
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Explorative Artificial Bee Colony Algorithm: A

Novel Swarm Intelligence Based Algorithm for

Continuous Function Optimization

Shifat Sharmin Shapla
1
, H. M. Zabir Haque

2
, Mohammad Shafiul Alam

3

1, 2Stamford University Bangladesh, 51, Siddeswari Road, Dhaka-1217, Bangladesh

3Ahsanullah University of Science and Technology, Dhaka-1208, Bangladesh

Abstract: The Artificial Bee Colony (ABC) algorithm is a recently introduced swarm intelligence based algorithm that has been

successfully employed to numerous scientific and engineering problems. However, ABC sometimes suffers from premature convergence

and fitness stagnation, which usually originates from the lack of explorative search capability of its perturbation operator. This paper

introduces Explorative ABC (EABC) — a novel variant of the basic ABC algorithm that modifies its exploitative perturbation operation

in a more explorative way. EABC not only introduces more randomness during the perturbation operation of ABC, but also customizes

the degree of exploitations and explorations at the individual solution level, separately for each candidate solution of the bee

population. Besides, EABC introduces a crossover operation and a number of additional alternations of the basic ABC algorithm to

assist its explorative perturbation operation. EABC is evaluated with several benchmark problems on numerical function optimization

and the results are compared with the basic ABC algorithm. The experimental results demonstrate that EABC often performs better

optimization than the basic ABC algorithm on most of the benchmark problems, which indicates the effectiveness of its explorative

perturbation operation.

Keywords: Artificial bee colony algorithm, perturbation, exploration and exploitation, continuous function optimization.

1. Introduction

The Artificial Bee Colony (ABC) algorithm [1] is a recently

introduced swarm intelligence based algorithm inspired by

the intelligent food foraging behavior of the honey bees

found in nature. Since its advent [2], ABC and its variants

are often successfully employed to wide and diverse range of

problems, such as numeric optimization [3], discrete

optimization [4], multi-objective optimization [5], industrial

process control [6], structural design [7], design of digital

IIR filters [8], PID controller [9], machine learning [10] and

so on [11]. In comparison to other greedy and local search

based algorithms, ABC is more resilient against premature

convergence and fitness stagnation, because the population

of candidate solutions can maintain some amount of diversity

that is necessary to continue search space explorations

avoiding the locally optimal points. However, it is still

possible (e.g., [12] – [14]) that the evolving population of

candidate solutions loses its diversity and explorative search

capability too soon. This leads the candidate solutions to

prematurely get trapped around the local optima of the

search space. Aside from premature convergence, another

problem that is faced by the ABC algorithm is fitness

stagnation, where all the candidate solutions fail to improve

their fitness values for indefinitely prolonged iterations, for

no apparent reason and even without any premature

convergence around the locally optimal points. The risk of

premature convergence and fitness stagnation usually rises

with reduced explorations and increased exploitations. But,

increasing the explorations may lead to unacceptably slow

convergence speed. So an adaptive and balanced mix of

explorations and exploitations is often necessary for good

results and sufficient convergence speed of the algorithm,

especially for complex, high dimensional, multimodal

problems with many locally optimal points.

There exist a number of research works (e.g., [15] – [34])

that attempt to alter the explorative and/or exploitative

properties of the basic ABC algorithm. However, most of

them focus on altering the selection operation only. In the

literature, not much has been reported to improve the basic,

non-adaptive and fixed perturbation operator of ABC. The

proposed algorithm — Explorative ABC (EABC) alters the

perturbation operation of ABC, as well as incorporates few

more basic schemes to increase the degree of explorations of

the ABC algorithm, as well as to bring a balance between its

degree of exploitations and explorations. EABC searches

with more randomness across the search space while the

original ABC algorithm mostly searches towards and around

the best candidate solutions. Besides, the number of

parameters that are perturbed by EABC is gradually

self-adapted, cycle (i.e., generation) by cycle, separately for

each candidate solution, while ABC always uses a fixed,

small (hence, exploitative) perturbation rate. The objective of

EABC is to introduce more randomness during perturbations

for more search space explorations, and to customize the

degree of explorations and exploitations at the individual

candidate solution level, by adapting the perturbation rate

separately for each candidate solution of the bee population.

The rest of this paper is organized as follows. Section 2

describes the basic ABC algorithm in details. Section 3

presents a few improved ABC-variants and explains how

EABC is significantly different from them. Section 4

describes EABC in details. Section 5 provides details of the

benchmark problems and compares the results of ABC and

EABC. Finally, section 6 concludes the paper by leaving a

few suggestions for further research with EABC.

Paper ID: SUB156520 1339

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2. The Basic Artificial Bee Colony (ABC)

Algorithm

Honey bees in a colonyshow remarkable self-organization

and co-ordination skills in their food foraging behavior. Bees

have to forage over a vast area in search of good sources of

food. After an initial exploration stage, more bees are

employed to collect honey from the more profitable food

sources whereas fewer bees are assigned to the less worthy

food sources. Some scout bees are also assigned for

exploration to find newer food sources. If the quality of a

food source declines after some exploitation, this information

is also shared with other bees so that fewer bees are now

attracted to this source. After the quality of a food source

falls below some threshold, the bees assigned to it abandon

it. The foraging process is initiated by scout bees that start

searching for flower patches suitable as food sources.

Quality is usually measured as a combination of some

values, such as quantity and density of sugar, ease of access,

distance from the colony etc. After they return to the hive,

those scout bees that found a patch with quality above some

threshold, deposit their nectar and then go to the ‗dance

floor‘ to perform a dance known as the ‗waggle dance‘. This

dance plays the key role to communicate information among

the bees about the food sources. The waggle dance contains

three pieces of information: i) the quality of the flower patch

of this dancing bee, ii) the distance of the flower patch from

the hive, iii) the direction from the hive that you have to

travel in order to reach the flower. The ‗onlooker‘ bees,

waiting around the dance floor, observe the waggle dances of

these ‗employed‘ bees that have found good food sources

and pick any one of them to become its ‗follower‘ and

collect nectar from its flower patch. The better a flower patch

as a food source, the bigger is the number of follower bees

along with its employed bee. However, if the patch is no

longer good enough, it will not be advertised in the next

waggle dance and the bees recruited for it as employed or

follower bees will choose either to follow some other

employed bee or start working as a scout bee to randomly

explore the search space for finding new food source.

The ABC algorithm mimics the food foraging behavior of

the honey bees with these three groups of bees: employed

bees, onlookers and scouts. A bee working to forage a food

source (i.e. solution) previously visited by itself and

searching only around its vicinity is called an employed bee.

Employed bees perform waggle dance to propagate

information of its food source to other bees. A bee waiting

around the dance floor to choose any of the employed bees to

follow is called an onlooker. A bee randomly searching a

search space for finding a new food source is called a scout.

For every food source, there is only one employed bee and a

number of follower bees. The scout bee, after finding a good

food source also becomes an employed bee. In the basic

ABC algorithm implementation, half of the colony is

employed bees and the other half is the onlookers. Number

of food sources (i.e., solutions) is equal to the number of

employed bees. An employed bee whose food source is

exhausted (i.e. solution not improved after several attempts)

becomes a scout. The detailed pseudo code is given below.

Step 1) Generate an initial population of N individuals. Each

individual is a food source (i.e. solution) and has D

attributes, where D is the dimensionality of the problem.

Step 2) Evaluate the fitness of each individual.

Step 3) Each employed beesearches in the neighborhood of

its current position to find a better food source. For each

employed bee, generate a new solution, viaround its current

position, xi using (1).

 vij = xij + φij (xij – xkj) (1)

Here, kϵ{1, 2, …, Nemp} and jϵ{1, 2, …, D} are randomly

chosen indices. Nemp is the number of employed bees. Φij is

a uniform random number generated from the range [-1, 1].

Step 4) Compute the fitness of both xi and vi. Apply greedy

selection scheme to choose the betterone.

Step 5) Calculate the selection probability, Pi for each

solution, xiand normalize the probability value by (2).

 1

N

k

k

i iP fit fit

 (2)

Step 6) Assign each onlooker bee to a solution, xi at random

with probability proportional to Pi.

Step 7) Produce new food positions (i.e. solutions), vi for

each onlooker bee using the employed beexiby using (1).

Step 8) Evaluate the fitness of each employed bee, xiand its

produced onlooker bee, vi. Apply greedy selection scheme to

keep the one with better fitness and discard the other.

Step 9)If a particular solution has not been improved over a

number (say, 100) of cycles, then select it for abandonment.

Replace it by placing a scout bee at a food source placed

uniformly at random over the entire search space using (3),

i.e., forj = 1, 2, ...,D

 xij = minj + rand (0,1) * (maxj– minj) (3)

Step 10) Keep track of the best solution found so far.

Step 11) Check for termination. If the best solution found is

acceptable or maximum number of iterations has elapsed,

stop and return the best solution found so far. Otherwise go

back to step 2 and repeat.

3. Existing Variants ofthe ABC Algorithm

There exist several recent works (e.g., [16] – [34]) that try to

tweak the explorative and/or exploitative properties of the

basic ABC algorithm. For example, the cooperative ABC

(CABC) algorithm [16] decomposes the search space into a

number of subspaces and enforces more explorations by

employing different bee colonies to explore the different

subspaces. Another explorative variant –– ABC with

diversity strategy (DABC) [17] tries to preserve sufficient

amount of diversity among the candidate solutions by

switching between two different perturbation schemes.

Chaotic ABC (CHABC) [18] is another explorative

ABC-variant that uses dynamic chaotic sequence generators,

instead of random number generators, to improve the

explorative characteristics of the basic ABC algorithm. The

explorative search capacity of ABC may also be improved

by intelligent organization of the locally optimal points [19]

and using the information of the global best solution, as in

the Gbest-guided ABC (GABC) [20] algorithm. The Hooke

Paper ID: SUB156520 1340

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Jeeves ABC (HJABC) [21] is another improved ABC-variant

that hybridizes the Hooke Jeeves pattern search technique

with the basic ABC algorithm. The elitist ABC (EABC) [22]

is a hybrid ABC variant which hybridizes ABC with two

different local search operators to intensify the exploitations

around the best solutions. Quan and Shi [23] reported

improvement of the convergence speed by introducing an

exploitative search iteration operator based on the fixed point

theorem of contractive mapping. Qingxian and Haijun [24]

employed the Boltzmann selection scheme and introduced an

improved initialization scheme to improve the convergence

speed. The hybrid crossover based ABC (CbABC) [25] is an

exploitative variant that strengthens the exploitation phase of

ABC by using a crossover operation. Another ABC-variant

— NABC [26] alters the search pattern of employed and

onlooker bees by searching around neighborhood of best

solutions. JA-ABC [27] tries to improve average fitness of

the bee population by replacing the poor solutions with

perturbations of the fittest solution, which makes it

exploitative. Some other recently introduced ABC variants

can be found in the [28] – [34], but each of them comes with

some limitations, such as inadequate degree of

explorations [28] – [30], poor exploitations [31], slower rate

of convergence of the algorithm [32] and increased

computational complexity [33], [34].

However, most of these ABC-variants try to improve either

the explorative or the exploitative properties if the basic

ABC algorithm, while very few of them (e.g., [17]) tries to

achieve a proper balance between explorations and

exploitations. The explorative enhancements are usually

based on more explorative perturbation, selection and/or

initialization (e.g., [18], [19]) or employing some technique

to maintain more population diversity (e.g., [16], [17]), while

the exploitative developments are usually based on

increasing the local search operations around the best

candidate solutions ([21] – [22], [26] – [27]). Another

limitation of all these ABC-variants (e.g., [16] – [34]) is that

they do not consider the individual explorative/exploitative

needs of the candidate solutions; rather they treat all the

candidate solutions equally, employing some

population-wide uniform strategy, identically on all

candidate solutions. The proposed algorithm — EABC

differs from all these algorithms in both these aspects. First,

EABC improves both explorations and exploitations by

introducing more randomness during perturbations and by

incorporating a crossover operation after perturbations.

Second, EABC customizes explorations and exploitations

separately for every candidate solution xi of the bee

population by introducing and separately maintaining a

control parameter Ri for each xi. Third, EABC tries to bring a

proper balance between explorations and exploitations by

abandoning the exploitative employed bee phase and the

explorative scout bee phase of the original ABC

algorithm. All these modifications are explained in details in

the following section.

4. The Explorative ABC (EABC) Algorithm

There exist several aspects on which the proposed variant,

EABC is significantly different from the original ABC

algorithm. Firstly, EABC uses the following perturbation

operation (4), which is different from the perturbation eq. (1)

of the original ABC algorithm. For each employed bee xi,G

of the current generation G, EABC first produces a perturbed

vector wi,G+1by using (4).

wi,G+1 = xr1,G+ φi,G+1 (xr2,G– xr3,G)(4)

Herer1, r2, r3are randomly chosen indices from [1, N] that are

mutually different and also different from the current index i.

To be more precise, r1≠ r2≠ r3≠ i. The φi,G+1is a uniform,

random variable that picks its values randomly from [0, 2].

The details of how the values of φi,G+1 are produced

randomly are explained in a subsequent paragraph. If we

compare the perturbation eq. (4) of EABC with the

previously used eq. (1) by ABC, we can observe that EABC

employs relatively higher degree of randomness in (4) by

using three random indices r1, r2, r3in order to ensure higher

degree of search space explorations.

Secondly, EABC introduces a crossover operation to better

combine the information of the original candidate solution

xi,G and perturbed candidate solution wi,G+1 to produce the

new candidate solution vi,G+1. Each parameter of vi,G+1 is

selected at random, either from xi,G (with probability Ri,G+1)

or from wi,G+1 (with probability 1 – Ri,G+1). However, EABC

also ensures that at least one parameter is selected from the

perturbed vector wi,G+1; otherwise the new candidate solution

vi,G+1 would be identical to its parent candidate solution xi,G.

The details of how the value of Ri,G+1 is produced and

maintained are explained in a subsequent paragraph. After

producing vi,G+1, EABC employs a greedy selection between

the original candidate solution xi,G and the new candidate

solution vi,G+1, similar to the step (4) of the original ABC

algorithm.

Thirdly, to customize the degree of explorations and

exploitations at the individual solution level, EABC

maintains the scaling factor φi and crossover rate Ri,

separately for every candidate solution xi. The values of φi

and Ri are gradually adapted, generation by generation,

separately for each candidate solution, by using the

following Eqs. (5) and (6).

 1

, +1
,

rand 0,1 ; rand 0,1min max min

i G
i G

 if p

 otherwise

(5)

 2

, +1
,

rand 0,1 ; rand 0,1min max min

i G
i G

R R R if p
R

R otherwise

(6)

Both the above equations put proper emphasis not only on

search space explorations by innovation (i.e., trying new

values for φiand Ri, with probability p1 and p2, respectively),

but also on search space exploitations by inheritance (i.e.,

using the same value of parent xi, with probability = 1–p1 and

1–p2 for φi and Ri, respectively). Together they try to balance

between explorations and exploitations, by using a suitable

value of all these parameters — p1 and p2, φmin and φmax, Rmin

and Rmax. EABC uses the following parameter values:

p1 = p2 = 0.1, φmin = 0.1, φmax = 0.9, Rmin = 0 and Rmax = 1.0.

Fourthly, with all the above explorative and exploitative

measures, we have found (with some trial and error) that the

necessity of using separate employed bee phase and scout

bee phase (as used by the original ABC algorithm) does not

exist anymore for the proposed EABC algorithm. So, EABC

Paper ID: SUB156520 1341

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

has abandoned both the onlookerbee and scout bee phases

(i.e., steps5–9) of the original ABC algorithm.

5. Experimental Studies

To evaluate the performance of the proposed EABC

algorithm, we have used a standard benchmark suite on

continuous function optimization problems, consisting of

sixhigh dimensional functions [1], [2], [18]. Table 1 presents

a brief overview on each of these benchmark functions. More

details on each benchmark function can be found in [1]. All

the benchmark functions we used are multimodal functions.

To optimize a multimodal function, the search algorithm

must possess both exploitative and explorative characteristics

so that it can explore the locally optimal points without being

trapped around any of them. Some of the multimodal

functions can have hundreds of local minima, even when the

dimensionality is just two or three. The number of local

optima usually increases exponentially with the number of

dimensions, which makes their optimization extremely

difficult. For example, the Ackley function f3 has one narrow

global minimum basin, but with exponentially many minor

local minima. The Griewank function f4 has a component

creating linkage among the variables, which complicates the

search by perturbing any subset of the variables. Any

technique that tries to optimize each variable separately

without considering the others will fail with this function.

The difficulty for the Schwefel function f1 arises from its

deep local minima which are far from the single global

minimum. All these multimodal functions have

exponentially many local minima and the number of local

minima increases exponentially with the high dimensionality

(i.e., D = 30), making them extremely difficult for any

algorithm to be explored and optimized without being

trapped around the locally optimal points of the search space.

Table 1: The six continuous benchmark functions used in

our experimental studies. Here, D: dimensionality of the

function, S: search space, fmin: function value at the global

minimum, C: function characteristics with the values —

M: Multimodal, S: Separable, N: Non-separable.

No Function C D S fmin

f1 Schwefel 2.26 MS 30 [-500, 500]D -12569.5

f2 Rastrigin MS 30 [-5.12, 5.12]D 0

f3 Ackley MN 30 [-32, 32]D 0

f4 Griewank MN 30 [-600, 600]D 0

f5 Penalized MN 30 [-50, 50]D 0

f6 Penalized2 MN 30 [-50, 50]D 0

Table 2: Performance of the proposed algorithm EABC, compared to the basic ABC algorithm on the benchmark functions.

Results are averaged over 50 independent runs. Better performance on each function is marked with boldface font. In case the

performance difference is not significant by t-Test with at least 99% level of confidence (i.e., α = 0.99), it is marked by

―Similar‖ at the rightmost column.

No fmin
ABC EABC

Better Performance

(t-Test with α = 0.99)
Mean Error Std. Dev. Mean Error Std. Dev.

f1 -12569.5 1.86e+01 5.21e+00 1.034–02 3.66–03 EABC

f2 0 7.15 e–16 6.44e–17 2.33e–31 3.58e–32 EABC

f3 0 8.97 e–12 1.15e–12 1.12e–14 4.05e–15 EABC

f4 0 6.39e–16 9.25e–17 1.09e–30 2.99e–31 EABC

f5 0 7.03e–16 1.86e–16 7.39e–14 1.76e–14 ABC

f6 0 2.61e–03 8.36e–17 2.61e–03 8.22e–17 Similar

Table 2 presents the results of EABC with the basic ABC [1]

algorithm. The common parameters of both the algorithms

are set as — population size N = 100, maximum number of

generations MGN = 1500 and limit = 100. The other

parameters of EABC are set as: p1 = p2 = 0.1, φmin = 0.1,

φmax = 0.9, Rmin = 0 and Rmax = 1.0. All the initial values of φi

and Ri are set to 0.5 and 0.9, respectively for all the candidate

solutions xi of the initial bee population. All these values are

selected after some initial experiments, and not meant to be

optimal. Each algorithm has made 50 independent runs on

each function. The mean and standard deviation of the error

values (i.e., the difference between best found solution and

the global minimum) found from the different runs are

reported in Table 2. Our observations are summarized in the

following few points.

 Out of the six functions f1 – f6, EABC performs better than

ABC on as many as four functions, perform equally well

on one, while ABC performs better only on the remaining

one function. Thus the overall performance of EABC is

significantly better than ABC.

 For all these functions, EABC reaches very close to the

global minimum value (i.e., mean error ≈ 0), while the

basic ABC algorithm fails to reach sufficiently close to the

global minimum for one functions (i.e., f1).

 The performance of EABC is very consistent, i.e., EABC

regularly reaches very close to the global minimum, which

is demonstrated by the very low standard deviation values

of the errors of EABC.

In summary, EABC is more effective than the original ABC

algorithm on almost all of these complex, high dimensional

multimodal functions, which indicate the effectiveness of the

proposed explorative techniques employed by EABC.

6. Conclusion

This paper introduces EABC — an explorative variant of the

basic ABC algorithm and evaluates its performance on

several standard continuous benchmark functions. Results

indicate that EABC can perform better than ABC on most of

these functions. There might be several possible ways to

further improve EABC. Firstly, EABC uses a simple strategy

to adapt the scaling factor and crossover rate for each

Paper ID: SUB156520 1342

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

candidate solution. Some more sophisticated scheme, such as

some scheme parameterized by the current maturity of the

search process, may improve the algorithm further.

Secondly, EABC puts more emphasis to increase the degree

of explorations, rather than exploitations. Putting somewhat

more emphasis on exploitations, especially around the

best-so-far candidate solutions, may further improve the

results. Thirdly, the quality of the final solution might be

improved further by using an efficient local searcher after the

execution of EABC is over. Finally, EABC has been applied

only on the benchmark continuous optimization problems. It

would be interesting to study how well EABC can perform

on many other existing problems, especially the discrete and

real world ones.

References

[1] D. Karaboga and B. Basturk, On the performance of

artificial bee colony (ABC) algorithm, Applied Soft

Computing8 (1) (2008) 687–697.

[2] D. Karaboga, An idea based on honey bee swarm for

numerical optimization, Erciyes University, Kayseri,

Turkey, Technical Report-TR06, 2005.

[3] D. Karaboga and B. Akay, A comparative study of

artificial bee colony algorithm, Applied Mathematics

and Computation214 (1) (2009) 108–132.

[4] S. Sobti and P. Singla, Solving travelling salesman

problem using bee colony based approach, International

Journal of Engineering Research and Technology2 (6)

(2013) 186–189.

[5] K. Naidu, H. Mokhlis and A.H.A. Bakar, Multiobjective

optimization using weighted sum Artificial Bee Colony

algorithm for Load Frequency Control, International

Journal of Electrical Power and Energy Systems55 (2)

(2014) 657–667.

[6] R. Mukherjee, D. Goswami and S. Chakraborty,

Parametric optimization of Nd:YAG laser beam

machining process using artificial bee colony algorithm,

Journal of Industrial Engineering, vol. 2013, Article ID

570250, 15 pages, 2013. DOI: 10.1155/2013/570250.

[7] H. Garg, Solving structural engineering design

optimization problems using an artificial bee colony

algorithm, Journal of Industrial and Management

Optimization,10 (3) (2014) 777–794.

[8] Z. Zhao, D. Yin and Y. Jiang, Improved bee colony

algorithm based on knowledge strategy for digital filter

design, International Journal of Computer

Applications,47 (2) (2013) 241–248.

[9] A. Mishra, A. Khanna, N. Singh and V. Mishra, Speed

control of DC motor using bee colony optimization,

Universal Journal of Electrical and Electronic

Engineering 1 (3) (2013) 68–75.

[10] A. Karegowda and M. Darshan, Optimizing feed

forward neural network connection weights using

artificial bee colony algorithm, International Journal of

Advanced Research in Computer Science and Software

Engineering 3 (7) (2013) 452–454.

[11] A. Bolaji, A. Khader, M. Betar and M. Awadallah, Bee

colony algorithm, its variants and applications: A

survey, Journal of Theoretical and Applied Technology

47 (2)(2013) 434–459.

[12] T. Park and K. R. Ryu, A Dual population genetic

algorithm for adaptive diversity control, IEEE Trans.

Evolutionary Computation 14 (6) (2010) 865–884.

[13] R. K. Ursem, Diversity guided evolutionary algorithms,

in Proc. 7th Int. Conf. Parallel Problem Solving from

Nature (PPSN), 2002, pp. 462–474.

[14] J. Lampinen and I. Zelinka, On stagnation of the

differential evolution algorithm, in Proc. 6th Int. Mendel

Conf. Soft Computing, Brno, Czech Republic, 2000,

pp. 76–83.

[15] V. Tereshko, A. Loengarov, ―Collective Decision-

Making in Honey Bee Foraging Dynamics‖, Comput.

Inf. Sys. J., vol. 9, no. 3, pp. 1–7, 2005.

[16] M. Abd, A cooperative approach to the artificial bee

colony algorithm, in Proc. IEEE Congress on

Evolutionary Computation (CEC), 2010, pp. 1–5.

[17] W. Lee and W. Cai, A novel artificial bee colony

algorithm with diversity strategy, in Proc. 7th Int. Conf.

Natural Computation, 2011, pp. 1441–1444.

[18] B. Wu and S. Fan, Improved artificial bee colony

algorithm with chaos, in Computer Science for

Environmental Engineering and Eco-Informatics, Part I,

Communications in Computer and Information Science,

eds. Y. Yu, Z. Yu and J. Zhao, vol. 158, 2011, pp. 51–

56.

[19] L. Fenglei, D. Haijun and F. Xing, The parameter

improvement of bee colony algorithm in TSP problem,

Science Paper Online, Nov. 2007.

[20] G. Zhu and S. Kwong, Gbest-guided artificial bee

colony algorithm for numerical function optimization,

Applied Mathematics and Computation217 (7) (2010)

3166–3173.

[21] F. Kang, J. Li, Z. Ma and H. Li, Artificial bee colony

algorithm with local search for numerical optimization,

Journal of Software 6 (3) (2011) 490–497.

[22] E. Montes and R. Koeppel, Elitist artificial bee colony

for constrained real-parameter optimization, in Proc.

IEEE Congress on Evolutionary Computation, 2010, pp.

1–8.

[23] H. Quan and X. Shi, On the analysis of performance of

the improved artificial bee colony algorithm, in Proc.4th

Int. Conf. Natural Computation (ICNC), 2008, pp. 654–

658.

[24] F. Qingxian and D. Haijun, Bee colony algorithm for the

function optimization, Science Paper Online, Aug.

2008.

[25] S. Kumar, V. Sharma and R. Kumari, A novel crossover

based artificial bee colony algorithm for optimization,

International Journal of Computer Applications82 (8)

(2013) 18–25.

[26] Y. Xu, P. Fan and L. Yuan, A simple and efficient

artificial bee colony algorithm, Mathematical Problems

in Engineering, vol. 2013, Article ID 526315, 9 pages,

2013. DOI: 10.1155/2013/526315.

[27] N. Sulaiman, J. Saleh and A. Abro, A modified artificial

bee colony (JA-ABC) optimization algorithm, in Proc.

International Conference on Applied Mathematics and

Computational Methods in Engineering (AMCME),

2013, pp. 74–79.

[28] A. Abro and J. Saleh, Enhanced global-best artificial bee

colony optimization algorithm, in Proc. 6
th

 European

Symposium on Computer Modeling and Simulation,

2012, pp. 95–100.

Paper ID: SUB156520 1343

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[29] W. Gao, S. Liu and L. Huang, A global best bee colony

algorithm for global optimization, Journal of

Computational and Applied Mathematics236 (11)

(2012) pp. 2741–2753.

[30] W. Gao and S. Liu, A modified artificial bee colony

algorithm, Computers and Operations Research39 (3)

(2012) pp. 687–697.

[31] 20 W. Gao and S. Liu, Improved artificial bee colony

algorithm for global optimization, Information

Processing Letters111 (17) (2011) pp. 871–882.

[32] G. Zhu, S. Kwong, Gbest-guided bee colony algorithm

for numerical optimization, Applied Mathematics and

Computation217 (7) (2010) pp. 3166–3173.

[33] A. Abro and J. Saleh, An enhanced artificial bee colony

optimization algorithm, Recent Advances in Systems

Science and Mathematical Modelling, ed. D.S. Nikos

Mastorakis, ValeriuPrepelita, 2012: WSEAS Press.

[34] A.Banharnsakun, T. Achalakul and B. Sirinaovakul, The

best-so-far selection in artificial bee colony algorithm,

Applied Soft Computing11 (2) (2011) pp. 2888–2901.

Paper ID: SUB156520 1344

