
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Techniques for Duplicate Detection in Hierarchical

Data

Suvarna Kale
1
, Basha Vankudothu

 2

1Department of Computer Engineering, GSMCOE,, Balewadi, Savitribai Phule University, Pune, India

Abstract: Duplicate detection is nothing but finding multiple representations of a same object and also object which are represented in

a dataset. The duplicate detection is important to integration and data cleaning applications and it is studied for relational data in single

table, but now data is stored in complex form. In this paper we improve the efficiency and effectiveness of duplicate detection by

considering relationship between ancestors and descendants. We apply this strategy by implementing two algorithms RECONA and

ADAMA. Recona re-examine an object if its induce neighbours is duplicates. This will reduce re-comparison of elements. Adama is

efficient because it does not allow re-comparison

Keywords: Duplicate detection, XML data, hierarchical structure, candidate pair

1. Introduction

Duplicate detection is useful in data cleansing ,data

integration [6], personal information management .Uptil now

Duplicate detection is studied for relational data which is

stored in a single table. But there are hierarchical data which

is nothing but distinct set of data items that are related to

each other by hierarchical relationships which is present in

more complex form.

The area where for duplicate detection is mostly used is

customer relationship management (CRM) where there can

be multiple representation of the same entity. XML is mostly

popular on the Web for data publish process and in the

organizations for exchange of data.

The current work in XML world has shown that the

efficiency and effectiveness of duplicate detection has

improved by considering relationships between ancestors and

descendants. In Hierarchical data, one data item is the parent

of another item. So this Hierarchical relationalship is

represented using parent and child relationships . In this each

parent can have many children, but each child has only one

parent. so we cannot use conventional approach. Hierarchical

data is mostly used for exchange of information on web and

in many other places.

XML document is represented as a tree like structure.

Several problems occur while doing data integration from

different data sources such as when distributed and

heterogeneous data source is combined. When we combine

data from different data sources, the ideal result should be a

unique complete and correct representation for every object

to achieve data quality. So this ensures that only one

representation of object is present in the database.

In this paper, we find a duplicate detection approach for

XML data, which uses all kinds of relationships between

entities,

i.e., 1:1, 1:n, and n:m. The basic idea is presented in [5]. The

algorithms [7] use pairwise comparisons more than once to

increase effectiveness . The focus of this paper is on efficient

implementation of dependencies between entities. We use

two algorithms RECONA and ADAMA. Recona is used for

improving efficiency and Adama is used for improving

effectiveness. We are also going to compare RECONA and

ADAMA with the state of art XMLDUP approach with

efficiency and Effectiveness evaluation. In XMLDUP

approach , it uses the Bayesian Network model for finding

duplicates. It uses this model to compute similarity between

XML object, and according to this similarity it considers

whether this XML objects are duplicates or not. It also uses

network pruning algorithm to improve Bayesian Network

evaluation time.

2. Related Work

In this section we have discussed various duplicate detection

algorithms and techniques used earlier. Research in duplicate

detection comes under two categories ,These are the

techniques for improving efficiency and effectiveness.

Efficiency deals with improvement in precision and recall.

Delphi[1] uses a top down approach which considers

immediate attributes of objects and also their children and

parents in a complex datawarehouse.but the main drawback

here is it don’t compares al pairs of tuples in the hierarchy

because it evaluates the outermost layer first and then

proceeds to the innermost layer of the xml.

Lus Leitao, Pavel Calado, and Melanie Herschel suggested a

method XMLDUP for XML duplicate detection. Bayesian

Network is used in XMLDup to determine whether

probability of two XML elements being duplicates or not.

Network Pruning Strategy is used To improve the efficiency

of network evaluation. XMLDup showed better results better

results with respect to both efficiency and Effectiveness

when compared to another method [2]

SXNM (Sorted XML Neighborhood Method) is a method

proposed by S. Puhlmann is a duplicate detection method

which contains relational sorted neighborhood approach

(SNM) to XML data. Just like the original SNM, the idea

behind is to avoid performing useless comparisons between

objects by grouping together those that are more likely to be

similar [3].

Paper ID: SUB156410 721

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Edit distance is used for measuring of Detecting the

duplicates between XML entities which involves detecting

similarity between entities [4].

M. Weis et.al has proposed Dogmatix framework. It consists

of three main steps: candidate definition structure, duplicate

definition and duplicate detection. Dogmatix method

compares XML elements on the similarity of their parents,

children and structure [6].

3. Proposed Work

In the previous work , there was Bayesian Network

Construction which considers not only information within

elements but also the way that how information is Structured

. But this structure does not consider ordering of elements.

In this paper we are going to use two algorithms RECONA

and ADAMA which considers ordering strategy. It finds the

duplicate detection by using ascending order of r and using

the relationship between objects , where comparison order is

obtained by computing a rank r(v,v’) for every candidate pair

(v,v’). Whenever there is increase in similarity, RECONA

recomputes similarity between two objects. ADAMA avoids

re-comparison to increase efficiency. For comparison order

,if we choose ascending order of r ,we always choose to

compare objects first that have fewer duplicates. In this case

,the ripple effect to neighbours is low if two objects are

found duplicates. So RECONA avoids recomparison if we

carefully choose comparison order which improves

efficiency. Careful chosen order of ADAMA improves

effectiveness.

RECONA Algorithm

The RECONA algorithm is the perfect algorithm for finding

duplicate detection. The RECONA algorithm has two

phases. The first is initialization phase and the other is

comparison phase. Detecting duplicates to an object is based

on the assumption that it may affect similarity and duplicate

classification on other object.

The initialization phase (lines 2-10) contains all pairs of

candidates which is defined in a priority queue OPEN which

defines ascending order of rank r. DUPS is a set of duplicate

pairs which contains duplicates pairs to avoid unnecessary

re-comparison

1 Procedure ReconA()

2 G: data Graph;

3 OPEN: priority queue of candidate pairs

4 ordered in ascending order of r ;

5 DUPS: set of duplicate pairs;

6 CLOSED: set of possibly re-classified pairs;

7 𝜃 : similarity threshold;

8 Initialize G;

9 Add all candidate pairs to OPEN;

10 while OPEN not empty do

11 begin

12 (𝒗𝒊 , 𝒗𝒋) ← OPEN.popFirst();

13 sim = sim(𝒗𝒊 , 𝒗𝒋);

14 if sim > 𝜃 then

15 begin

16 DUPS := DUPS ∪ {(𝒗𝒊 , 𝒗𝒋)};

17 updateOpenReconA(𝒗𝒊 , 𝒗𝒋);

18 end

19 end

Listing 1 RECONA Algorithm

1 procedure updateOpenReconA(Vertex v, Vertex v’)

2 D(v, 𝑣′) = {(n1, n2)|n1 ∈ D(v) ∧ n2 ∈ D(𝑣′) ∧ n1 ≠

n2};

3 for all (n1, n2) ∈ D(v, 𝑣′) do

4 if (n1, n2) not ∈ DUPS then

5 begin

6 𝑟𝑢𝑝𝑑𝑎𝑡𝑒 := r(n1, n2);

7 if (n1, n2) ∈ OPEN then

8 OPEN.updateRank((n1,n 2), 𝑟𝑢𝑝𝑑𝑎𝑡𝑒);

9 else if (n1, n2) ∈ CLOSED then

10 OPEN.Push((n1, n2), 𝑟𝑢𝑝𝑑𝑎𝑡𝑒);

11 end

Listing 2: Updating OPEN in RECONA

ADAMA Algorithm

ADAMA works similar to RECONA ,but the important

difference is that , once candidate pair is classified, we do

not add it to open regardless of whether they are classified as

duplicates or not . So pairwise comparisons are not

performed more than once.

We define another set of candidates called NONDUPS in the

initialization phase. It avoids re-comparison and compute

Rank r in which set of neighbour pairs is indicated as

neighbor pairs not in DUPS and not in OPEN. In ADAMA’s

algorithm , if similarity value of pairs is below threshold , it

is added to NONDUPS and is never taken for re-

comparisons which is defined in updateOpenAdamA. In

updateOpenAdamA procedure we update the ranks of pairs

that are present in OPEN. So the complexity of ADAMA

algorithm is N because we do not allow re-comparison of

pairs.

1 procedure AdamA()

2 G, OPEN, t, sim, DUPS as in ReconA;

3 NONDUPS: set of non-duplicate pairs;

4 Initialize G;

5 Add all candidate pairs to OPEN;

6 while OPEN not empty do

7 begin

8 (vi, vj) ← OPEN.popFirst();

9 sim = sim (vi, vj);

10 if sim > 𝜃 then

11 updateOpenAdamA(vi,vj);

12 else

13 NONDUPS := NONDUPS ∪ {(v1, vj)};

14 end

Listing 3: ADAMA Algorithm

1 procedure updateOpenAdamA(Vertex v, Vertex v′)

2 D(v, v′) = {(n1, n2)|n1 ∈ D(v) ∧ n2 ∈ D(v′) ∧

 n1 ≠ n2};

3 forall (n1, n2) ∈ D(v, v′) do

Paper ID: SUB156410 722

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4 if (n1, n2) not ∈ DUPS ∪ NONDUPS then

5 begin

6 𝑟𝑢𝑝𝑑𝑎𝑡𝑒 := r(n1, n2);

7 if (n1, n2) ∈ OPEN then

8 OPEN.updateRank((n1,n 2), 𝑟𝑢𝑝𝑑𝑎𝑡𝑒 ;

9 end

Listing 4: Updating OPEN in ADAMA

4. Experiments on Duplicate Detection

In this section we will present an evaluation of the Recona &

Adama algorithm described in the previous sections. We

have evaluated the algorithm in terms of effectiveness and

efficiency. First, we evaluate effectiveness by comparing it

to a duplicate detection system, called XMLDUP , that is

most competitive. We then evaluate the efficiency of Recona

& Adama algorithm. Testing the impact of data quality on

duplicate detection is important to confirm the effectiveness

of a given algorithm.

4.1 Effectiveness Evaluation

Figure 1: Effectiveness Evaluation

Precision and recall are the basic measures used in

evaluating search strategies.The Graph shows that Recona &

Adama are more effective than the previous duplicate

detection strategy XMLDUP.

4.2 Efficiency Evaluation

Figure 2: Efficiency Evaluation

In the above fig we did efficiency evaluation by comparing

Existing System XMLDUP with the Proposed system

Recona & Adama. It shows that Existing System takes more

time for evaluation than Proposed system

5. Conclusion

Duplicate detection is done for finding different

representation of the same real world object which is called

duplicate. These duplicate data are not exactly equal due to

errors in the data. Due to this duplicate detection is

challenging task in data cleaning and data integration

processes. The efficiency of the duplicate detection method

is improved by using a novel duplicate detection approach

for XML data which performs good in all kinds of

relationships between entities i.e. 1:1, 1:n and m:n. The

strategy for comparisons we used here is pairwise

comparison in ascending order of rank. This strategy applied

is RECONA & ADAMA algorithm. RECONA algorithm

also called re-examining algorithm does pairwise comparison

which is performed more than once. So the proposed

comparison order reduces number of re-comparisons. In

ADAMA , recomparisons are avoided to increase efficiency.

In Experiments , The number of re-comparisons for

RECONA gets reduced through the order obtained using

ascending rank r for a high interdependency between entities.

For ADAMA , In recall and precision the order using r

performs slightly better than other orders for high

interdependency.

6. Acknowledgment

I would like to express my gratitude to Prof. Ratnaraj Kumar,

Head of the Department and my project Guide for providing

me with adequate facilities to complete this Paper. I express

my gratitude to him for his support and suggestions. I thank

Prof.Basha V., my project guide for his cooperation and

helps.

References

[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti.

Eliminating fuzzy duplicates in data warehouses. In

International Conference on Very Large Databases

(VLDB), Hong Kong, China, 2002.

[2] Lus Leitao, Pavel Calado, and Melanie Hersche,

“Efficient and Effective Duplicate Detection in

Hierarchical Data,” IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING,VOL. 25,

NO. 5, MAY 2013

[3] S. Puhlmann, M. Weis “XML Duplicate Detection Using

Sorted Neighborhoods,” Proc. Conf. Extending Database

Technology (EDBT), pp. 773-791, 2006.

[4] Melanie Weis and Felix "Detecting duplicate objects in

XML documents", Humboldt-Universität zu Berlin,

Germany, Workshop on Information Quality in

Information Systems, 2004

[5] M. Weis and F. Naumann. Detecting duplicates in

complex XML data. In International Conference on Data

Engineering (ICDE), Atlanta, Georgia, 2006.

[6] M. Weis and F. Naumann, “Dogmatic Tracks Down

Duplicates in XML,” Proc. ACM SIGMOD Conf.

Management of Data, 2005.

[7] X. Dong, A. Halevy, and J. Madhavan. Reference

reconciliation in complex information spaces. In

International Conference on the Management of Data

(SIGMOD), Baltimore, MD, 2005.

Paper ID: SUB156410 723

