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Abstract: Factorization of a matrix is a means by which the regularity and order in phenomena can be discerned .Factorization of a 

matrix  can be used in  applications relevant to various scientific and policy concerns, we can mention here some examples of different  

uses  for  matrix factorization, although many of these uses overlap, so we can mention  ,interdependency and pattern 

delineation, parsimony  or data reduction, discovering  the basic structure of a domain. As a case in point, a scientist may want to 

uncover the primary independent lines or dimensions--such as size, leadership, and age--of variation in group characteristics and 

behavior, data collected on a large sample of groups and factorization can help disclose this structure. So factorization of a matrix is a 

fundamental theme in linear Algebra and applied statistics which has both scientific and engineering significance. In this paper we give 

a simple way for to factorize a matrix and we propose an algorithm with which we can factorize a matrix using some vectors of its row 

space. 
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1. Introduction 
 

A simple way to factorize a matrix could be found ,since 

any nm  matrix A   can be written as AIA m   or 

as nAIA   where mI and nI are the identity matrices of 

type mm  and nn respectively, and we can write mI  as 

a product of two matrices  any square matrix B  and its 

inverse 
1B  ,so we can use this idea to factorize any A  

matrix by using the  associative law for matrix 

multiplication and writing  it as )( 1ABBA  or 

1)(  BABA  

Also ABBBBAIIIA nnmmm

11

11 ...... 
 .So by this 

method we can find infinite number of different factorization 

for any matrix M since we can find an infinite number of 

invertible matrices to give us the identities matrices mI  

or nI  .  

This paper was organized as follows: 

 

Section 2 presented a simple way to factorize an 

nm matrix section 3 give us  a proposition from which 

we can deduce that if we are able to factorize an square 

matrix M then must be a singular one .section 4 described a 

method for making use of the mentioned proposition with a 

numerical example .section 5 explain an algorithm by which 

we can be able to reduce the entities of a data set matrix with 

some numerical examples .section 5 conclusion of the paper.    

 

2. Proposition  
 

If an square nn   matrix C   can be written 

as ABC  such that  , A  of type kn , B  of type 

nk  and nk   then A is singular matrix 

 

Proof 
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 since nk   we can add kn   zero columns to the matrix 

A to get  a new square nn   matrix L  ,and we can also 

add kn  zero rows or any kn   rows to get another new 

square nn  matrix N  

Now we have 
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Already we have   ABC   and now we note that also 

LNC  , and we have     0det,0det  NL , So we 

get that       000detdetdet  NLC  

Therefore C is singular.   

 

3. Remark 
 

Due to the above proposition we note that for any  

mnnm  ,   matrix A  with full row rank or not we can 

find an mn matrix B  such that CAB  is an mm  

invertible matrix  , so we get 

              )1(1 ABCI m

     

where  
mI  is the identity matrix of rank m 

Multiplying both side of (1) from right by   an rm  matrix 

M we get 

              ABMCM 1 or 
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)3(

)2()()( 1

LNM

BMACM



 

 

Where   LAC  )( 1
is an mnnm  ,  and 

NBM )( is an  rn  one . 

 

Now we can use equation (3) for factorizing any matrix into 

two matrices  

 

Example 

Suppose we want the factorization of 









1132

4201
M  

Since M is 42 matrix and in equation  (2) we have   

)()( 1 BMACM 

 Therefore B must be an 2n matrix and A must be n2  

matrix 2n , so let 2n  and  
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Note in (4) M is equal to the product of four matrices , in (5) 

it is equal to product of two matrices ,also if we want one of 

the factor is an square matrix ,simply we multiply M from 

right  or left with an invertible square matrix  for  example 

can factorize it as follows  
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Note that M before factorization has 8 entities and after 

factorization it has 12 entities , so there is no reduction . 

Therefore we will give another approach for the reduction of 

the entities of a matrix M by letting it equal to a product of 

two  matrices , we can use rank factorization method but we 

will give a new method for  this reduction 

 

4. How we can Reduce the Entities of a Data 

Set Matrix 
 

We know that matrix factorization has numerous algorithms 

and it has many benefits ,so we can make use of it  to reduce 

the entities of any matrix for example if we have 20100  

matrix M ,we note that M has  2000  entities , by writing 

LNM  where L  is  2100 and N  is 202   matrix ,  

L will has 200 entities and N   will has 40 ones and the 

total  entities of the two matrices will be 240  instead of 

2000 entities so we can save our data in our computer or our 

note books or any other documentary source as two 

matrices NL ,  and if we need this data we recall the result of 

the product of the two NL ,  matrices by using our calculator 

matrix to give us our original data set matrix M . And if we 

know the  matrix  N  we can proceed as follows: 

 

Suppose we have the matrix 
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 and we want to write it as LNM   ,and we know that    
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In this case we can take a matrix as in equation (3) 

 LNM  , then multiplying both sides of this equation from 

the right by 
TN or any other 27  matrix we get 

)6(LDLNNMN TT   

 Where DNN t  is invertible matrix or  we can multiply 

both sides of  equation (3) by any other matrix S to get an 

invertible one DNS   

So multiplying (6)   from right with 
1D  we deduce 

 )7(1 LDMN T 

 
Now we have  
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And from (7) we get  
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We note that the entities was reduced from 28 to 22. Now if 

we do not know the matrix N what can we do? 

 

Since we can viewed  multiplying  a matrix L by a matrix  N 

as a linear combination of L's columns using coefficients 
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from N, or another way to look at it is that it's a linear 

combination of the rows of N using coefficients from L, so 

we can take the rows of  N  equal to the  basis of the row 

space of matrix M or another  matrix with  its  rows  some  

elements (vectors) in the row space of M not necessary be 

the basis . If we want to reduce the entities of M and M is an 

square  matrix then according to the proposition, M must be 

singular. 

 

Example  

Let 
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Then we can do row operation to M so as to get its basis as 
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Now we can take  

MAB    where    

 

 
 

Multiplying both sides with 
tB we get  























































































































































20140

12101

28264

20225

16163

1216

16163

34

13

18

17

05

53754

32543

7513118

5411107

43875

34

13

18

17

05

31110

43875

31110

43875

A

A

MBBA tt

 

Multiplying both sides with 

 
We get  

 

Now let   4,3,8,7,51 r ,  3,1,1,1,02 r  and let 

   5,0,5,10,53,2,1,6,9,52 212211  rrwrrw

 ,so we can form another factorization for M  by taking the 

matrix  
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Multiplying both sides with  
tB   , we get  
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Multiplying both sides with  

 
We get  
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Now we note that some  entities of A are not integers ,and D 

is 22 matrix  so if we choose D such that its determinant  

equal 1   all the entities of A  will be integers because 
1D  will not contains any fraction and this will be done as 

follows : 

Let   4,3,8,7,51 r ,  3,1,1,1,02 r  and let 

   1,0,1,2,1)3(
5

1
,2,1,6,9,52 212211  rrwrrw  

,so we can form another factorization for M  by taking the 

matrix   
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Multiplying both sides with   

So we get  
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We can use also the vectors of the row space for factorizing 

a rectangular matrix, so if we have a rectangular matrix 
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The basis of its row  is 

)5,0,1,5,2,2,0(,)1,2,1,1,2,0,2( 21  rr ,if we 

choose we note that the matrix D  will 

be the identity matrix   and that makes the 

calculation easy as we see in the following

 Then  

 

Now from  
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Multiplying both sides with 
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   instead of 
tB  this will give us in the left side    

Then we get  
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So  
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Note that  the sum of  the entities on the right hand side is 22 

instead of 28 ones in the left side  

 

5. Conclusion 
 

The method of using vectors of the row space in factorizing 

a matrix is an efficient method for reducing the entities of a 

data set matrix ,although there are many algorithm for 

matrix factorization ,this a logarithm will be a  good method 

because it is very simple, easy and accurate so it is more use 

full in reducing the entities of data set matrix. 
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