KIM-1 to Urinary Creatinine Ratio for Early Detection of AKI in Patients Undergoing Cardiopulmonary Bypass

Julieta Hristova¹, Antoaneta Dimitrova², Georgi Tsaryanski³, Kamen Tzatchev⁴, Gencho Nachev⁵

¹, ⁴ Alexandrovsk University Hospital Sofia-Bulgaria, Central Clinical Laboratory
², ³, ⁵ St. Ekaterina University Hospital Sofia-Bulgaria

Abstract: Acute kidney injury (AKI) is a common serious complication among patients undergoing on-pump cardiac surgery. Currently its diagnosis is based on the accumulation of nitrogen metabolism end products such as sCreat (serum creatinine) which is known to be late and unreliable marker for AKI for its levels are affected by different extrarenal variables. In recent years, several urinary markers of tubular damage have been proposed as more accurate alternatives to serum creatinine for the early detection of AKI in patients undergoing CPB (cardiopulmonary bypass). The objective of our study was to assess the performance characteristics of urinary KIM-1 measured 2-6 hours post surgery among adults undergoing CPB and to compare the predictive value of urinary KIM-1 with urinary KIM-1 to urinary creatinine ratio. ROC(receiver operator characteristics)-analysis revealed 2-6 hours post-CPB urinary KIM-1 AUC (area under the curve) of 0.84 (p<0.001). For calculated urinary KIM-1 to urinary creatinine ratio the ROC analysis revealed an enhanced performance with AUC 0.85 (p<0.001) giving ΔAUC of 0.01. Using normalized values demonstrated a higher predictive value for urinary KIM-1 to urinary creatinine ratio for early detection of AKI compensating some of the shortcomings of absolute values determination related with effective extrarenal modifiers of the results.

Keywords: Acute kidney injury, early diagnosis, cardiopulmonary bypass, kidney injury molecule-1

1. Introduction

Acute kidney injury (AKI) is a common serious condition affecting a heterogeneous patients population. Currently its diagnosis is based on the accumulation of nitrogen metabolism end products such as sCreat (serum creatinine). Unfortunately, sCreat is a late and unreliable marker for AKI diagnosis for its levels are affected by a variety of extrarenal effective modifiers (Moran et al., 1985, Bonventre JV et al., 2003) and significant increase of its concentration lags 1-3 days after the initial injury. If detected early in the disease process, novel AKI treatment strategies may be effective (Liangos et al., 2009).

In recent years, several urinary markers of tubular damage have been proposed as more accurate alternatives to serum creatinine for the early detection of AKI in patients undergoing CPB (cardiopulmonary bypass). KIM-1 is a transmembrane tubule protein which structure suggests adhesive functions (Baillie et al., 2002). It has been identified as a phosphatidyserine receptor that transforms epithelial cells into phagocytes by recognizing cell surface-specific epitopes expressed by apoptotic tubular epithelia (Bonventre et al., 2009). Its expression in regenerating kidney is probably an active process allowing the differentiated regeneratory cells to attach to exposed areas of the basement membrane, thus rebuilding a continuous epithelium (Baillie et al., 2002). Normally KIM-1 is not expressed in a healthy kidney but is markedly upregulated in experimental AKI settings (Van Timmeren et al., 2007). Its presence in urine is highly specific for kidney injury because no other organ shows such expression which can influence the kidney excretion. KIM-1 is included in FDA’s list of kidney injury markers which need to be taken into consideration in the assessment of kidney affection during drugs development (FDA News, 2008). In patients undergoing major cardiac surgery including CPB and developed AKI 1-3 days post surgery, urinary KIM-1 concentrations were significantly increased within 12 hours (Han et al., 2009, Krawczeski et al., 2011).

The objective of this study was to assess the performance characteristics of urinary KIM-1 measured 2-6 hours post surgery among adults undergoing CPB and to compare the predictive value of urinary KIM-1 with urinary KIM-1 to urinary creatinine ratio.

2. Subjects and Methods

An ancillary prospective study was conducted between December 2014 and July 2015 at two university hospitals located in Sofia, Bulgaria, and is part of a scientific research evaluating early urinary markers for AKI following CPB. All consecutive subjects were scheduled to undergo major cardiac surgery including CPB. Exclusion criteria were age under 18 years, pregnancy, other major surgery 30 days prior CPB, CKD. All participants signed informed consent. The study protocol was approved by Medical University-Sofia research Ethics Commission and the study was conducted in accordance with the ethical standards laid down in the Declaration of Helsinki of 1975, as revised in 1983.

3. Data and Sample Collection

Medical records were reviewed prospectively to retrieve hospitalization data. Urine samples for measurement of urinary KIM-1 and urinary creatinine were collected 2-6 hours after CPB, centrifuged 20 min at 1000g and the supernatant stored in aliquots at -20°C or -80°C for longer
storage until assayed. Blood was taken and serum obtained 48 hours following CPB for routine measurement of sCreat.

4. Methods

Urinary KIM-1 was measured using sandwich ELISA. The wells coated with specific antibodies were incubated with 50 μL of dilution buffer and 25 μL of urine at room temperature for 120 min. After 4 washes with 300 μL of washing buffer 100 μL of biotinylated anti-KIM-1 conjugate was added to each well followed by 60 min of incubation at room temperature, 4 washes, and 100 μL of tetramethylbenzidine substrate was added for a final incubation for 20 min. Immediately after adding 100 μL of Stop-solution absorbance was read at 405 nm with 490 nm filter. Concentrations were calculated by a standard curve in pg/mL.

Urinary creatinine was routinely measured with automatic biochemical analyzer using an enzymatic method. GFR (glomerular filtration rate) was calculated using MDRD (Modification of Diet in Renal Disease) formula (Levey et al., 2000). Measurement data was protocolled strictly. In addition, the results for urinary KIM-1 were normalized to urinary creatinine and expressed in ng/mL.

The statistical analysis was performed using SPSS 19.0 (IBM Corporation).

5. Results

A total of 160 patients were enrolled in the study and their demographic and clinical characteristics are displayed in Table 1. The mean age was 65 years, 44% were females, preoperative mean eGFR was 91 mL/min/1.73 m². Serial preoperative sCreat values were stable and none of the participants had preoperative AKI. Mean CPB perfusion was 134 min. Cardioplegia was achieved after external aortic cross-clamping, through ante-/retrograde cold blood diastolic cardioplegic arrest. Cardiac function was regained either spontaneously by warm reperfusion, or through defibrillation with 20 joule. 44 (27.5%) patients had >50% increase in sCreat levels 48 hours post CPB and defined as AKI. Mean preoperative eGFR was insignificantly lower in patients who developed AKI. All AKI patients had prolonged hospital stay by mean of 11 days. Dialysis was required in six cases.

Table 1: Patients demographic and clinical characteristics

<table>
<thead>
<tr>
<th></th>
<th>AKI</th>
<th>no AKI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number</td>
<td>44 (27.5%)</td>
<td>116 (72.5%)</td>
<td>-</td>
</tr>
<tr>
<td>Males</td>
<td>21/90 (23.3%)</td>
<td>69/90 (76.7%)</td>
<td>-</td>
</tr>
<tr>
<td>Females</td>
<td>23/70 (32.9%)</td>
<td>47/70 (67.1%)</td>
<td>-</td>
</tr>
<tr>
<td>Age</td>
<td>67.5 ± (±8.5)</td>
<td>64 ± (±5.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mean CPB time (min)</td>
<td>134 ± (426)</td>
<td>110 ± (18)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Mean preoperative eGFR (MDRD)</td>
<td>89*</td>
<td>92*</td>
<td><0.001</td>
</tr>
<tr>
<td>ΔsCreat% (T=48 hours)</td>
<td>97</td>
<td>13</td>
<td><0.001</td>
</tr>
<tr>
<td>Prolonged hospital stay (days)</td>
<td>11.2 ± 3.6</td>
<td>0</td>
<td><0.001</td>
</tr>
<tr>
<td>Dialysis</td>
<td>6</td>
<td>0</td>
<td><0.0001</td>
</tr>
<tr>
<td>In-hospital death</td>
<td>4</td>
<td>0</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

6. Discussion

The current study among adults undergoing major cardiac surgery including CPB explored the predictive value of urinary KIM-1 and urinary KIM-1 to urinary KIM-1 to urinary creatinine ratio measured 2-6 hours following CPB, for early detection of AKI. Urinary KIM-1 as a marker of tubular dedifferentiation that is upregulated in proximal tubules after ischemic injury (Ichimura et al., 1998) emerged sensitive and highly specific for early detection of AKI in the patients cohort enrolled in the study. We normalized urinary KIM-1 levels to urinary creatinine in order to account for differences in relative amounts of water extracted along the nephron.
Usually frequent measurements of urinary markers in the first 12 hours after CPB have better predictive performance, but we focused on single-point measurement during a very early post-operative period considered to be relevant, since potentially successful therapeutic strategies for AKI can be applied in this very early point.

In the course of our study 27.5% of 160 subjects included developed AKI, defined as acute change in serum creatinine levels compared to baseline. We found higher incidence in patients with prolonged CPB time and advanced age. Urinary KIM-1 measured in the very early post-operative period predicted AKI with AUC 0.84 (p<0.001) and urinary KIM-1 to urinary creatinine ratio outperformed with AUC 0.85 (p<0.001). Better performance of normalized values is probably due to minimizing the influence of some effective modifiers of absolute values such as volume infusions, or drug interferences in the course of therapy in concrete patients situations.

This study was the first to compare the diagnostic performance of absolute single-point levels of urinary KIM-1 with normalized values for early detection of AKI in Bulgarian adult patients cohort undergoing major on-pump cardiac surgery. It is also the first one to suggest using normalized values as optimal allowing better comparability of results and minimizing the effect of extrarenal variables. A larger multi-center study of adults undergoing CPB is required to confirm both the predictive value of early post-operative levels of urinary KIM-1, and the enhanced diagnostic performance of urinary KIM-1 to urinary creatinine ratio in AKI cases.

7. Acknowledgements

The study was supported by Medical University-Sofia Grant Commission (c4/2014, p19/2014).

8. Conflict of Interests

The authors declare that there is no conflict of interests.

References