
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

RoloKnow: An Analytic Framework for Mobile

Applications and Games

Aman Nigam
1
, Hrishikesh Pallod

2
, Saurabh Abhale

3
, Sidhesh Badrinarayan

4

1,2,3,4 Pune Institute of Computer Technology, University of Pune, Pune, India

Abstract: The world has moved to smartphones and retaining users on applications is of prime importance to developers. When it

comes to engagement and retention, being able to segment users by how often they visit the application, and how long their sessions

are, can help developers understand what is working within the application. Techniques like A/B testing and custom event tracking can

help consociate the user with the developer. It will also help them analyze the behavior of various users to find the most engaged user

and see the commonalities of these user segments from historical data. The usage data is tracked from android devices and is sent to

MongoDB which is a NoSQL document oriented database. This data is selectively sent to Hadoop for processing. Final results are

stored in MySQL. These results can be viewed by developers through a web interface which has powerful data visualization tools. The

developers will also have the freedom to perform application specific analytics.

Keywords: Smartphones, Retention, A/B testing, MongoDB, Hadoop, MySQL, Data visualization.

1. Introduction

People today are dependent on smartphones owing to the

various capabilities that these portable devices offer.

Applications make these devices useful. Hence, making

simple and powerful applications is of prime importance to

application developers across all platforms.

The problem is the lack of a bridge between the developer

and the user. A user cannot call or email the developer every

time he/she faces a problem with an application. A popular

application will have millions of users and it would be

impossible for the developer to individually cater to all

requests. Hence, a developer needs to follow a data driven

approach in application development [1].

RoloKnow is a framework developed to overcome this

problem of application developers by bridging the gap

between them and their users. Using RoloKnow, developers

will get a virtual entry into their users‟ phones and the way

they use the applications, helping developers understand

what is working and what is not. A developer would know

exactly how popular his application is in the United States,

sitting miles away in India or say Japan. RoloKnow has the

potential to change the entire process of application

development, deployment and management.

2. The 3-Step Solution

RoloKnow provides a 3-Step solution to maximize an

application‟s usability and popularity:

Step 1: Check if the application performing well using

RoloKnow‟s retention reports.

Step 2: If the retention reports are unfavorable, identify the

problem using event correlation (funnels) and event-property

statistics.

Step 3: Once the probable solutions for the problem are

decided, using RoloKnow‟s A/B testing feature, the

developer can let the users decide which solution they prefer.

3. Retention

3.1 Importance

Download statistics cannot be the sole parameter for

determining the popularity of an application. A user may

download an application but never use it more than once.

Retention gives the developer a clear picture of how often

users comeback and engage with the application [2]. For any

two related activities, retention can give the statistics about

how and when a person does one activity and then the other.

3.2 Retention features in RoloKnow

1) Hourly Active Users (HAU): This tells us at what hour of

the day, an application is used the most. Do your users use

the application while having dinner, or do they use it early

morning as soon as they wake up. An amateur developer

may not realize the importance of such statistics, but a

professional will. HAU report shows the developer how

the application usage varies over 24 hours. This has been

implemented by processing fresh event data every hour to

find out the count of unique users.

2) Daily Active Users (DAU): This report visualizes how

many unique visitors engage with the application per day.

DAU can help the developer understand the immediate

response to an application update. The daily active users

count is not the sum of all the hourly active users. This

means if a user uses the application multiple times in 24

hours, it will be counted as only one unique instance for

the day. In case of hourly active users, the window of

unique user count is limited to just an hour. The script

which runs every hour for Hourly Active Users, also

maintains a count of new users which have visited that day.

This has been done by maintaining an intermediate data

structure, which keeps track of the last activity of all

unique devices. By comparing the timestamps, new user

count for that hour can be calculated. The sum of this new

user count for every hour is the daily active user count for

Paper ID: SUB156357 548

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

a particular day.

3) Weekly Active Users: A window of a day or a month may

be too small or large for a developer and so this feature can

help the developer understand the application usage

changes through all weeks of a month. If there is a huge

drop in the number of users between week 1 and 2 then the

developer can think of different ways to attract users.

4) Monthly Active Users (MAU): For a major update or

change in the marketing strategy, a developer needs to

analyze a larger window of user behavior. Monthly Active

Users is the count of unique users for a month. This has

been implemented by maintaining a count of new users

using the application every day through the month. The

sum of these new users over the month is the monthly

active user count. The backend for this feature involves

processing of the data structure maintained by DAU every

day, with the processed data for the current month.

4. Event Correlation (Funnels)

With the help of this feature, a developer can understand the

problem in the application. The problem can be identified by

allowing the developer to visually compare multiple events

and see where the user retention reduces [3]. The developer

is given freedom to compare any number of events of the

application. In other words, event statistics provide event

specific retention reports. For instance, in a photo-sharing

application, a user is required to perform multiple events to

publish a photograph, which may include editing, adding

filters, among others. If the retention reports after the final

step are not positive, the problem lies in one of the

intermediate steps. This can be identified using funnels.

5. Event Property Statistics

Many-a-times along with tracking events, particular event

properties are also required by a developer. For example, in a

bike racing game, let us assume a curve in the race track and

a booster that a racer can use for that curve. A developer may

want to know how many players actually use the booster and

how many do not. So the event is „race_curve‟ and the

property is booster with a boolean value yes or no.

Similarly any property and any number of properties can be

tracked along with an event. Using this feature, developers

can get an in-depth understanding of their application.

6. A/B Testing

6.1 Importance

Often a situation arises when a developer has two ways to

carry out the task. Instead of guessing which might work

better, A/B testing allows the end users to make this decision.

When in execution, the application will contact the server

and decide whether the object should run in „A‟ mode or „B‟

mode. A conversion ratio is maintained, which is a ratio of

the number of times the event under A/B is successful to the

number of times the object is displayed in A/B. This feature

can be extensively used in beta phase to test various features

in different scenarios. Before the final release, the developer

will have statistics good enough to make proper decisions.

6.2 Example

Let us take an example of a song library application. For such

an application, the download button will directly affect the

revenue. So the developer needs to make the button

prominent. A/B Testing can help the developer in making a

calculated decision of which color to finally use in the

application. Figure 1 explains this example graphically. 65%

of users pressed the green download button while only 20%

pressed the blue one. This indicates that the green download

button is more prominent. Hence, the developer would chose

green as the final color for his download button.

Figure 1: A/B Testing Overview

6.3 A/B Testing Implementation in RoloKnow

While the application is in execution, it will contact the

server to decide which scenario the application needs to run

in. The usage is tracked and cached. This includes the

„developer_id‟, „app_id‟, „item_name‟, „activity_name‟, „a‟,

„total_a‟, „b‟, „total_b‟.

The variable „total_a‟ is the count of how many times the

object was displayed in „A‟ mode, while „a‟ is the count of

how many times the user actually completed the step in „A‟

mode. Similarly, for „total_b‟ and „b‟.

7. Property Statistics

RoloKnow is currently equipped to show an application‟s

usage statistics for the following properties:

1) Country

2) Network Carrier

3) OS Version

4) Mobile Model

5) Application Version.

7.1 Country Statistics

Country stats will give an overview of the regions where the

application is popular across the world. As people in

different regions have different mindsets, this information

will help the developer prioritize the next update and also

know his audience better.

Paper ID: SUB156357 549

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

7.2 Network Carrier Statistics

This information will help developers know which network

carrier is preferred by their application users. Carrier billing,

wherein the in-application purchases are directly build to the

network carrier, is a popular practice today. By knowing

which carrier is most popular the developer can collaborate

with them and come up with some schemes which will

benefit both parties.

7.3 OS Version Statistics

OS stats will help the developers understand which android

version is most popular among the users. If a significant

number of users use an older version of an operating system,

like Gingerbread, updating the application with features not

supported by Gingerbread will lead to reduction in the

number of users.

7.4 Mobile Model Statistics

Android is a fragmented market. A developer may find it

difficult to analyze the popularity of his application based on

the make of the phone. This feature will help the developer

make sure the devices that use their applications the most, are

always compatible with the updates.

7.5 Application Version Statistics

If many users use an older version of an application, then the

developer cannot remove support for that version. To take

call on which versions to support, the developer can use this

feature.

8. Data Visualization for Web Interface

For an analytics tool, it is very important to show the data in

an interactive and understandable format. Using RoloKnow‟s

powerful data visualization tools, a developer will be able to

compare different statistics using a donut chart, understand

the regions where the application is working using an

interactive world map and also use histograms for other

analyses [5].

9. Architecture

RoloKnow works in four major steps:

1) Smartphones to MongoDB: All the required user data

that the developer needs is sent through the devices to

MongoDB through a web server. Here the data is in its

original form [6].

2) MongoDB to Hadoop: Selective data from MongoDB is

sent to Hadoop for processing [7]. Here, Pig is used to carry

out the MapReduce tasks. Pig is a high-level platform for

creating MapReduce programs used with Hadoop. The

language for this platform is called Pig Latin [8].

3) Hadoop to MySQL: The processed and meaningful data

needs to be stored. For this RoloKnow uses MySQL. All the

churned data is stored here for further use.

4) MySQL to Web Interface: Numbers are difficult and

sometimes monotonous to analyze. That is why, all the

meaningful data is shown to the developer using RoloKnow‟s

web interface with powerful data visualization capabilities

[5]. This is the final stage of the process and the developer

gets meaningful results. Figure 2 below shows the

architecture of RoloKnow.

Figure 2: Architecture of RoloKnow

10. Implementation

10.1 Client-side Library

Client Library- A library, 'roloknow.jar', will be provided to

the developer, to deploy in the application along with the

developer id and an application id. The task of this library is

to track event data, store it locally and send to MongoDB.

Flushing of data has been implemented using a thread. If the

user is not connected to Wi-Fi, the thread is put to sleep for

larger amounts of time to save user data [4].

Steps to use the library in android studio-

1) Copy 'rolokow.jar' to 'app/libs' directory of your

application.

2) Right Click and select 'Add to Library'.

3) Open build.gradle file and check if

'compile('app/libs/roloknow.jar')' is added under

dependencies.

4) Perform a clean build.

5) Now, this library can be used with a few basic function

calls. RoloKnow (this, dev_id, app_id).start() will initialize

the library with the developer id and the application id. It

will also start a thread to carry out flushing.

6) Event can be tracked using the function call given below in

Figure 3. To add any additional data in the form of name

value pairs, a json array can be passed as an argument to

this function call.

Paper ID: SUB156357 550

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3: Steps to include RoloKnow library in an

application

10.2 Hadoop Analytics

RoloKnow uses Pig in Hadoop to perform analytics on event

data. It calculates hourly, daily, weekly and monthly active

users. In addition, it performs analytics to find correlation

between events and also finds property statistics as

mentioned above.

10.2.1 Algorithm for DAU and HAU calculation

1) Load the latest event details from MongoDB into P;

1) Group P by (app_id, developer_id, device_id) and

calculate latest timestamp for each group and store into Q;

2) Extract the data for the current hour from Q and store

into „hour_data‟;

3) From „hour_data‟ generate unique count of „device_id‟s

for every (app_id, developer_id) and store into

„unique_count‟;

4) Load „last_activity‟, which is a data structure maintaining

most recent timestamps for unique (app_id, developer_id,

device_id) into R;

5) Extract the data from R for the current day and store it in

„day_data‟;

6) Perform a natural join on „hour_data‟ and „day_data‟ and

group the result by (app_id, developer_id). Store the

result into „common_data‟;

7) For each (app_id, developer_id) in „common_data‟

generate count of „device_id‟s and store into

„common_count‟;

8) Subtract count of „device_id‟s in common_count from

unique_count to get the new user count for the hour and

store the result into „FINAL‟

„FINAL‟ will have developer_id, app_id, date, hour,

unique_user_count, new_user_count. „unique_user_count‟ is

the count of unique users for a particular hour. Sum of

new_user_count through the hours of the day is the daily

active user (DAU) count. This data will be stored in MySQL

to be used by the web interface.

10.2.2 Mathematical Representation

The above algorithm can be mathematically represented as,

U = [H] …(1)

N = U − [(H⋈D)] …(2)

 …(3)

where, N is the new user count for an hour,

 H is a list of devices active in a particular hour,

 D is a list of devices that have previously accessed the

 application on a particular day under observation,

 U is the count of hourly active devices,

(1) gives the hourly active user count, (2) gives the count of

new users for a particular hour in a day and (3) gives the

daily active user count for a day (24 hours).

11. Conclusion

RoloKnow is a product which can cater to the entire

developer base and would become an integral part of

application development. With the gap between the users and

developers bridged with RoloKnow, the cycle of application

development will surely become easier and faster. It is

platform independent; therefore, any application developer

would feel the need to use RoloKnow. There are going to be

millions of users and their billions of events. RoloKnow will

be a one-step solution for this.

References

[1] Oskar Wirén, “Data Driven Development for Mobile

Applications”, Teknisk- Naturventenskaplig, pp. 43-

45, August 2013.

[2] Website: https://www.mixpanel.com/retention

[3] Website: https://www.mixpanel.com/funnels

[4] Website: https://developer.android.com

[5] Website: http://docs.amcharts.com/3/javascriptcharts

[6] Website: http://docs.mongodb.org/manual/

[7] Website: https://hadoop.apache.org/docs/stable/

[8] Website: https://pig.apache.org

Paper ID: SUB156357 551

