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Abstract: The Artificial Bee Colony (ABC) algorithm is a recently introduced swarm intelligence based algorithm that has been 

successfully employed to numerous scientific and engineering problems. However, ABC sometimes suffers from premature convergence 

and fitness stagnation, which usually originates from the lack of explorative search capability of its perturbation operator. This paper 

introduces Explorative ABC (EABC) — a novel variant of the basic ABC algorithm that modifies its exploitative perturbation operation 

in a more explorative way. EABC not only introduces more randomness during the perturbation operation of ABC, but also customizes 

the degree of exploitations and explorations at the individual solution level, separately for each candidate solution of the bee 

population. Besides, EABC introduces a crossover operation and a number of additional alternations of the basic ABC algorithm to 

assist its explorative perturbation operation. EABC is evaluated with several benchmark problems on numerical function optimization 

and the results are compared with the basic ABC algorithm. The experimental results demonstrate that EABC often performs better 

optimization than the basic ABC algorithm on most of the benchmark problems, which indicates the effectiveness of its explorative 

perturbation operation. 
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1. Introduction 
 

The Artificial Bee Colony (ABC) algorithm [1] is a recently 

introduced swarm intelligence based algorithm inspired by 

the intelligent food foraging behavior of the honey bees 

found in nature. Since its advent [2], ABC and its variants 

are often successfully employed to wide and diverse range of 

problems, such as numeric optimization [3], discrete 

optimization [4], multi-objective optimization [5], industrial 

process control [6], structural design [7], design of digital 

IIR filters [8], PID controller [9], machine learning [10] and 

so on [11]. In comparison to other greedy and local search 

based algorithms, ABC is more resilient against premature 

convergence and fitness stagnation, because the population 

of candidate solutions can maintain some amount of diversity 

that is necessary to continue search space explorations 

avoiding the locally optimal points. However, it is still 

possible (e.g., [12] – [14]) that the evolving population of 

candidate solutions loses its diversity and explorative search 

capability too soon. This leads the candidate solutions to 

prematurely get trapped around the local optima of the 

search space. Aside from premature convergence, another 

problem that is faced by the ABC algorithm is fitness 

stagnation, where all the candidate solutions fail to improve 

their fitness values for indefinitely prolonged iterations, for 

no apparent reason and even without any premature 

convergence around the locally optimal points. The risk of 

premature convergence and fitness stagnation usually rises 

with reduced explorations and increased exploitations. But, 

increasing the explorations may lead to unacceptably slow 

convergence speed. So an adaptive and balanced mix of 

explorations and exploitations is often necessary for good 

results and sufficient convergence speed of the algorithm, 

especially for complex, high dimensional, multimodal 

problems with many locally optimal points.  

There exist a number of research works (e.g., [15] – [34]) 

that attempt to alter the explorative and/or exploitative 

properties of the basic ABC algorithm. However, most of 

them focus on altering the selection operation only. In the 

literature, not much has been reported to improve the basic, 

non-adaptive and fixed perturbation operator of ABC. The 

proposed algorithm — Explorative ABC (EABC) alters the 

perturbation operation of ABC, as well as incorporates few 

more basic schemes to increase the degree of  explorations of 

the ABC algorithm, as well as to bring a balance between its 

degree of exploitations and explorations. EABC searches 

with more randomness across the search space while the 

original ABC algorithm mostly searches towards and around 

the best candidate solutions. Besides, the number of 

parameters that are perturbed by EABC is gradually 

self-adapted, cycle (i.e., generation) by cycle, separately for 

each candidate solution, while ABC always uses a fixed, 

small (hence, exploitative) perturbation rate. The objective of 

EABC is to introduce more randomness during perturbations 

for more search space explorations, and to customize the 

degree of explorations and exploitations at the individual 

candidate solution level, by adapting the perturbation rate 

separately for each candidate solution of the bee population.  

 

The rest of this paper is organized as follows. Section 2 

describes the basic ABC algorithm in details. Section 3 

presents a few improved ABC-variants and explains how 

EABC is significantly different from them. Section 4 

describes EABC in details. Section 5 provides details of the 

benchmark problems and compares the results of ABC and 

EABC. Finally, section 6 concludes the paper by leaving a 

few suggestions for further research with EABC. 
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2. The Basic Artificial Bee Colony (ABC) 

Algorithm 
 

Honey bees in a colonyshow remarkable self-organization 

and co-ordination skills in their food foraging behavior. Bees 

have to forage over a vast area in search of good sources of 

food. After an initial exploration stage, more bees are 

employed to collect honey from the more profitable food 

sources whereas fewer bees are assigned to the less worthy 

food sources. Some scout bees are also assigned for 

exploration to find newer food sources. If the quality of a 

food source declines after some exploitation, this information 

is also shared with other bees so that fewer bees are now 

attracted to this source. After the quality of a food source 

falls below some threshold, the bees assigned to it abandon 

it. The foraging process is initiated by scout bees that start 

searching for flower patches suitable as food sources. 

Quality is usually measured as a combination of some 

values, such as quantity and density of sugar, ease of access, 

distance from the colony etc. After they return to the hive, 

those scout bees that found a patch with quality above some 

threshold, deposit their nectar and then go to the ‗dance 

floor‘ to perform a dance known as the ‗waggle dance‘. This 

dance plays the key role to communicate information among 

the bees about the food sources. The waggle dance contains 

three pieces of information: i) the quality of the flower patch 

of this dancing bee, ii) the distance of the flower patch from 

the hive, iii) the direction from the hive that you have to 

travel in order to reach the flower. The ‗onlooker‘ bees, 

waiting around the dance floor, observe the waggle dances of 

these ‗employed‘ bees that have found good food sources 

and pick any one of them to become its ‗follower‘ and 

collect nectar from its flower patch. The better a flower patch 

as a food source, the bigger is the number of follower bees 

along with its employed bee. However, if the patch is no 

longer good enough, it will not be advertised in the next 

waggle dance and the bees recruited for it as employed or 

follower bees will choose either to follow some other 

employed bee or start working as a scout bee to randomly 

explore the search space for finding new food source.  

 

The ABC algorithm mimics the food foraging behavior of 

the honey bees with these three groups of bees: employed 

bees, onlookers and scouts. A bee working to forage a food 

source (i.e. solution) previously visited by itself and 

searching only around its vicinity is called an employed bee. 

Employed bees perform waggle dance to propagate 

information of its food source to other bees. A bee waiting 

around the dance floor to choose any of the employed bees to 

follow is called an onlooker. A bee randomly searching a 

search space for finding a new food source is called a scout. 

For every food source, there is only one employed bee and a 

number of follower bees. The scout bee, after finding a good 

food source also becomes an employed bee. In the basic 

ABC algorithm implementation, half of the colony is 

employed bees and the other half is the onlookers. Number 

of food sources (i.e., solutions) is equal to the number of 

employed bees. An employed bee whose food source is 

exhausted (i.e. solution not improved after several attempts) 

becomes a scout. The detailed pseudo code is given below. 
 

Step 1) Generate an initial population of N individuals. Each 

individual is a food source (i.e. solution) and has D 

attributes, where D is the dimensionality of the problem. 
 

Step 2) Evaluate the fitness of each individual.  
 

Step 3) Each employed beesearches in the neighborhood of 

its current position to find a better food source. For each 

employed bee, generate a new solution, viaround its current 

position, xi using (1). 

 vij = xij + φij (xij – xkj)  (1)  

Here, kϵ{1, 2, …, Nemp} and jϵ{1, 2, …, D} are randomly 

chosen indices. Nemp is the number of employed bees. Φij is 

a uniform random number generated from the range [-1, 1]. 
 

Step 4) Compute the fitness of both xi and vi. Apply greedy 

selection scheme to choose the betterone.  
 

Step 5) Calculate the selection probability, Pi for each 

solution, xiand normalize the probability value by (2).   

 1

N

k

k

i iP fit fit



 
 (2)  

Step 6) Assign each onlooker bee to a solution, xi at random 

with probability proportional to Pi. 
 

Step 7) Produce new food positions (i.e. solutions), vi for 

each onlooker bee using the employed beexiby using (1).  
 

Step 8) Evaluate the fitness of each employed bee, xiand its 

produced onlooker bee, vi. Apply greedy selection scheme to 

keep the one with better fitness and discard the other.    
 

Step 9)If a particular solution has not been improved over a 

number (say, 100) of cycles, then select it for abandonment. 

Replace it by placing a scout bee at a food source placed 

uniformly at random over the entire search space using (3), 

i.e., forj = 1, 2, ...,D 

 xij = minj + rand (0,1) * (maxj– minj) (3)  

 

Step 10) Keep track of the best solution found so far. 
 

Step 11) Check for termination. If the best solution found is 

acceptable or maximum number of iterations has elapsed, 

stop and return the best solution found so far. Otherwise go 

back to step 2 and repeat. 

 

3. Existing Variants ofthe ABC Algorithm 
 

There exist several recent works (e.g., [16] – [34]) that try to 

tweak the explorative and/or exploitative properties of the 

basic ABC algorithm. For example, the cooperative ABC 

(CABC) algorithm [16] decomposes the search space into a 

number of subspaces and enforces more explorations by 

employing different bee colonies to explore the different 

subspaces. Another explorative variant –– ABC with 

diversity strategy (DABC) [17] tries to preserve sufficient 

amount of diversity among the candidate solutions by 

switching between two different perturbation schemes. 

Chaotic ABC (CHABC) [18] is another explorative 

ABC-variant that uses dynamic chaotic sequence generators, 

instead of random number generators, to improve the 

explorative characteristics of the basic ABC algorithm. The 

explorative search capacity of ABC may also be improved 

by intelligent organization of the locally optimal points [19] 

and using the information of the global best solution, as in 

the Gbest-guided ABC (GABC) [20] algorithm. The Hooke 
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Jeeves ABC (HJABC) [21] is another improved ABC-variant 

that hybridizes the Hooke Jeeves pattern search technique 

with the basic ABC algorithm. The elitist ABC (EABC) [22] 

is a hybrid ABC variant which hybridizes ABC with two 

different local search operators to intensify the exploitations 

around the best solutions. Quan and Shi [23] reported 

improvement of the convergence speed by introducing an 

exploitative search iteration operator based on the fixed point 

theorem of contractive mapping. Qingxian and Haijun [24] 

employed the Boltzmann selection scheme and introduced an 

improved initialization scheme to improve the convergence 

speed. The hybrid crossover based ABC (CbABC) [25] is an 

exploitative variant that strengthens the exploitation phase of 

ABC by using a crossover operation. Another ABC-variant 

— NABC [26] alters the search pattern of employed and 

onlooker bees by searching around neighborhood of best 

solutions. JA-ABC [27] tries to improve average fitness of 

the bee population by replacing the poor solutions with 

perturbations of the fittest solution, which makes it 

exploitative. Some other recently introduced ABC variants 

can be found in the [28] – [34], but each of them comes with 

some limitations, such as inadequate degree of 

explorations [28] – [30], poor exploitations [31], slower rate 

of convergence of the algorithm [32] and increased 

computational complexity [33], [34]. 

 

However, most of these ABC-variants try to improve either 

the explorative or the exploitative properties if the basic 

ABC algorithm, while very few of them (e.g., [17]) tries to 

achieve a proper balance between explorations and 

exploitations. The explorative enhancements are usually 

based on more explorative perturbation, selection and/or 

initialization (e.g., [18], [19]) or employing some technique 

to maintain more population diversity (e.g., [16], [17]), while 

the exploitative developments are usually based on 

increasing the local search operations around the best 

candidate solutions ([21] – [22], [26] – [27]). Another 

limitation of all these ABC-variants (e.g., [16] – [34]) is that 

they do not consider the individual explorative/exploitative 

needs of the candidate solutions; rather they treat all the 

candidate solutions equally, employing some 

population-wide uniform strategy, identically on all 

candidate solutions. The proposed algorithm — EABC 

differs from all these algorithms in both these aspects. First, 

EABC improves both explorations and exploitations by 

introducing more randomness during perturbations and by 

incorporating a crossover operation after perturbations. 

Second, EABC customizes explorations and exploitations 

separately for every candidate solution xi of the bee 

population by introducing and separately maintaining a 

control parameter Ri for each xi. Third, EABC tries to bring a 

proper balance between explorations and exploitations by 

abandoning the exploitative employed bee phase and the 

explorative scout bee phase of the original ABC 

algorithm. All these modifications are explained in details in 

the following section.  

 

4. The Explorative ABC (EABC) Algorithm 
 

There exist several aspects on which the proposed variant, 

EABC is significantly different from the original ABC 

algorithm. Firstly, EABC uses the following perturbation 

operation (4), which is different from the perturbation eq. (1) 

of the original ABC algorithm. For each employed bee xi,G 

of the current generation G, EABC first produces a perturbed 

vector wi,G+1by using (4).  

wi,G+1 = xr1,G+ φi,G+1 (xr2,G– xr3,G)(4) 

Herer1, r2, r3are randomly chosen indices from [1, N] that are 

mutually different and also different from the current index i. 

To be more precise, r1≠ r2≠ r3≠ i. The φi,G+1is a uniform, 

random variable that picks its values randomly from [0, 2]. 

The details of how the values of φi,G+1 are produced 

randomly are explained in a subsequent paragraph. If we 

compare the perturbation eq. (4) of EABC with the 

previously used eq. (1) by ABC, we can observe that EABC 

employs relatively higher degree of randomness in (4) by 

using three random indices r1, r2, r3in order to ensure higher 

degree of search space explorations.  

 

Secondly, EABC introduces a crossover operation to better 

combine the information of the original candidate solution 

xi,G and perturbed candidate solution wi,G+1 to produce the 

new candidate solution vi,G+1. Each parameter of vi,G+1 is 

selected at random, either from xi,G (with probability Ri,G+1) 

or from wi,G+1 (with probability 1 – Ri,G+1). However, EABC 

also ensures that at least one parameter is selected from the 

perturbed vector wi,G+1; otherwise the new candidate solution 

vi,G+1 would be identical to its parent candidate solution xi,G. 

The details of how the value of Ri,G+1 is produced and 

maintained are explained in a subsequent paragraph. After 

producing vi,G+1, EABC employs a greedy selection between 

the original candidate solution xi,G and the new candidate 

solution vi,G+1, similar to the step (4) of the original ABC 

algorithm. 

 

Thirdly, to customize the degree of explorations and 

exploitations at the individual solution level, EABC 

maintains the scaling factor φi and crossover rate Ri, 

separately for every candidate solution xi. The values of φi 

and Ri are gradually adapted, generation by generation, 

separately for each candidate solution, by using the 

following Eqs. (5) and (6). 

      1

, +1
,

rand 0,1 ; rand 0,1min max min

i G
i G

 if p  

                                               otherwise

  




    
 


(5)

 

      2

, +1
,

rand 0,1 ; rand 0,1min max min

i G
i G

R R R  if p  
R

R                                                otherwise

    
 


(6)

 
Both the above equations put proper emphasis not only on 

search space explorations by innovation (i.e., trying new 

values for φiand Ri, with probability p1 and p2, respectively), 

but also on search space exploitations by inheritance (i.e., 

using the same value of parent xi, with probability = 1–p1 and 

1–p2 for φi and Ri, respectively). Together they try to balance 

between explorations and exploitations, by using a suitable 

value of all these parameters — p1 and p2, φmin and φmax, Rmin 

and Rmax. EABC uses the following parameter values: 

p1 = p2 = 0.1, φmin = 0.1, φmax = 0.9, Rmin = 0 and Rmax = 1.0. 

Fourthly, with all the above explorative and exploitative 

measures, we have found (with some trial and error) that the 

necessity of using separate employed bee phase and scout 

bee phase (as used by the original ABC algorithm) does not 

exist anymore for the proposed EABC algorithm. So, EABC 
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has abandoned both the onlookerbee and scout bee phases 

(i.e., steps5–9) of the original ABC algorithm. 

 

5. Experimental Studies 
 

To evaluate the performance of the proposed EABC 

algorithm, we have used a standard benchmark suite on 

continuous function optimization problems, consisting of 

sixhigh dimensional functions [1], [2], [18]. Table 1 presents 

a brief overview on each of these benchmark functions. More 

details on each benchmark function can be found in [1]. All 

the benchmark functions we used are multimodal functions. 

To optimize a multimodal function, the search algorithm 

must possess both exploitative and explorative characteristics 

so that it can explore the locally optimal points without being 

trapped around any of them. Some of the multimodal 

functions can have hundreds of local minima, even when the 

dimensionality is just two or three. The number of local 

optima usually increases exponentially with the number of 

dimensions, which makes their optimization extremely 

difficult. For example, the Ackley function f3 has one narrow 

global minimum basin, but with exponentially many minor 

local minima. The Griewank function f4 has a component 

creating linkage among the variables, which complicates the 

search by perturbing any subset of the variables. Any 

technique that tries to optimize each variable separately 

without considering the others will fail with this function. 

The difficulty for the Schwefel function f1 arises from its 

deep local minima which are far from the single global 

minimum. All these multimodal functions have 

exponentially many local minima and the number of local 

minima increases exponentially with the high dimensionality 

(i.e., D = 30), making them extremely difficult for any 

algorithm to be explored and optimized without being 

trapped around the locally optimal points of the search space. 

 

Table 1: The six continuous benchmark functions used in 

our experimental studies. Here, D: dimensionality of the 

function, S: search space, fmin: function value at the global 

minimum, C:  function characteristics with the values —

M: Multimodal, S: Separable, N: Non-separable. 

No Function C D S fmin 

f1 Schwefel 2.26 MS 30 [-500, 500]D -12569.5 

f2 Rastrigin MS 30 [-5.12, 5.12]D 0 

f3 Ackley MN 30 [-32, 32]D 0 

f4 Griewank MN 30 [-600, 600]D 0 

f5 Penalized MN 30 [-50, 50]D 0 

f6 Penalized2 MN 30 [-50, 50]D 0 

 

 

Table 2:  Performance of the proposed algorithm EABC, compared to the basic ABC algorithm on the benchmark functions. 

Results are averaged over 50 independent runs. Better performance on each function is marked with boldface font. In case the 

performance difference is not significant by t-Test with at least 99% level of confidence (i.e., α = 0.99), it is marked by 

―Similar‖ at the rightmost column. 

No fmin 
ABC EABC 

Better Performance    

(t-Test with α = 0.99)  
Mean Error Std. Dev. Mean Error Std. Dev. 

f1 -12569.5 1.86e+01 5.21e+00 1.034–02 3.66–03 EABC 

f2 0 7.15 e–16 6.44e–17 2.33e–31 3.58e–32 EABC 

f3 0 8.97 e–12 1.15e–12 1.12e–14 4.05e–15 EABC 

f4 0 6.39e–16 9.25e–17 1.09e–30 2.99e–31 EABC 

f5 0 7.03e–16 1.86e–16 7.39e–14 1.76e–14 ABC 

f6 0 2.61e–03 8.36e–17 2.61e–03 8.22e–17 Similar 

 

Table 2 presents the results of EABC with the basic ABC [1] 

algorithm. The common parameters of both the algorithms 

are set as — population size N = 100, maximum number of 

generations MGN = 1500 and limit = 100. The other 

parameters of EABC are set as: p1 = p2 = 0.1, φmin = 0.1, 

φmax = 0.9, Rmin = 0 and Rmax = 1.0. All the initial values of φi 

and Ri are set to 0.5 and 0.9, respectively for all the candidate 

solutions xi of the initial bee population. All these values are 

selected after some initial experiments, and not meant to be 

optimal. Each algorithm has made 50 independent runs on 

each function. The mean and standard deviation of the error 

values (i.e., the difference between best found solution and 

the global minimum) found from the different runs are 

reported in Table 2. Our observations are summarized in the 

following few points.  

 Out of the six functions f1 – f6, EABC performs better than 

ABC on as many as four functions, perform equally well 

on one, while ABC performs better only on the remaining 

one function. Thus the overall performance of EABC is 

significantly better than ABC. 

 For all these functions, EABC reaches very close to the 

global minimum value (i.e., mean error ≈ 0), while the 

basic ABC algorithm fails to reach sufficiently close to the 

global minimum for one functions (i.e., f1).  

 The performance of EABC is very consistent, i.e., EABC 

regularly reaches very close to the global minimum, which 

is demonstrated by the very low standard deviation values 

of the errors of EABC.  

 

In summary, EABC is more effective than the original ABC 

algorithm on almost all of these complex, high dimensional 

multimodal functions, which indicate the effectiveness of the 

proposed explorative techniques employed by EABC. 

 

6. Conclusion 
 

This paper introduces EABC — an explorative variant of the 

basic ABC algorithm and evaluates its performance on 

several standard continuous benchmark functions. Results 

indicate that EABC can perform better than ABC on most of 

these functions. There might be several possible ways to 

further improve EABC. Firstly, EABC uses a simple strategy 

to adapt the scaling factor and crossover rate for each 
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candidate solution. Some more sophisticated scheme, such as 

some scheme parameterized by the current maturity of the 

search process, may improve the algorithm further. 

Secondly, EABC puts more emphasis to increase the degree 

of explorations, rather than exploitations. Putting somewhat 

more emphasis on exploitations, especially around the 

best-so-far candidate solutions, may further improve the 

results. Thirdly, the quality of the final solution might be 

improved further by using an efficient local searcher after the 

execution of EABC is over. Finally, EABC has been applied 

only on the benchmark continuous optimization problems. It 

would be interesting to study how well EABC can perform 

on many other existing problems, especially the discrete and 

real world ones. 
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