Screening for Resistant Sources in Chickpea Accessions against Fusarium Wilt

Anurag Kumar¹, Shiva Nath², Anand Kumar Yadav³

¹, ²Department of Genetics and Plant Breeding, NDUA&T. Kumarganj, Faizabad -224 229, (U. P.), India
³IIPR Kalyanpur, Kanpur - 208024, Uttar Pradesh, India

Abstract: One hundred one genotypes of chickpea were screened for resistance to fusarium wilt disease caused by Fusarium oxysporum f. sp. Ciceri at Student’s Instructional Farm of Narendra Deva University of Agriculture and Technology, Narendra Nagar, Kumarganj, Faizabad (U.P.) during Rabi, 2014-15. It was observed that 57 lines were resistant, 28 were tolerant while 16 were susceptible to the wilt disease at seedling stage. Whereas, 31 genotypes were resistant, 26 were tolerant and 44 were susceptible at reproductive stage. On an average basis 56.44% disease resistance was recorded at early stage and 30.69% at reproductive stage, whereas 15.84% disease incidence was observed at seedling stage and 43.56% at reproductive stage. The disease incidence of tolerant genotypes was screened at seedling stage of 27.72% and 25.74% at reproductive stage.

Keywords: Chickpea; Fusarium oxysporum; resistance.

1. Introduction

Chickpea (Cicer arietinum L.) is the most important pulse crop of India. It is an important source of human food and animal feed that also helps in the management of soil fertility particularly in dry lands. It can be a promising alternative crop for rotation with barley, peas and wheat in dry land areas. Chickpea is also known as King of pulses. In India, total pulses are grown on an area of 23.47 m ha with production of 18.34 m t and productivity of 751 kg/ha in 2012-13. Chickpea (Cicer arietinum L.) is the premier pulse crop of India covering 9.51 million hectares area and production contributing 8.83 million tones with the productivity of 929 kg/ha. The area, production and productivity of Uttar Pradesh has been possessed 604.00 thousand ha, 732.00 thousand tones, 1212 kg/ha respectively in year 2012-13 (Anonymous, 2013).

Chickpea wilt (Fusarium oxysporum f. sp. Ciceri) is very common seed/soil born disease causing 10-12% annual loss in India. It is a typical vascular disease causing xylem necrosis. The disease is systemic in nature and plants may be infected at any stage. The fungus can survive in soil up to six years even in absence of host. It is widely spread disease covering all major chickpea growing states. Wilt pathogen can destroy the crop completely or cause significant annual yield losses; however, its prevalence is less common where cold temperature persists for longer period. Since spores of the fungus are found in soil. Presence of sufficient soil moisture and 20-30°C temperature can cause fast spread of disease. In case, fungus is present in soil and infected seeds have been sown, then crop has to face severe damage. Early wilting causes more loss than late wilting. The most practical cheapest, economical and ideal way of managing chickpea wilt, is the use of resistant cultivars. (Nene & Haware, 1980 and Iqbal et al., 2005). Present study was undertaken to evaluate the genotypes of chickpea for resistance against wilt fungus in order to identify new genetic sources of resistance.

2. Material and Methods

One hundred one genotypes procured from Pulse section; Department of Genetics and Plant Breeding N.D.U.A.&T. Kumarganj Faizabad (UP) were screened for their level of resistance/susceptibility against Fusarium wilt under field condition at Student’s Instructional Farm. Each genotype was planted in augmented block design with two replications with susceptible check. JG 62 which, repeatedly planted after every two test entries and the experimental plot was also surrounded by two rows of JG 62 to ensure uniform spread of the disease. Plot size was kept 4 m whereas; row to row and plant to plant distances were maintained at 30 cm and 10 cm, respectively. Data on the number of wilted plants in each pot for each test line were recorded at two stages of plant growth i.e., at seedling stage and at reproductive stage (near physiological maturity). The data on wilted plants of test entries at seedling stage were recorded when killing of the susceptible check had occurred. The second stage data on wilted plants were recorded at 100% killing of the susceptible check. The level of resistance and susceptibility of each test line was determined by using 1-9 rating scale given by (Iqbal et al., 2005): where 1=highly resistant (0-10% plants wilted), 3= resistant (11-20% plants mortality), 5=moderately resistance (21-30% mortality), 7=susceptible (31-50% mortality) and 9= highly susceptible (more than 50% mortality).

The wilt incidence per cent of each test entry was calculated by the following formula:

\[\text{Wilt incidence} \times 100 = \frac{\text{Number of plants wilted}}{\text{Total number of plants}} \]

3. Results and Discussion

The disease incidence of 101 chickpea genotypes was recorded at seedling and reproductive stage (Table 1).
results showed that out of 101 accessions, none was free from infection thus on the basis of disease incidence these chickpea lines were grouped in three categories. It was observed that 57 lines were resistant, 28 were tolerant while 16 were susceptible to the wilt disease at seedling stage. Whereas, 31 genotypes were resistant, 26 were tolerant and 44 were susceptible at reproductive stage. The disease incidence at physiological maturity stage increased invariably in all the genotypes as compared to that at seedling stage. On an average basis 56.44% disease resistance was recorded at early stage and 30.69% at reproductive stage, whereas 15.84% disease incidence was observed at seedling stage and 43.56% at reproductive stage. The disease incidence of tolerant genotypes were screened at seedling stage was 27.72% and at reproductive stage it was 25.74%. The results showed that chickpea accessions had significant genetic variation between genotypes for their disease reaction at two stages i.e., at seedling stage and reproductive stage. Our study revealed that at seedling stage majority of the genotypes were resistant whereas, at reproductive stage majority of the genotypes appeared to be susceptible. Variation in wilt resistance at two stages was also reported by (Ahmad Anwar et al., 2010 and Chaudhry et al., 2006). Most of the genotypes that showed resistant response at seedling stage appeared to be susceptible at physiological maturity stage. Although little information on the mechanism of resistance is available, a detailed research based on this material is needed to throw light on it. Fifty seven accessions showing resistance reaction at seedling stage and thirty one at reproductive stage may be utilized in breeding programme to develop resistant/tolerant varieties against fusarium wilt disease. Development of disease is slow in resistant lines and fast in susceptible lines. As the resistant lines at reproductive stage also became susceptible thus field screening at reproductive stage seems to be more reliable.

4. Acknowledgment

The reported work on chickpea in this paper has been supported by research and teaching faculties of Department of Genetics and Plant Breeding, N. D. University of Agriculture & Technology Kumarganj, Faizabad (U.P.) India.

References

Table No.1: Reaction of 101 chickpea accessions against wilt disease during Rabi, 2014-15.

<table>
<thead>
<tr>
<th>Disease reaction</th>
<th>No. of Entries</th>
<th>Accession</th>
<th>Seeding stage</th>
<th>Reproductive stage</th>
</tr>
</thead>
</table>

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Volume 4 Issue 8, August 2015
<table>
<thead>
<tr>
<th></th>
<th>Tolerant (4-5)</th>
<th>Susceptible (6-9)</th>
<th>Highly susceptible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper ID</td>
<td>28</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>