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Abstract: Having a detailed knowledge of rainfall and temperature dynamics is important for an adequate management of our 

meteorological and hydrological resources. Chaos theory being the basis for studying nonlinear dynamic systems has opened a lot of 

doors towards understanding complex systems in nature such as the weather. In this study the dynamics of 

daily rainfall and temperature in Makurdi from January 1st 1977 – December 31st 2010 is investigated using chaos theory. A variety of 

nonlinear techniques such as power spectrum, phase space reconstruction, Lyapunov exponents and correlation dimension are applied. 

The optimal delay times were calculated for rainfall and temperature using the average mutual information technique while optimal 

embedding dimensions were also obtained using the method of false nearest neighbors. Phase space reconstruction was carried out with 

these optimal values using the method of delays. The phase portraits showed geometry of distinct shapes interwoven to form spongy like 

structures indicating the presence of randomness and chaos in the data with that of rainfall concentrated at the origin due to the 

numerous zeros in the rainfall values. The correlation dimensions were estimated using the Grassberger-Procaccia algorithm and found 

to be 1.02 and 5.82 for the rainfall and temperature respectively while the Lyapunov exponents were calculated using Rosenstein’s 

approach and obtained as 0.00832/day and 0.00574/day for daily rainfall and temperature respectively. The small values (υ<20) of the 

correlation dimensions obtained suggest the presence of chaotic behavior of low dimensions; inferring that the rainfall dynamics is 

dominantly governed by a minimum (maximum) of 2(18) variables while the temperature dynamics is governed by a minimum 

(maximum) of 6(17) variables. The positive values of the largest Lyapunov exponents confirm the presence of chaotic dynamics in 

rainfall and temperature records over Makurdi and suggest predictability of within 112 days and 174 days for rainfall and temperature 

respectively. 
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1. Introduction 
 

Recent developments in information technology and 

computing ability in the last few years have made it possible 

for in-depth exploration of complex systems in the natural 

sciences. A focal issue in the exposition of complex systems 

is the unraveling of the structure of "disorder", a common 

and usually prevailing, yet neglected characteristic of many 

dynamical systems. The study of nonlinear systems is aimed 

at a new understanding of the "laws of disorder" also 

referred to as "the Chaos theory" or "Nonlinear dynamics". 

Chaos is a subset of the more general nonlinear dynamical 

entity [1]. For a dynamical system to be classified as chaotic, 

it must be generally characterized by a sensitivity to initial 

conditions, topologically mixing (i.e. the system must be 

transitive); and its periodic orbits must be dense [2]. The 

identification of chaos in atmospheric systems is due to an 

accidental discovery by Edward Lorenz, a meteorologist in 

1961 when he constructed a very crude model of the 

convection of the atmosphere as it is heated from below by 

the ground. Lorenz discovered, to his greatest surprise, that 

his modeled atmosphere exhibited chaotic motion—which, 

at that time, was virtually unknown to Physics [3]. In 

particular, Lorenz realized that the chaotic dynamics of the 

atmosphere spells doom for long-term weather forecasting 

i.e. the best one can hope to achieve is to predict the weather 

a few days in advance [4]. Weather is chaotic because air is 

light, it has low friction and viscosity, it expands strongly 

when in contact with hot surfaces and it conducts heat 

poorly; wind induces forced convections and is never in 

equilibrium [5].  

 

In modern meteorological and hydrological studies, huge 

emphasis is laid on time series modeling and this is used in 

designing, planning and forecasting of meteorological and 

water resource systems. Time series represents a quantitative 

measure of a physical process ‗x(t)‘ recorded at time ‗t‘ 

which can be discrete or continuous [6]. In this paper, the 

dynamics of rainfall and temperature in Makurdi, Benue 

State, Nigeria over the last three decades is investigated. The 

tools of nonlinear dynamics were applied to rainfall and 

temperature time series and the results obtained will provide 

information about the dynamics of our weather so as to 

enable a more accurate modeling and forecasting of the 

weather across the country in future.  

 

2. Theoretical Framework 
 

The tools of nonlinear analysis employed in this work 

include qualitative tools such as observation of the state 

variables i.e. the time series plot, Power spectrum, Phase 

portrait and the quantitative tools which tells us the degree 

of chaoticity in the system such as correlation dimension and 

Lyapunov exponents. 

2.1 Time Series Plot 

 

Time series plot (trajectory plot) is a visual method which 

involves plotting the state variables of the system and 
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observing the trend. If they exhibit irregular, aperiodic or 

unpredictable behavior, then it is called chaotic. On the other 

hand if they exhibit a regular repeating pattern, then the 

system exhibits either a periodic and quasi periodic behavior 

[7]. 

 

2.2 Power Spectrum 

 

The power spectrum of a signal shows how a signal‘s power 

is distributed throughout the frequency domain. The power 

spectrum is the square of the absolute value of the Fast 

Fourier Transform of the time series. Chaotic signals are 

characterized by the presence of wide broadband noise in 

their power spectrum, or in other words its power spectrum 

is expressed in terms of oscillations with a continuum of 

frequencies [8].  

 

2.3 Phase Portrait 

 

A phase portrait is a two-dimensional projection of the 

phase-space. It represents each of the state variable‘s 

instantaneous state to each other. Chaotic and other motions 

can be distinguished visually from each other according to 

the description in Table 1 [7].  

 

Table 1: Solutions of dynamic systems 
Solution Fixed Periodic Quasi Periodic Chaotic 

Nature of 

Phase portrait 

 

Point 

Closed 

curve 

 

Torus 

Distinct 

Shapes 

  

2.4 Correlation Dimension 

 

The correlation dimension actually gives a measure of 

complexity for the underlying attractor of the system by 

measuring the number of ―degrees of freedom‖ excited by 

the system [9]. For any set of M points in an m-dimensional 

phase space, the correlation integral or correlation sum 

(spatial correlation of points) C(r) is computed by the 

equation [10]:  

   

 (1)  

Where H(x) is the Heaviside function and is the 

Euclidean norm while r is the tolerance distance (scaling 

parameter). The value of r should be smaller than the 

diameter of the set (which is considered to be equal to one) 

and larger than the mean nearest neighbor distance [11]. The 

correlation integral measures the fraction of the total number 

of pairs of phase points that are within a distance r from each 

other. Stochastic time series obey the power law [12]:  

                                        (2) 

While for chaotic time series, the correlation integral power 

law for small values of r takes the form: 

                                        (3) 

Hence, the correlation dimension ν is given by: 

                            (4) 

 

This implies that for a sufficiently large number of points 

that are evenly distribution, a log-log graph of the 

correlation integral versus the scaling parameter, r will yield 

an estimate of the correlation dimension ν, which is 

computed from a least-square fit of a straight line over a 

length scale of r [10]. Chaotic systems usually have low and 

fractal values of correlation dimension i.e.  <20 and its 

correlation exponent curve for a range of values of 

embedding dimension (say m = 2 to 20) usually saturates at 

values beyond its actual embedding dimension [12]. The 

nearest integer above the saturation value is generally 

considered to provide the minimum number of phase-space 

or variables necessary to model the dynamics of the 

attractor. The value of the embedding dimension at which 

the saturation of the correlation exponent occurs 

generally provides an upper bound on the number of 

variables sufficient to model the dynamics [13]. However, if 

the correlation exponent increases without bound with 

increase in the embedding dimension, then the system under 

investigation is generally considered as stochastic [14]. 

 

2.5 Lyapunov Exponents 

 

Lyapunov exponents (λ) are the average rates of exponential 

divergence or convergence of nearby orbits in phase space. 

It shows the long term behavior of the time series and is a 

fundamental property that characterizes the rate of 

separation of infinitesimally close trajectories [15]. The 

method used in computing the largest Lyapunov exponent 

was developed by Rosenstein et al [16] and it computes the 

largest Lyapunov exponent for small data sets more 

accurately. This method proceeds by assuming the jth pair of 

nearest neighbors diverges approximately at a rate given by 

the largest Lyapunov exponent: 

                                 (5)  

where Cj is the initial separation (i.e. dj(0)) and dt is the 

sampling interval. By taking the natural logarithm of both 

sides, they obtained the equation: 

                    (6)  

 

If a typical plot (solid curve) of the average exponential 

divergence  against  is made; the slope of the 

dashed line fitted to the curves has a slope equal to the 

theoretical value of λ (the largest Lyapunov exponent). This 

can easily be calculated by using a regression line with the 

method of least squares. Lyapunov exponents quantify the 

sensitivity to initial conditions and its sign is interpreted as 

shown in Table 2[12]: 

 

Table 2: Possible types of dynamical systems and the 

corresponding largest Lyapunov exponents 
Largest 

Lyapunov 

exponent 

( ) 

 

 

 

 

 

 

 

 

Dynamics 

of the 

system 

Stable 

fixed 

point 

(periodic) 

Stable 

limit 

cycle 

(quasi-

periodic) 

Deterministic 

chaos 

Noise 

(Random 

motion) 

 

The Lyapunov (e-folding) time or predictability T is the time 

within which it is possible to predict the system forward and 

can be computed in terms of the largest Lyapunov exponent 

λ1 using the expression [17]:  

                                           (7)  

where is the sampling interval. 
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2.6 Phase Space Reconstruction 

 

In order to carry out nonlinear analysis of the data, phase 

space reconstruction has to be carried out on the data so as to 

draw out a multidimensional description of state space 

dynamics from the time series data of a single dynamical 

variable, and generalize the qualitative measures of chaotic 

behavior. Another physical reason for a possible phase space 

reconstruction is that nonlinear systems are usually 

characterized by self-interaction, so that a single variable 

may carry information about the whole system [16]. The 

method of delay (MOD) is used in this research work 

[15],[18]. 

 

For a time series {x1, x2,…,xN}, where N is the number of 

observations, the attractor can be reconstructed in a m-

dimensional phase space of delay coordinates by forming the 

vectors:  

                (8)  

where τ is the delay time, and the integer m (the embedding 

dimension) must be chosen appropriately. In practical terms, 

the delay time (or time lag) τ must be the shortest time over 

which there are clearly measurable variations in the 

observable.  

                                       (9) 

where  is the sampling interval and is the lag length. 

 

In this study, the delay time  is evaluated using the method 

of Average Mutual Information (AMI) postulated by 

Cellucci et al. The average mutual information is defined by 

[19]: 

                     (10) 

where  and  are the probabilities of finding in 

the th and in the th interval, and  is their joint 

probability. A plot of  versus the lag length  is made 

and the first local minimum of the curve corresponds to the 

optimum selection of the delay time . 

 

The minimum embedding dimension, m for phase space 

reconstruction in this work is computed using the method of 

―False Nearest Neighbors (FNN)‖ developed by Kennel et 

al. [20]. This method works by checking the neighborhood 

of points embedded in projection manifolds of increasing 

dimension and eliminating 'false neighbors.' This means that 

points apparently lying close together due to the projection 

are separated by choosing higher embedding dimensions. A 

natural criterion for catching embedding errors is that the 

increase in distance between two neighbored points is large 

when going from dimension m to m+1. This criterion is 

achieved by designating as a false nearest neighbor any 

neighbor for which the following is valid:  

 = >  (11)  

where  is defined as: 

  =  (12)  

and  

  = +   (13) 

 

x
(r)

(n) is the rth nearest neighbor of x(n). Rm denotes the 

Euclidean distance (norm) in phase space between nearest 

neighbors with embedding dimension m, and Rtol is the 

tolerance threshold. The Rtol criterion by itself is not 

sufficient for determining a proper embedding dimension as 

a problem turns out if a point is a nearest neighbor of 

another without necessarily being close to it thus causing the 

number of false nearest neighbors to increase at higher 

dimensions. In order to tackle this problem, a further 

criterion is introduced; the loneliness criterion. It is 

represented by the loneliness tolerance threshold, Atol. 

The condition for the loneliness criterion is: 

 >                                   (15) 

where σ is the variance of the data set. 

 

 = , =           (16) 

  

The output produced by the function in this method is a plot 

of the percentage of FNN versus increasing embedding 

dimension and has a monotonic decreasing curve. The 

minimum embedding dimension usually can be found where 

the percentage of FNN drops to almost zero or a minimum 

value [20]. In topological terms, each vector in phase space 

can be considered to provide the coordinates of a point in an 

m-dimensional phase space, and these vectors also provide a 

way to reproduce the dynamics of the real unknown system 

[1].  

 

3. The Study Area and Data Used 
 

Makurdi is the capital of Benue state in the North-central 

region of Nigeria. The city has coordinates 

 and is located on the Banks of 

River Benue a major tributary of the Niger River. Its 

landscape is largely dominated by the Guinea savannah 

vegetation and experiences two dominant seasons: the rainy 

and dry season [21].  

 

 
Figure 1: Map of Benue state showing the location of the 

study area (Makurdi). Source: Google maps [22]. 

 

The data used in this research was obtained from the 

International Institute for Tropical Agriculture (IITA) 

Ibadan, Nigeria. It comprises of secondary data made up of 

daily averages of rainfall (mm) and average temperature 

 recorded over Makurdi from 1
st
 January, 1977 to 31

st
 

December 2010, a period of thirty four years. 
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4. Results and Discussion 
 

The statistics of rainfall (mm) and temperature ( ) are 

displayed in Tables 3 and 4 below: 

 

Table 3: Statistics of daily rainfall time series in Makurdi 

Statistic Value 

No. of data 12,418 

No. of zeros 9,670 

Mean(mm) 3.24 

Standard Deviation(mm) 10.14 

Variance(mm) 102.87 

Coefficient of Variation 3.13 

Maximum value(mm) 149.30 

Minimum value(mm) 0.00 

Kurtosis 34.24 

Skewness 4.84 

 

Table 4: Statistics of daily Average temperature time series 

in Makurdi 
Statistic Value 

No. of data 12,418 

No. of zeros 0 

Mean( ) 28.59 

Standard Deviation( ) 1.99 

Variance( ) 3.97 

Coefficient of Variation 0.07 

Maximum value( ) 34.50 

Minimum value( ) 21.70 

Kurtosis 3.01 

Skewness 0.15 

 

Figure 2 shows the time series plot of rainfall (mm) and 

temperature ( ) in Makurdi over three decades. 

 
(a) 

 
(b) 

Figure 2: Time series for: (a) Rainfall and (b) Temperature 

in Makurdi. 

Figure 3 shows the power spectra of rainfall and temperature 

time series observed in Makurdi. Both spectra show fractal 

(random) behavior with broadband noise and no dominant 

peaks. The daily rainfall time series has a mean orbital 

period of 182.62 days while the daily temperature time 

series has a mean orbital period of 126.71 days. The mean 

orbital period is the reciprocal of the mean (peak) frequency 

of the power spectrum [16]. 
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(b) 

Figure 3: Power spectrum for: (a) Rainfall and (b) 

Temperature in Makurdi. 

 

Figure 4 shows the estimation of delay time using the 

method of average mutual information (AMI). A delay time 

of 2days was calculated for rainfall data while a delay time 

of 5days was estimated for the temperature dataset.  
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(b) 

Figure 4: AMI function for: (a) Rainfall (τ=2days) and (b) 

Temperature (τ =5days) 

 

Figure 5 illustrates the determination of the optimal 

embedding dimension using the method of false nearest 

neighbors (FNN). The rainfall data was found to have an 

embedding dimension of nine (m=9) while the temperature 

dataset has an optimal embedding dimension of five (m=5). 
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Figure 5: Percentage of FNN for: (a) Rainfall (m=9) and (b) 

Temperature (m=5) 

 

Figure 6 shows the phase portraits of the reconstructed phase 

spaces for rainfall and temperature using the delay time and 

embedding dimensions calculated. Both show spongy like 

geometry of distinct shapes implying the presence of random 

and chaotic dynamics in the rainfall and temperature time 

series with that of rainfall concentrated at the origin due to 

the numerous zeros in the rainfall values. 
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Figure 6: Phase portrait for: (a) Rainfall and (b) 

Temperature in Makurdi 

 

The correlation functions were calculated for the rainfall and 

temperature datasets using the delay times τ =2 and τ =5 

respectively for increasing embedding dimensions, m, from 

1 to 20.  

 

Figure 7 shows the relationship between the correlation 

function C(r) and the radius r (i.e.  versus ) for 

increasing embedding dimension m. The relationship 

between the correlation exponents and the embedding 

dimension values m is shown in figure 8. The correlation 

exponents were obtained from the  vs  plot and 

are the slopes estimated from the most linear portion of the 

correlation integral graph plotted on a logarithmic scale [23].  

 
(a) 
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(b) 

Figure 7:  versus  plots for: (a) Rainfall (b) 

Temperature data in Makurdi. 
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Figure 8: Relation between correlation exponent and 

embedding dimension m for: (a) Rainfall (υ =1.02) and (b) 

Temperature (υ =5.82) 

 

From the figures above, it is observed that the value of the 

correlation exponents increase with the embedding 

dimension up to certain value and then saturates beyond it. 

The saturation of the correlation exponent beyond a certain 

embedding dimension value is the indication of an existence 

of chaotic dynamics. The saturated correlation dimension is 

1.02 for rainfall and 5.82 for average temperature. These low 

(<20) values of correlation dimension suggest that there is a 

possible presence of chaotic behavior and fractal 

characteristics in the rainfall and temperature time series. 

The underestimation of correlation dimensions in the rainfall 

time series may be due to higher number of zero values (i.e. 

9760; Table 3) in the rainfall data [24]. Similarly from the 

correlation exponent curves in figure 8, we can infer that the 

daily rainfall in Makurdi requires a minimum (maximum) of 

2(18) independent variables to model its dynamics while a 

minimum (maximum) of 6(17) independent variables are 

needed to model the dynamics of daily average temperature 

in Makurdi.  

 

Rosenstein‘s algorithm was applied for the estimation of the 

largest Lyapunov exponent using the delay time and 

embedding dimension earlier obtained. Figures 9 shows the 

curve for the exponential divergence (stretching factor) d(k) 

versus the number of iterations k=i.dt (Lyapunov spectrum). 

The slope value of the rising part of the curve corresponds to 

the largest Lyapunov exponent. This is obtained from the 

least-squares line fit. Rainfall time series was found to have 

a largest Lyapunov exponent of 0.0632 while the 

temperature time series has a largest Lyapunov exponent of 

0.00572. The positive values of the Lyapunov exponents 

indicate a strong signature of chaos in rainfall and 

temperature in Makurdi over the last 34 years.  

 

 
(a) 

 

 
(b) 

Figure 9: Estimation of the largest Lyapunov exponent from 

the Lyapunov spectrum for: (a) rainfall (λ = 0.00832) and 

(b) Temperature (λ = 0.00574) 

 

The inverse of the largest Lyapunov exponent estimates 

predictability (error doubling time) of time series, hence we 
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can say that the daily rainfall in Makurdi is accurately 

predictable as from 1
st
 January 2011 for the next 112 days 

while the daily average temperature was found to be 

predictable for the next 174 days. 

 

5. Conclusion 
 

In this work, the dynamics of daily rainfall and temperature 

in Makurdi over the last three decades was investigated 

using the tools of nonlinear dynamics. The outcome of this 

analysis confirmed that both rainfall and temperature in 

Makurdi exhibit chaotic behavior and while the daily rainfall 

time series requires a minimum of two (2) and maximum of 

eighteen (18) variables for the modeling of its dynamics, the 

daily temperature time series requires a minimum of six (6) 

and maximum of seventeen (17) variables for the modeling 

of its dynamics. It was also estimated via the largest 

Lyapunov exponents that the daily rainfall and temperature 

over Makurdi are predictable for the next 112 and 174 days 

respectively.  
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