of the sub-problems and combines

them to form the output .The output is stored in the datanode.

III. Sort and Shuffle Step –Sort and shuffle step happens

between the mapper step and reducer step. This is the step

that is handled by the Hadoop framework itself.

The unstructured data which is huge is stored in the HDFS

storage of the Hadoop on which the MapReduce is applied

for the analysis of the data and extract information and store

back to the HDFS base Location.

Figure 4: MapReduce

3. Implementation

Paper ID: SUB157601 1425

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The Implementation of the HDFS is done with single node

cluster setup and then configuring all the single node cluster

to form a multi-node cluster having a common HDFS base.

3.1 Single Node Hadoop Cluster Setup

Installation prerequisites

1) CentOS 6.3: community enterprise operating system is a

Linux distribution which is stable version and functionally

compatible with its upstream source, red hat enterprise

Linux (rhel), installed on windows by virtual box software.

2) VM workstation 9 for windows 32-bit and 64-bit

3) Linux kernel version 2.6.32[4]: it automatically gets

installed with centos.

4) Javajdk "1.7.0_17: java version 6 or more can be used.

5) hadoop-1.0.4[1]: this can be downloaded as a tar package

from hadoop.apache.org this is the package with the help

of which Hadoop will be installed on system.

6) Now here are the step to install Hadoop and configure a

single node cluster.

Step 1: VMworkstation and centos installation

Install the install the VMworkstation 9 on windows 32 or 64

bit.Create new virtual machine and install centos.Centos will

be installed on local system. Create root password. Now

install to disk and shutdown and login as root and now install

the VM ware tools so that we can share data from host

system to guest system.

Step 2: Installation of java

Hadoop needs to have java installed on your download the

latest version of java from http://www.oracle.com which is

stored in downloads folder. Now install jdk using commands

[root@localhost ~]#rpm -uvh /root/downloads/jdk-7u15-

linux-x64.rpm

[root@localhost ~]#alternatives --install /usr/bin/java java

/usr/java/latest/jre/bin/java 20000

[root@localhost]#export java home="/usr/java/latest"

Now check the java version

[root@localhost ~]#javac –version Javac 1.7.0_15

Step 3: Adding a dedicated hadoop system user

First check the hostname by the command

[root@localhost ~]#hostname

Localhost.localdomain

We will use a dedicated hadoop user account for running

[root@localhost ~]#groupaddhadoop

[root@localhost ~]#useraddhduser -g

Hadoop [root@localhost ~]#passwdhduser

It asks for new password, enter again for confirmation and do

remember your password.Add the „hduser‟ to sudo users list

so that hduser can do admin tasks.

Step 1.visudo

Step 2: add a line under ##allow root to run commands….

HduserALL= (ALL) ALL

This will add the user hduser and the group hadoop to your

local machine and switching from root to hduser

[root@localhost ~]#su – hduser

Step 4: Installing openssh and generating keys

Hadoop requires SSH access to manage its nodes, i.e.

Remote machines plus yourlocal machine if you want to use

Hadoop on it. For our single-node setup of Hadoop, we

therefore need to configure SSH access to localhost for the

hduser user we created in the previous section. Now install

Ssh server on your computer

[hduser@localhost ~]$sudo yum install openssh-server

Note: internet connection should be enabled

Configured it to allow ssh public key authentication.

[hduser@localhost ~]$ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key

(/home/hduser/.ssh/id_rsa):

Created directory '/home/hduser/.ssh'.

Public key will be generated

The final step is to test the SSH setup by connecting to your

local machine with the Hduser user. The step is also needed

to save your local machine‟s host key Fingerprint to the

hduser user‟s known hosts file.

#now copy the public key to the authorized_keys file, so that

ssh should not requirePasswords every time

[hduser@localhost~]$cat~/.ssh/id_rsa.pub>>~/.ssh/

authorized_keys

#change permissions of the authorized_keys fie to have all

permissions for hduser

[hduser@localhost ~]$chmod 700 ~/.ssh/authorized_keys

If ssh is not running, then run it by giving the below

command and test the connectivity.

[hduser@localhost ~]$ sudo service sshd start

Hduser@localhost:~$sudochkconfigsshd on

Hduser@localhost:~$sudochkconfigiptables off

[hduser@localhost ~]$ssh localhost

Step 5: Download Hadoop

Download hadoop1.0.4, saved at /home/hduser/downloads

with name hadoop-1.0.4.tar.gz. Now perform the following

steps to install hadoop on your centos.Copy your downloaded

file from downloads folder to /usr/local folder. Installhadoop

and give permission to hduser of hadoop group

$sudo cp /home/hduser/downloads/hadoop-1.0.4.tar.gz

/usr/local

$cd /usr/local

$sudo tar -xzf hadoop-1.0.4.tar.gz

$sudochown -r hduser:hadoop hadoop-1.0.4

$sudo ln -s hadoop-1.0.4 hadoop

$sudochown -r hduser:hadoophadoop

Step 6: update $home/.bashrc

Add the following lines to the end of the $home/.bashrc file

of user hduser.

Nano ~/.bashrc

set hadoop-related environment variables

Export hadoop_home=/usr/local/hadoop

set java_home (we will also configure java_home directly

for hadoop later on)

Paper ID: SUB157601 1426

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Export java_home=/usr/java/default

add hadoop bin/ directory to path

Export

path=$path:$hadoop_home/bin:$path:$java_home/bin

You need to close the terminal and open a new terminal to

have the bash changes into effect.

Step 7: create a temporary directory which will be used

as base location for dfs.

Now we create the directory and set the required ownerships

and permissions:

$ sudomkdir -p /app/hadoop/tmp

$ sudochown -r hduser:hadoop /app

$ sudochown -r hduser:hadoop /app/hadoop

$ sudochown -r hduser:hadoop /app/hadoop/tmp

$ sudochmod -r 750 /app

$ sudochmod -r 750 /app/hadoop

$ sudochmod -r 750 /app/hadoop/tmp

Step 8: core-site.xml file updating

Add the following snippets between the

<configuration> ... </configuration> tags

In/usr/local/hadoop/conf/core-site.xml:

Nano /usr/local/hadoop/conf/core-site.xml

<property>

<name>hadoop.tmp.dir</name>

<value>/app/hadoop/tmp</value>

<description>a base for other temporary directories.

</description>

</property>

<property>

<name>fs.default.name</name>

<value>hdfs://localhost:54310</value>

<description>details of the name node

</description>

</property>

Step 9: mapred-site.xml file updating

Add these /usr/local/hadoop/conf/mapred-site.xml

between<configuration> ... </configuration>

Nano /usr/local/hadoop/conf/mapred-site.xml

<property>

<name>mapred.job.tracker</name>

<value>localhost:54311</value>

<description>job tracker details

</description>

</property>

Step 10: hdfs-site.xml file updating

Add the following to /usr/local/hadoop/conf/hdfs-site.xml

between <configuration>... </configuration>

Nano /usr/local/hadoop/conf/hdfs-site.xml

<property>

<name>dfs.replication</name>

<value>1</value>

<description>replication details

</description>

</property>

Step 11: format the name node

Format hdfs cluster with below command

[hduser@localhost ~]$hadoopnamenode -format

If the format is not working, double check your entries in

.bashrc file. The .bashrc

Updating come into force only if you have opened a new

terminal

Step 12: starting single-node cluster

Start the hadoop daemons

 [hduser@localhost ~]$start-all.sh

Test all the daemons are running or not

[hduser@localhost ~]$ jps

9168 jps

9127 tasktracker

8824 datanode

8714 namenode

8935 secondarynamenode

9017 jobtracker

Check if the hadoop is accessible through browser by hitting

the below urls

For hdfs - http://localhost:50070

For mapreduce - http://localhost:50030

The give the health of the namenode at hdfs and task tracker

details.

3.2 Multi Node Hadoop Cluster Setup on CentOS

A fully working „single node Hadoop cluster setup on

CentOS has to be completed on all the nodes. Now consider

two machines on which the single node cluster setup is done

and check all the daemons in each node are working without

any error.

Step 1: open machine1 and machine2 using vmware

player

Open the machine1 and machine2 using the vmware player

and ensure that the network settings are in nat mode

Step 2: test ping is working from one machine to another

Open terminal in machine1 and machine2 with „hduser‟ give

ping command to the other machines and ensure that you got

ping response without any packet loss.

Step 3: change your machine names

a) From now we call machine1 as master. To change

hostname to master,

 [hduser@master /]$ cat /etc/sysconfig/network

Networking=yes

Networking_ipv6=no

Hostname=master

b) From now we call machine2 as slave. To change hostname

to slave,

 [hduser@slave /]$ cat /etc/sysconfig/network

Networking=yes

Networking_ipv6=no

Hostname=slave

Paper ID: SUB157601 1427

http://localhost:50070/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The host names are given to identify each cluster node from

other node.

Step 4: update the hosts on both the nodes

Enter the hostnames along with ip address in /etc/hosts file in

both master and slave so that each machine identify other

machine using it‟s hostname instead of ip address. We will

get the ip address of a node, by typing ‘ifconfig’ command

on each node.

A) to change hosts entry on both master and salve

[hduser@master/]$ sudonano /etc/hosts.

 [hduser@slave~]$ sudonano /etc/hosts

[sudo] password for hduser:

127.0.0.1 localhost.localdomain localhost

192.168.131.139 master

192.168.131.140 slave

::1 localhost6.localdomain6 localhost6

[hduser@master /]$

Check the hosts on each node

[hduser@master /]$ cat /etc/hosts

[hduser@slave /]$ cat /etc/hosts

Now conform the host names by pinging the host names.

From both master and slave node by terminals commands

ping master

ping slave

Step 5: setup ssh

The hduser user on the master should be able to connect

A) to its own user account on the master

B) to the hduser user account on the slave

Via a password-less ssh login.

For this to add the hduser@master‟s public ssh key to the

authorized_keys file of hduser@slave

Hduser@master:~$chmod 700 ~/.ssh/authorized_keys

Hduser@master:~$sudo service sshd start

Hduser@master:~$sudochkconfigsshd on

Hduser@slave:~$ sudo service sshd start

Hduser@slave:~$sudochkconfigsshd on

Copy the public key from master to slave

Hduser@master:~$ ssh-copy-id -i $home/.ssh/id_rsa.pub

hduser@slave

Enter the password of the slave.

Test the ssh connectivity on both master and slave

Hduser@master:~$ ssh master

Hduser@master:~$ ssh slave

It will ask for yes or no and you should type 'yes'

Step 6: turn off the iptables

#stop firewall on master and slave

Hduser@master:~$ sudo service iptables stop

Hduser@master:~$sudochkconfigiptables off

Step 7: update master and slave files of conf directory

On master node, update the masters and slaves files on

master node terminal. Master acts as both master and slave.

[hduser@master /]$ cat /usr/local/hadoop/conf/masters

Master

[hduser@master /]$ cat /usr/local/hadoop/conf/slaves

Master

Slave

Step 8: update core-site.xml file

Do the following on master node and slave node. Open the

core-site.xml file using below command and change the value

for fs.default.name from localhost to master

a)Hduser@master:~$vi /usr/local/hadoop/conf/core-site.xml

<value>hdfs://master:54310</value>

b)Hduser@slave:~$vi /usr/local/hadoop/conf/core-site.xml

<value>hdfs://master:54310</value>

Step 9: update mapred-site.xml file

Do the following on master node and slave node

Open the mapred-site.xml file using below command and

change the value for mapred.job.trackerfrom localhost to

master

Hduser@master:~$vi/usr/local/hadoop/conf/mapredsite.xml

<value>master:54311</value>

Hduser@slave:~$vi/usr/local/hadoop/conf/core-site.xml

<value>master:54311</value>

Step 10: delete the tmp files on both master and slave

$cd /app/hadoop/tmp/

$rm –r *

Step 11: format the cluster

On master node, you need to format the hdfs.

Hduser@master:~$hadoopnamenode –format.

Step 12: start the cluster

On master node, run the below command.

hduser@master:~$start-all.sh

[hduser@master /]$ jps

3458 jobtracker

3128 namenode

3254 datanode

5876 jps

3595 tasktracker

3377 secondarynamenode

[hduser@master /]$

On slave when you type „jps‟ typical output should be

hduser@slave:~$ jps

[hduser@slave ~]$ jps

5162 jps

2746 tasktracker

2654 datanode

[hduser@slave ~]$

Check the log files at location /usr/local/hadoop/logs

Check the below link give at browser of the nodes

http://master:50070/dfshealth.jsp

Paper ID: SUB157601 1428

http://master:50070/dfshealth.jsp

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 5: master node showing the live and dead nodes

Successful MultiNode Cluster setup of two nodes is done. On

this Multinode cluster the mapreduce processing is executed .

3.3 MapReduce Word Count Use Case

Let us consider a two text files on which the mapred

programming algorithm is executed to perform the word

count of the test contained in the input log files.

Input1.log : This is HadoopHDFS

Is stored by masternode to HDFS base location folder

Input2.log : This is Hadoop MapReduce

Is stored by slavenode to HDFS base location folder.

The input files are stored from local system location to HDFS

base location by using the command

[hduser@master]$ hadoop fs -put /srikanth/*.log /store/

Hduser@master:~$hadoop fs –ls /store

Found 2 items

-rw-r--r-- 3 hduser supergroup 20 2015-08-11 12:37

/store/input1.log

-rw-r--r-- 3 hduser supergroup 25 2015-08-11 12:37

/store/input2.log

Now the masternode performs the wordcount job on the two

log files and gives the output and stored the output on HDFS

base location output folder.

[hduser@master:]$ hadoop jar MapRedcuce.jar

WordCountNew /store/*.* /mroutput/

The output can be seen in the browser at the HDFS base

location output folder.

 Figure 6: Output of the mapreduce

3.3.1 The MapReduce programming

The word count job is done by using the MapReduce

Programming [2] algorithm.

Step 1: Import all the required packages mainly

a) mapreduce.Mapper

b) mapreduce.Reduce

c) mapreduce.Job

Step 2: The input format and output format are gathered.

Step 3: A class is declared to perform the job which extends

Mapper class.

Step 4: The mapper class map function is declared with input

format and output format which parse the input data.

Step 5: End of the map Function.

Step 6: End of the Mapper Class.

Step 7: Now a class is declared to perform the job which

extends Reducer class.

Step 8: The Reducer class reduce function is declared with

input format and output format which output of the job data.

Step 5: End of the reduce Function.

Step 6: End of the Reducer Class

Step 7: Main class is declared where the job is initialized by

a) Configuration

b) Job object

c) setJarByClass

d) setMapperClass

e) setCombinerClass

f) setReducerClass

g) setOutputKeyClass

h) setOutputValueClass

Step 8: File Input path and File Output Path are declared

Step 9: Job is executed until the completion of the

processing or until the job failure.

Step 10: If job Success output is written to HDFS.

Step 11: End of Main Class.

All the jobs that implements the MapReduce processing

algorithm follows the alogorithm and performs the job on the

data stored at the HDFS base location. The namenode will

take care of the input data and data accessing. Job Failures

like Data node failure, Network failure at the time of the job

execution is controlled by the namenode and if any datanodes

failure occurs the namenode provides the data from other

nodes where the same data is stored.

The Output of the MapReduce can be seen in the output

location as part-r-00000 in HDFS base location

4. Conclusion

Apache Hadoop framework that provides reliable shared

storage and distributed processing which stores large data

sets across clusters of commodity computers is built. The

analysis is done using a programming processing model Map

Reduce on the data stored on these clusters.

5. Future Work

Even though the Hadoop Distributed File System is scalable,

Cost effective, flexible, fast and Resistant to failure the data

once stored in HDFS has only read operation. It does not

have Write operation because Hadoop follows write once

Paper ID: SUB157601 1429

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

read many times architecture. The main limitation of Hadoop

is only OLAP it is not OLTP. These Limitations give the

future work on Hadoop.

References

[1] http://hadoop.apache.org/ Apache Hadoop.

[2] http://hadoop.apache.org/mapreduce/ Apache

MapReduce.

[3] Apache Hadoop distributed file system.

http://hadoop.apache.org/hdfs/.

[4] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur.

“PVFS: A parallel file system for Linux clusters,” in

Proc. of 4th Annual Linux Showcase and Conference,

2000, pp.

[5] J. Venner, Pro Hadoop. Apress, June 22, 2009.

[6] T. White, Hadoop: The Definitive Guide. O'Reilly

Media, Yahoo! Press, June 5, 2009

[7] https://en.wikipedia.org/wiki/Apache_Hadoop

[8] J.Deanand S.Ghemawat,“Mapreduce: simplified data

processing on large clusters,”in Proc. Sixth Symposium

on Operating System Design and Implementation,

December, 2004,pp.137–150.

[9] K. Talattinis,Sidiropoulou, K. Chalkias, and G.

Stephanides,“Parallel collection of live data using

Hadoop,”in Proc. IEEE14th Panhellenic Conference on

Informatics, 2010,pp.66-71.

[10] P.K.Sinha,“Distributed operating system-concepts and

design,”IEEE press,1993,ch. 9,pp.245-256.

[11] http://www.edureka.co/big-data-and-hadoop

Author Profile

Dr. G Venkata Rami Reddy is now presently

Associate Professor in Computer Science and

Engineering at School of Information Technology. He

has more than 11 years of experience in effective

Teaching, and Software Development. His areas of

interests are: image Processing, Computer Networks, and Analysis

of Algorithms, Data mining, Operating Systems and Web

technologies.

CH.V.V.N.Srikanth Kumar received Bachelor of

Engineering in Computer Science and Engineering

from KITS Warangal, Kakatiya University. He is now

pursuing Master of Technology in Software

Engineering. His research interests are Big Data and

Analytics, Data mining, Networking, Web Technologies and Image

Processing.

Paper ID: SUB157601 1430

