
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Generic, Light – Weight, Pluggable Data

Transformation and Visualization Tool for XML to

XML Transformation

Rahil A. Khera
1
, P. S. Game

2

1,2Pune Institute of Computer Technology, Affiliated to SPPU, Pune, Maharashtra, India

Abstract: One of the biggest challenges these days is to write effective business process rules in an efficient manner. A business

process rule is fetching of data in a particular format without failure of any constraints. The writing of such rules in the form of

conventional programming is cumbersome because of the involvement of different and complex types & quantity of data, but this

complexity can be reduced if the data involved in the whole process can be visualized. This work concentrates on development of tool, in

which data can be visualized and code to transform from one form of data to another, can be generated, in such a way that, this tool is

generic in nature, pluggable to a system where such feature is required with minimum overhead.

Keywords: data transformation, data visualization, XSLT, XSD, Mapper, business process, business process rules.

1. Introduction

A business process rule has to deal with a number of business

processes, and there is always a possibility that the format of

the output data of the one process is not that required at the

input to the other process.

Let‟s understand above scenario, using a real – time example

of fraud – detection of an ATM transaction. During an ATM

transaction, the process stores date and time of that particular

transaction. So as a business process rule, for a single

account holder of a single ATM access card, the difference

between the timestamp of two ATM transactions carried out

at two different ATM centers, which are geographically far

away should be such that it will justify the authenticity of the

transaction. For example, if the difference between two

timestamps of ATM transactions is 15 minutes, but the ATM

machine where these transactions are carried out are 15 KMS

apart, then either of the transaction is a fraud transaction.

In the above example, the fraud detection business process

rule would probably require an XML which would be

containing the difference between timestamps of ATM

transactions in terms of seconds, geographical distance

between the ATM center and a corresponding account

number to detect a fraud. The XML created from an ATM

transaction would probably be containing the account id,

timestamp in the form of date and time, transaction amount

and geographical location of ATM center. Hence, there is a

requirement for transforming an XML to XML.

From the above example, it is clear that, there is a relation

between the timestamp received from ATM transaction and

the timestamp difference in XML required for fraud

detection. Hence, a mapping representing this relation can be

generated. This is one of the simplest cases, while a rule can

have complex cases which can include many conditions and

operations on many elements of an XML to generate the

required values for other XML. Hence, this generates the

requirement for visualization of the data involved in the

whole process, which will not only make the transformation

process easier and faster but also less error prone.

The remaining of the paper contains the following things:

Section 2 contains the related work done in this field, section

3 depicts a mathematical model of the system, section 4

explains the proposed system with a block diagram, section 5

& 6 contains the experimental setup and results obtain after

development of the proposed system. Further, conclusion and

references are added.

2. Related Work

There are many enterprises based data visualization and

transformation tools are available and also a decent amount

of research work is done in this field. As discussed in [1], in

such type of tools, the basic objectives to be considered are

the way data visualization is to be handled, the visualization

of the relationship (mapping) between the data, types of the

relationship handled, the transformation code or the output of

the tools generated and user friendliness.

In [2], the data are represented in the form of a tree, which

best suits the XML, as it follows the tree structure. The

relationship (mapping) between the data is visualized in the

form of lines. These relationships are converted into XQuery

[1].

In [3], a similar approach based on WYSIWYG, which

means What You See Is What You Get is used for

development of Extensible Stylesheet Language (XSLT)

mapper [1].

In [4] [7], heuristics were developed to automatically

generate mappings between the data elements. Hence

increasing the user friendliness, as the probable list of

connections/ mapping/ relationships is suggested to the user,

and the user can choose from that list as per their requirement

[1].

Paper ID: SUB157059 46

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

In [6] [7] [8] [9] [10] [11], all these data visualization and

transformation tools represents the data in the form of a tree

and the relationship/ mappings in the form of lines, the only

difference between them is the equivalent code which is

generated. It varies from C++, C##, J#, XSLT, JAVA etc..

All these tools were developed to work as a part of another

system, like in [7], the TIBCO business event mapper was

developed to work in conjunction with TIBCO studio, hence

these tools cannot work as a standalone application. As a

result, these tools cannot be plugged into the other system

where such feature is required [1].

The tools discussed in [6] [9] [10], were developed to work

only for windows based operating system, hence these tools

was of no use if mapping feature is required on other

platforms such as Linux.

3. Mathematical Model

The mapper can be represented in the mathematical set form

as follows:-

S = {s, e, I, O, Fs, DD, NDD, Фs , Su, Fa}

Where S represents proposed system.

s = start state = load and import the required files.

e = end state = generation of xslt and updated source and

target xsds.

I = input set = {sXSD, tXSD, eS, fP, pXSLT}

Where,

sXSD = source xml schema definition.

tXSD = target xml schema definition.

eS = external schema.

fP = function provider.

pXSLT = previously generated xslt with the same set of

sXSD tXSD and eS.

O = Output set = {xsltEquivalent, updatedSXSD,

updatedTXSD}.

Where,

xsltEquivalent = XSLT code generated from the relationships

/ mapping created by the user.

updatedSXSD = updated source xml schema definition.

updatedTXSD = updated target xml schema definition.

Fs = set of supporting functions of the mapper, exposed to

the user = {createMapper(), displayMapper(),

generateXSLT(), destroyMapper(), fetchUpdatedXsd()}

DD = Deterministic Data = {sXSD, tXSD, eS, fP, pXSLT}

NDD = Non – Deterministic Data = {connections,

operations}.

Where,

connections = mapping / relationships generated by user

between source tree node and target tree node.

operations = various operations applied by the user.

Фs = basic functions of the system

 = {

 parseInputXSD(),

 generateJsTreeObject(),

 generateJSTreeObject(),

 traverseTree(),

 parseJSTreeObjectToGenerateXSLT(),

 searchNode(),

 generateXpath() ,

 createConnections(),

 applyFunction()

 }.

 Su = Success state / condition of the mapper.

 Generated syntactically correct XSLT code.

 Generated logically correct XSLT code.

 Generation of update source XSD and external

schemas as per the modifications performed by the

user.

 Fa = Failure state / condition of the mapper.

 Generation of Invalid XSLT.

 Improper visualization of data.

 Improper visualization of connections while

expanding or collapsing tree nodes.

 Generation of invalid source or target XSD.

4. Proposed System

The proposed system is responsible for generating a data

visualization and transformation tool which generates

visualization of the input data in the tree format and XSLT

code which would be used for transformation of one xml into

another xml. It has following three stages:

1) Pre – processing of the data.

2) Generation of mapping/relationship between tree

nodes.

3) Validation.

4) Generation of transformation code.

5) Generation of new source and target XML schema

definitions.

Paper ID: SUB157059 47

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Block diagram of proposed system

1) Pre – processing of the data: - This system accepts the

input in the form of a Java script object, which has

following key – value pairs.

o Source tree: - Xml Schema Definition (XSD) of source

tree. The generated XSLT will be applied on xml

which satisfies this XSD.

o Target tree: - Xml Schema Definition (XSD) of target

tree. The xml generated after applying generated

XSLT on an xml which satisfies source XSD, would

require to satisfy target XSD.

o External Schema: - The source and target XSDs could

contain external reference schema. Hence, these are

required to be resolved, this key will contain the

locations from where external schemas can be

resolved.

o The source and target XSDs are resolved using external

schemas and parsed to generate the equivalent Java

script object. Using this Java script object, equivalent

trees in the form of HTML is generated that is XSD‟s

are represented in the form of HTML trees.

o There is a possibility that there is an XSLT code

previously generated using this tool with the same set

of source and target XSDs. So it would be required to

generate Java script object on the basis of this XSLT

and use it to generate mapping / relationship between

the source and target tree nodes.

2) Generation of the mapping / relationship between the

nodes: - The elements and attributes of the XSD will be

represented in the form of nodes of the tree. For example

the first element node will be acting as root node. The

mapping will be represented by connecting lines between

the source tree nodes to the target tree node. For

generating the relationship, it may be the requirement to

apply some operations over the source node and the

results of those operations given to the target node.

Hence, in the input one of the key – value pair would be

function provider XML which would be containing the

definitions of the function which can be applied. The

example of such operations is the concatenation of string,

finding maximum of two numbers, etc. The function

provider may contain other user define functions. The

user would be able to create relations between source and

the target node as per his requirements. There could be a

possibility of the presence of an „any element‟ in source

XSD. Hence, this „any element‟ can be replaced by

element of another complex type or by another XSD. So

as shown in the diagram, there is an option to apply the

complex type element or new XSD in the form of „apply

coercion‟.

3) Validation: After applying generation of the relationship

between the nodes, it is required to validate those. The

first case of validation is in the case, if the coercion is

applied, it would have modified the source XSD. Hence it

is required to check whether updated XSD is valid or not.

Another case is when XSLT statements such as if, for –

each or choice is applied to the target node, in such case

validation is required to be done. The validation system

would not only be checking for errors and warnings, but

also giving possible reasons and the steps to be taken to

Paper ID: SUB157059 48

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

eradicate those errors and warnings.

4) Generation of transformation code: - If the generated

relationships are valid, then user can fetch the XSLT

code. This XSLT code should be applied to an XML

which satisfies the source XSD to generate an XML

which satisfies the target XSD.

5) Generation of new source and target XML schema

definitions: - As discussed earlier, the source and target

trees can be modified by the user at run time. Hence, to

generate the same state of the system, it may be required

to get updated source and target XSD.

5. Algorithm

The algorithm to populate a web based system with this

mapper tool is as follows:

1) Create a div element tag with a unique id on the web page

where the mapper has to be populated.

2) Include jQuery, jsTree and jsPlumb source files &

corresponding stylesheets.

3) Import the js file of the tool and its style sheet.

4) Select the DOM of the div created in the first step using

jQuery.

5) On selected Dom, create a new instance of the mapper by

calling the widget. During this step, pass the parameters

required for initialization of the system such as input

XSDs, XSLT (if existing with same set of XSDs), required

size of the parameter, locations of external schemas if

available.

6) Call display function of the widget on the instance created

in step 5 to populate the system with this tool.

6. Experimental Setup

The system was developed using Java script and Java script

based frameworks. To use this system, the browsers should

support Java script and Java script frame – works. The

framework and technology specifications are as follows:

 jQuery 1.11.1

 jstree 3.0.8

 jsPlumb 1.4.1

Languages: HTML, CSS, Java Script.

Browsers: IE11, FireFox 34.0.5, Chrome 39 and higher

versions.

7. Results

 Generic: All the existing browsers running on any of the

operating systems, supports HTML, CSS and Java script.

Hence, these browsers will support frameworks mentioned

in section 5. Hence, this system can be utilized without

taking into consideration the browser or the operating

system on which the browser is running.

 Pluggable: As discussed in the algorithm section, the only

requirement for populating a web based system with this

tool is to create a unique html DIV element and a java

script function call to create and display the mapper.

Hence, from this it can be said that, this tool is pluggable

in any web based system where such visualization and

transformation feature is required.

 Light weight:

Figure 2: Size of minified java script file and .css file.

As shown in figure 2, the size of the minified version of the

developed system is 182.84 kB and that of the cascading

style sheet (.css) is 8.97 kB. Hence the overall, size of the

system is 191.81 kB i.e. less 200 kB, which means that the

overhead, which a system will incur by plugging this tool,

will be only 191.81 kB while the size of mapper tool from

the stylus – studio of version 15r2 is about 87,163 kB i.e. 8.7

MB. The other data visualization and transformation tools

are available as part of development platforms and not as

standalone plugins, hence it is ought to have large size

compare to this tool.

8. Conclusion

In this paper, a system is discussed which is capable of

generating an XSLT code that is used to transform an XML

to another XML. The data formats were represented in the

form of trees while the relations between them, i.e. the

transformation rules were represented using lines and on the

basis of this graphical representation, transformation (XSLT)

code was generated.

References

[1] Rahil A. Khera, P.S.Game, “A Survey of Data

Visualization and Transformation Tools,” International

Journal of Science and Research, Volume 4 Issue 4, pp.

2315 – 2317, Jan 2015.

[2] Alessandro Raffio, Daniele Braga, “Clip: a Visual

Language for Explicit Schema Mappings,” in IEEE‟

ICDE 2008, 978-1-4244-1837-4

[3] Tae-Jin Ha, Hye-Ja Bang, “Implementation of XSLT-

based Schema Mapper using RCP”, in IJCSNS

International Journal of Computer Science and Network

Security, VOL.9 No.5, May 2009

[4] Sebastian Bossung, Hermann Stoeckle “Automated Data

Mapping Specification via Schema Heuristics and User

Interaction ” in Proceedings of the 19th International

Conference on Automated Software Engineering 2004.

[5] Lucian Popa, Yannis Velegrakis, “Translating Web

Data” in Proc. 2002 Very Large Databases Conference

(VLDB‟02), pp. 598-609.

Paper ID: SUB157059 49

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 8, August 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[6] BizTalk Mapper, “Using BizTalk Mapper”

https://msdn.microsoft.com/en-

us/library/aa547076.aspx., Dec 25, 2014.

[7] ALTOVA Map Force, “MapForce – Graphical Data

Mapping, Conversion, and Integration Tool” Available:

http://www.altova.com/mapforce.html, Jan, 05,2015

[8] TIBCOMapper,https://docs.tibco.com/pub/businesseven

ts_process_orchestration/1.1.2/doc/pdf/tib_be_process

_developers_guide.pdf, Oct 18,2014

[9] David Handlos, “BizTalk Mapper 2004 V/s Map Force

2004”, http://www.osnews.com/story/6809, Jan,

10,2015.

[10] “XML Editor, XML Tools and XQuery – Stylus

Studio ” http://www.stylusstudio.com, Jan, 30, 2015.

[11] “Transforming Data Using XQuery Mapper”,

http://docs.oracle.com/cd/E13171_01/alsb/docs21/dtg

uide/dtguideMapper.html, Jan, 31, 2015.

Author Profile

Rahil Khera is pursuing a Master of Engineering in Computer

Engineering from Computer Dept. of Pune Institute of Computer

Technology, under the affiliation of Savitribai Phule, Pune

University. He received his B.E degree in Computer Engineering in

2010.

Prof. P.S. Game is an Assistant Professor in the computer

department of Pune Institute of Computer Technology.

Paper ID: SUB157059 50

