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Abstract: Low-Density Parity Check codes are a special class of linear block codes widely used in communication and disk storage 

systems, due to their Shannon limit approaching performance and their favourable structure. A special class of LDPC codes, called 

QC-LDPC codes, allows for efficient hardware implementations of encoding and decoding algorithms by exploiting the structure of the 

Parity Check Matrix (PCM), which is composed of circulant permutation matrices. These codes have encoding advantage over other 

types of LDPC codes. In this paper an efficient QC-LDPC encoder and decoder are developed. Belief propagation algorithm is used for 

decoding .Overall system is developed in Matlab and performances are compared for different rates. This work also introduces a 

memory efficient high throughput VHDL implementation for the encoder. Due to their error correction strength, QC-LDPC codes have 

been recently adopted in several industrial standards such as wireless local area networks (Wi-Fi, IEEE802.11 n, ac, and ad) and 

Digital Video Broadcasting- Satellite- Second Generation (DVB-S2). 
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1. Introduction 
 

In 1948, Claude E. Shannon demonstrated in his paper [1] 

that data can be transmitted up to full capacity of the channel 

and free of errors by using specific coding schemes. The 

engineers at that time and today were surprised by Shannon’s 

channel capacity that has become a fundamental standard for 

communication engineers as it gives a determination of what 

a system can perform and what a system cannot perform. 

Many of the researchers have formed different coding 

techniques to rise above the space between theoretical and 

practical channel capacities. Theses codes can be sorted by 

simple like repetition codes to a bit multipart codes like 

cyclic Hamming and array codes and more compound codes 

like Bose-Chaudhuri-Hocquenghem (BCH) and Reed-

Solomon (RS) codes. So most of the codes were well design 

and most of them make distinct from Shannon’s theoretical 

channel capacity.  

 

A new coding technique, Low Density Parity Check (LDPC) 

codes are a special class of linear block codes, were 

introduced by Gallager in 1962 [6] .LDPC codes were carry 

out to achieved near the Shannon’s limit  but at that time 

almost for thirty years the work done by Gallager was 

ignored until D. Mackay reintroduced these codes in 

1996.These codes have remarkable performance near 

Shannon’s limit when perfectly decoded.A special class of 

LDPC codes, called QC-LDPC codes, allows for efficient 

hardware implementations of encoding and decoding 

algorithms by exploiting the structure of the Parity Check 

Matrix (PCM), which is composed of circulant permutation 

matrices.So QC-LDPC codes can be encoded efficiently with 

shift registers. Due to their excellent error correction 

capability and the availability of parallel decoders, LDPC 

codes have been lately selected by the digital video 

broadcasting (DVB-S2) standard and high-throughput  

wireless local area network (LAN), IEEE 802.16e, IEEE 

802.11n, 10Gb Ethernet and magnetic storage. 

In the LDPC encoder design, the direct method is to multiply 

the information bits with the dense generator matrix derived 

from the sparse PCM. The typically large code word length 

and density of the generator matrix make this method 

impractical due to its high complexity. Richardson and 

Urbanke [7] reduce an LDPC Parity Check Matrix  in to an 

almost lower triangular by row and column reduction thus 

maintaining the sparsity of the PCM. Neal introduced an 

encoding method [4], where LU decomposition is used to 

avoid the computational complexity of multiplication by a 

dense inverse matrix. In our approach first we apply LU-

decomposition on H2
-1 

and then perform matrix 

multiplications to calculate the parity bit. In this paper we 

introduce serial and parallel encoder architecture for QC-

LDPC codes. In this paper scheme reduces memory 

requirements, Here PCM is represented as compressed base 

shift matrix. That reduces memory requirements. LU 

decomposition of H2
-1 

further reduces memory requirements. 

 

Belief propagation (BP) algorithm is used to decode the 

received code word bits. Bit Flipping (BF) algorithm and the 

Sum Product Algorithm (SPA) are the hard decision & the 

soft decision decoding algorithms of BP. Bit flipping 

algorithm initially a hard decision is taken at the received 

codeword bits and the sum product algorithm is used to take 

information of channel proper ties and this is used to find the 

probabilities of the bit received at the other end, here at the 

end of SPA a hard decision is taken and soft information is 

utilized that is related to the received bits.  In MATLAB a 

library of different functions was created to perform 

encoding, decoding, and performances were compared for 

different rates. Results give an idea that even at lower SNR 

these LDPC codes performed much better and have no error 

floor. BER curves are also with 1.5-2.5dB from Shannon’s 

limit at BER of 10
-6

 for different rates. 
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2. Literature Survey 
 

2.1 Richardson Encoding Scheme 

 

Figure 1: Richardson’s proposal for encoding. 
 

LDPC codes are linear codes. Hence, they can be expressed 

as the null space of a parity-check matrix H. 

In the LDPC encoder, the direct method is to multiply the 

information bits with the dense generator matrix derived from 

the sparse PCM.The typically large code word length and 

density of the generator matrix make this method impractical 

due to its high complexity. The actual encoding requires 

𝑂(𝑛2
)operations since, in general, after the preprocessing the 

matrix will no longer be sparse.    Richardon’s algorithm 

makes use of the sparseness of the parity check matrices of 

LDPC codes and achieve much smaller complexity than 

conventional encoding algorithms .Richardson proposed their 

encoding scheme with near O(n+g
2
) complexity and is shown 

in Fig. 1. ,where g is a parameter called the gap of code. 

 

2.2 LDPC Encoding Using Triangular Factorization 

 

LDPC encoding using Triangular factorization[3] was 

developed by Yuichi Kaji.In this he also consider parity 

check equation to develop code word.He also divide the H 

matrix in to  H1 and H2 .Using triangular factorization found  

Lower ( L) and Upper(U) triangular matrices. Thus H2 can 

be represented as 

The parity bits are calculated in two step  

Step1: Compute  

Step2: Solve  

1. Compute v
T
=L

-1
 U

T 
 by aback substitution for L,and then  

2. Compute p
T
= U

-1
 v

T
 by a substitution for U. 

This algorithm is known as TSTF (Two Stage encoding with 

the Triangular Factorization).But here the problem is that he 

not mentioned about the QCLDPC codes. He has shown that 

LU decomposition of leads to less encoding complexity than 

RU encoding complexity, however, his analysis does not deal 

with the structure of L
-1

 and U
-1

 in the case of QC-LDPC 

codes, where they could have less nonzero sub-matrices than 
1

2


H . 

 

2.3 LDPC Encoding using PCM 

 

In general, a systematic (n, k)  binary LDPC code has k  

information bits and  n coded bits with code rate  r = k/n. The 

parity-check matrix H is of size (n − k) × n, where n − k = m 

is the number of parity bits, and it defines a set of equations 

by equation (2) ,where c is a codeword. Let H1 and H2 be 

sub-matrices of H, of size m × k and m × m, respectively, 

such that H = [H1 H2]. Let codeword c be expressed as c = [s 

p], where s is a vector of k information bits and p is a vector 

of the m parity bits. From (1), 

Here H
-1

 is not sparse .The high density of H
-1

 in (3) requires 

substantial hardware cost for the storage of the matrix. 

Furthermore, operations with dense matrices increases the 

computational complexity.In certain cases, the structure of 

the PCM allows for the reduction of encoding complexity. 

Encoding architecture of QC-LDPC has low complexity, they 

take advantage of the fact that the sub-matrices of the QC-

LDPC PCM are identity matrices or identity shifted matrices. 

 

3. Methodology 
 

3.1 Iterative PCM Construction 

 
  

 
Figure 2: Base Matrix of ieee 802.16e 

 

In QC-LDPC, PCM is represented as compressed base 

matrix. This matrix consist of w x w circulant permutation 

sub matrices and zero sub matrices. Circulant permutation 

sub matrices are nonzero circularly shifted identity sub-

matrices. Parity check matrix of the QC-LDPC is constructed 

by a matrix expansion process. To illustrate multilevel 

expansion process[5], consider a binary base matrix H (i) in 

the ith expansion level. The parity check matrix of a QC-

LDPC code, H(i+1), is obtained by replacing each element 

hij of a base binary matrix H (i)  by a w(i) × w(i) permutation 

matrix when hij = 1, or by a w(i) × w(i)  zero matrix 

otherwise.  

                          )}{Hb(i),w(i
v

ExH(i) 1  (5) 

where Ex{M,w} represents the operation of the extension of 

a matrix M by using sub-matrices w × w , i = 1, 2, · · · ,v, v is 

the number of expansion steps, w(i) wi×wi is the square I_ 

sub-matrix and H(0) = Hb , where Hb the first binary base 

matrix in the sequence of the expansion steps. In each 

expansion level girth of the expanded matrix is calculated 

.Girth is the shortest cycle presented in tanner graph 

,representation of H matrix. Girth four LDPC codes have 

poor decoding performance. Thus we have to construct girth-

four free LDPC code. The fig. shows IEEE 802.16e standard 

base matrix .In which each element is the shifting factor  and 

it has a dual diagonal Hb2 sub matrix. There is only one level 

of expansion is required to construct the PCM. Using this H 

matrix we can calculate the parity bit. 
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3.1.1 Matrix Expansion Procedure 

 

 
Figure 3: Matrix expansion procedure 

 

1) Construct a base matrix  Hb = [Hb1 Hb2] where Hb2 is full-

rank and girth -four free. 

2) Expand  Hb2  by w1 × w1 identity shifted matrices to 

produce H2(1),Expand Hb1,by w1×w1 permuted matrices, 

concatenated with H2(1) to construct girth-four free  

H(1) = [H1(1)  H2(1)] 

3) Expand H2(1) of step 2 by w2×w2 using identity shifted 

matrices to produce H2(2) and expand H1(1), by w2×w2, 

concatenated with H2(2) to construct  girth-four free       H 

= [H1(2)  H2(2)].  

4) The procedure is repeated until we reach the final PCM. 

 

3.2 Proposed  Encoder Architecture  

Table 1: Margin specifications 

 

Step Operation 

1 
T

sH
T

p  11
 

2 T
pU

T
p 12   

3 T
pL

T
p 2  

 

Triangular factorization can reduce the complexity due to the 

multiplication by
1

2


H  in (3) which can be decomposed into a 

lower triangular matrix and upper triangular matrix, that is: 

 ][ 1

TT
sHULp                                                              (7) 

If all the principle minors of are non-singular, the LU 

decomposition may not exist. In this case an extended LU 

decomposition is possible:[ L.U.P]=lu(H2) , where P  is a 

permutation matrix such that    

)][(
11

1

TT
sHLUp 





                                                (8) 

LU decomposition of 
1

2


H  of the proposed codes results to 

sparser matrices than LU decomposition of H2 .The proposed 

encoding method exploits the sparsity of the three matrices. 

Equation (6) can be implemented by performing a three-step 

encoding algorithm, listed in Table I. The sub-matrix H2 is 

inverted within Galois Field (2) .The obtained result is 

decomposed into a lower triangular matrix and an upper 

triangular matrix using Gaussian Elimination. Matrices L and 

U are precomputed, compressed and stored in appropriated 

memories. 

 
         Figure 4: Overview of the proposed hardware encoder. 

 

An overview of the proposed hardware encoder 

architecture is shown in Fig. 2. First we propose an 

architecture where the operations are grouped into three 

identical stages, executed serially. We first propose a single-

level compression scheme, subsequently extended to a 

recursive multi-level scheme. The particular technique to 

reduce the memory required to store a sparse binary matrix, 

is to store the location of nonzero elements only . The basic 

operation performed by each of the three stages of the 

encoder core is row-vector by matrix multiplication (VMM). 

We consider that each row vector is composed of sub-row 

vectors each of length equal to w. 

 

3.3 Serial Encoder Architecture 

 

3.3.1 First Encoding Step 

 
Figure 5:   First-stage MM Unit. 

 

In the first step is involved H1. H1 matrix is stored as 

compressed base matrix where its elements represent the 

values of the sub-matrices it can be stored as look up table. 

For a code constructed in steps, we use the notation to denote 

EOC (End Of Column) is a one-bit flag, which, when 

asserted, denotes that the entry to be subsequently read, 

refers to the next column. Multiplication of a vector by a 

circularly shifted matrix is equivalent to a corresponding 

circular shift of the vector. Therefore we use a Barrel Shifter 

(BS) modified to perform circular shifts to implement the 

multiplication of sub-row vectors with the nonzero sub-

matrices. All partial products are accumulated by exclusive-

or gates and a w-bit register, as shown in Fig. 5. The 

employed compressing method ensures that the memory 

required to store the matrices needed for encoding, depends 

on the density of each matrix rather than its size. 

           ULH 
1

2  (6) 
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3.3.2 Second and Third Encoding Step 

 

 
Figure 6:  Second and Third stage matrix multiplication unit. 

 

The second and third stage of matrix multiplayer unit is more 

complex than first stage shown in fig.6 . It consist of an 

additional Multiply Accumulate unit .It is used to find the 

multiplication of type of matrix other than identity shifted 

matrices with the vector. Because this type multiplication 

cannot find out using a simple shifting operation. Therefore 

we first to multiply the sub-row vectors with the 

corresponding sub-matrices using a Modulo-2 row vector-

matrix multiplier, called MAC, and subsequently circularly 

shift the result by the corresponding shifting factor. Matrices 

L and U do not consist only of identity I ,circularly shifted 

identity, and zero sub-matrices thus, because of the inversion 

of H2 ,they differ from the structure of H1. The matrices L 

and U consist of  w1×w1 zero sub-matrices and a limited 

number of types of w1×w1 nonzero sub-matrices. 

Furthermore, it is interesting to note that the nonzero sub-

matrices are obtained by circularly shifting an even more 

limited set T of nonzero sub-matrices. The particular details 

of the structure of L and U are exploited to decrease the 

memory required for their storage. The different types of 

matrices other than zero matrices and identity shifted 

matrices  present in the inverse matrix are shown in fig.7. 

 

  Type1 =     

0010

0001

1000

0100

    Type2 =       

0101

1010

0101

1010

 

Figure 7:  Type of non zero sub matrix in Land U 

 

3.4 Parallel Encoder Architecture 

 

 

 

 

 

 

 

 

 

 
Figure 8: Parallel architecture for one column of Base matrix 

 

The serial encoding system multiplies row vectors by the 

corresponding compressed matrices, one w-column at a time. 

To decrease the encoding latency, we can parallelize each 

multiplication. Parallel architecture for multiplication of 

input vector with one column of base matrix is shown in fig 

8.In this architecture the input is divided into sub vectors of 

length w and applied to separate barrel shifter. Shifting factor 

is also applied to the BS and output is XORed 

simultaneously. This block is repeated for all columns of the 

base matrix. Parity bit is  the concatenated version of  all 

these parallel block .We get code word by concatenating the 

input  and parity bit.The fully parallel architecture of Fig. 6  

execute the three-step encoding algorithm in a single 

clock.So the through put is very high with the expense of 

hard ware complexity .The memory requirement for parallel 

encoder is same as that of serial architecture. 

 

4. Result Analysis  
 

4.1 VHDL Implementation Results 

 

 
Figure 9:  ModelSim output waveform 

 

The serial and parallel encoders are developed in Model-Sim. 

ModelSim output waveform is shown in fig.9. Xilinx ISE 

8.1i software is used to find the slice utilization of serial and 

parallel encoders. The proposed encoder architectures have 

been implemented onto hardware for various codes.Li [3] 

exploit the circulants in the structure of the matrices involved 

in encoding using the Shift-Register-Add-Accumulator 

(SRAA) circuit as a building block for a variety of 

architectures. The SRAA circuits require w clocks to 

multiply a w-bit vector by wxw  circulant matrix. Our 

architecture utilizes BS to perform the same basic operation 

in a single clock, at the expense of a longer maximum delay 

path. 

 

Paper ID: SUB156334 326



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 7, July 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Table 2: Comparison of Serial and Parallel architecture 
Architecture Slices Throughput 

Serial 424 52Mb/s 

2 parallel 517 102Mb/s 

 

The occupied slices refer to the proposed serial architecture 

using single-level compression. The architecture is found to 

be efficient for several QC-LDPC codes .The proposed 

parallel architecture increases the encoding throughput with a 

moderate increase of area complexity. Table 2 reports the 

encoding complexity of code for two cases, a serial one and a 

parallel one. The particular parallel architecture uses distinct 

MM units and not shared MMs.The proposed encoder  is 

memory efficient and low complex  in comparison with 

ordinary LDPC in which large number of components and 

memory are required . Degree-2 parallel architecture 

increases throughput by a factor of two, while area 

complexity is only slightly increased in comparison with 

serial architecture. In N parallel architecture throughput is 

very high in the range of GB (Giga Byte) with moderate 

hardware complexity. 

 

5. Conclusion 
 

We have introduced a memory efficient Serial encoder and 

Parallel encoder for QC-LDPC codes. The recursive code 

construction allows flexibility of creation of codes with good 

performance and low error floors comparable to codes of 

IEEE802.16e standards. The architectures are flexible in the 

sense of supporting wide range of code lengths and rates. The 

proposed Parallel architecture has high throughput compared 

to serial architecture with the expense of moderate hardware 

complexity. Proposed encoder is found to reduce complexity 

compared with existing methods. 
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