
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A MapReduce Framework for an Effective

Scheduler Based on the Job Size in Hadoop

Madhumala R B
1
, Ravichandra Y B

2

1 Assistant Professor & HOD, Department of ISE, CIT, Ponnampet

2Assistant Professor & HOD, Department of CSE , CIT, Ponnampet

Abstract: The MapReduce framework and its open source implementation in Hadoop is existing as an standard for Bigdata related

processing in industry and academies. When a bunch of jobs are simultaneously submitted together to a MapReduce cluster, bunch of

jobs will compete for available resources by this the overall system performance may go down, this is because in MapReduce cluster

different kinds of workload is shared among multiple users. Existing scheduling algorithms which are supported by Hadoop always

cannot guarantee good average response time with different workloads. Therefore it is a challenging ability to design an effective

scheduler which can work with shared MapReduce cluster. To solve this problem we propose a new hadoop scheduler which works on

the different workload patterns and reduces overall execution time and job response time by dynamically tuning the available resources

that is shared among multiple users and scheduling algorithm for each user. The experimental results are obtained from CloudEra

shows that proposed scheduler reduces the average job response time under different workloads that are compared with existing Fair

and FIFO Scheduler.

Keywords: Job Scheduling; Hadoop; Mapreduce; Workload; HDFS;

1. Introduction

MapReduce is a software framework that breaks a

computation job into number of small Map Reduce tasks and

lets them to run on different resources in parallel [1].

MapReduce is an important part for parallel data oriented

cluster programming because of its flexibility and simplicity

[2].MapReduce allows Processing of large structured and

unstructured data simultaneously. Apache Hadoop is an open

source implementation of MapReduce and it has distributed

file system called HDFS (Hadoop Distributed file System

[4]. Hadoop [5] is primarily developed by yahoo and is used

for processing hundreds of terabytes of data on at least

10,000 cores [6].There are variety of data intensive

application that uses MapReduce. Nowadays, many clusters

are deployed with Hadoop and shared among multiple users

to run a bunch of long batch jobs and short interactive jobs

[7]. There are two types of jobs one map tasks and another

one is reduce tasks. Map task is applied to map and process

a block in the given input data and it produces an

intermediate data in the form of key-value pairs . This

intermediate data partitioned by hash function and fetched to

reducer task, after getting the data reducer starts the

execution and produces the final result. A Single master

node will communicates and manages all the slave nodes.

The master node will communicate to slaves though a

heartbeat message. The heartbeat message consists of status

and other information related with number of slaves. Job

scheduling is done by jobtracker assigns and manages the

tasks to slave nodes that has free resources. The nodes with

free resources are determined by heartbeat messages.

Each slave node have prefixed slots each slot can run either

single map or reduce task at a time. When multiple users

enter into the execution environment they compete for the

slots available. Recent surveys found that MapReduce

workloads has busy tailed characteristics this is because

there are large and small jobs in this case even small jobs

need a long waiting due long jobs. This may results in

overall system performance degradation. In such

MapReduce only effective Scheduling Policy can improve

the system performance. By default Hadoop comes with

FIFO(first in first out) scheduling where number of jobs are

served based on incoming order irrespective of job size this

is not sufficient to serve different kind of workloads i.e., if

long job is submitted first and a small job is submitted next

to it the small job experiences long waiting time. Alternative

to FIFO a Fair scheduler is proposed to improve the job

response time by assigning all jobs with a equal share of

resources. But there arises problem with the Fair Scheduler

i.e., Fair scheduler makes scheduling decision without

considering different types workload pattern by users. Thus

it is necessary to design an efficient Hadoop scheduler which

can work with different kinds of workload pattern and

reduces overall execution time of MapReduce tasks.

We propose a good Hadoop scheduler which aims towards

improving the average job response time by looking at job

size patterns to tune the scheduling policy among users, we

first develop information collector that collects the

information about recently fetched jobs by each users. A self

tuning scheduling procedure is designed in two levels or

tiers: at tier1 the available resource share to the multiple user

is tuned based on the file size of job submitted by each user;

and the job scheduling for each individual user is further

done at tier 2. Experimental results are obtained by the

simulation model which executed on CloudEra confirms the

effective working of our solution. Our scheduler’s job

response time is compared with FIFO and Fair scheduler

under different workloads.

2. Related Work

The scheduling of a set of tasks in a parallel system has been

proposed [8] focus on scheduling tasks and focus on system

Paper ID: 30061502 261

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

performance under different workload.

I order to study the pros and cons of the existing scheduler

i.e., FIFO and Fair, we conduct several experiments in

Hadoop at cloudEra. We created 4 nodes one node serve as a

master remaining serve as a slave. Each slave node contains

3 map slots and 3 reduce slots. Three different application

i.e., WordCount, CharCount, LineCount run to compute the

occurrence frequency of words, lines, characters in the input

file with different sizes.

2.1 Slots Sharing

There are two tiers of scheduling in Hadoop system which is

shared by multiple users: (1) Tier 1 is responsible assigning

available slots to active users, and (2) Tier 2schedules the

jobs for each individual users. In this aspect first we look at

Hadoop scheduling policies at Tier 1. When no minimum

share of each user is specified, Fair scheduler Fairly

allocates available slots among users such that all users get

an equal share of slots. However, Fair scheduler

unfortunately becomes inefficient when job sizes of active

users are not uniform.

In a context of single user job queue, giving preference to

shortest job first can reduce the overall response time. Using

Shortest Job First (SJF) has some disadvantages one is long

jobs may be starved in this SJF, SJF lacks flexibility when

certain level of priority between users is required. However

precise job size prediction before execution is required in

SJF, which is not much easy to achieve. Information

obtained by this studies and the analysis processor sharing

between multiple users in , we evaluate the share policies in

Hadoop systems. It is difficult to find out an optimal sharing

policy within a dynamic environment where each user

workload pattern may change time to time. Therefore we

planned to assign the slot based on current average job size

of users and dynamically tune the share over time based on

workload patterns.

2.2 Scheduling

In this section we describe the two scheduling policy works

at Tier 2, i.e., allocating slots to the jobs from same user. The

execution time in enterprise workloads may vary from

seconds to hours. Average job response time with FIFO

scheduling may increase as the small jobs remains behind

lager ones and waits for long time to get its turn, this may

cause the small job to experience the Starvation. Where as in

Fair Scheduler this problem is solved by giving equal slots

based on job size. When job size has large Variations, i.e.,

coefficient of variation CV>1,Fair gets Performance than

FIFO, But this performance decreases when CV< 1.

To verify this observation, we conduct experiments in our

Hadoop by running WordCount applications under three

different job size distributions: (1) input files have the same

size with CV=0; (2) input file sizes are exponentially

distributed with CV=1; and (3) input file sizes are highly

variable with CV = 2. As shown in Table 1, when input file

sizes are exponentially distributed, both FIFO and Fair gets

similar average job response times, while Fair significantly

reduce the average job response times under the case of high

variance but loses its superior when all files have similar

sizes.

Table 1: Average job response times under FIFO and Fair

when job sizes have three different distributions.

 CV=0 CV=1 CV=2

FIFO 60.33 sec 54.48 sec 59.66sec

Fair 78.32 sec 61.72 sec 41.48sec

The response times of each job in the three experiments with

different job size distributions are also plotted in Figure 1.

We noticed that when the job sizes are similar, most of jobs

gets shorter response times under FIFO than under Fair,

show in Figure 1(a). However, as the variation of job sizes

increases, i.e., CV>1, the percentage of jobs which are

finished more quickly under Fair increases as well, which

thus allows Fair to achieve better average job response time.

3. Architecture and Algorithm

We propose an adaptive scheduling algorithm which works

on workload information and dynamically Tune the

scheduling schemes to improve efficiency in terms of job

response time.

Figure 1: The architecture of Effective Scheduler.

The architecture adaptive scheduler is shown is in Fig.1.

The Effective scheduler consists of three parts:

1. Information collector: This gathers the workload

information form user, monitors the execution of each

job and task.

2. Tier 1: Scheduling among multiple user which allocates

slots to users based on their workload.

3. Tier 2: Tunes the scheduling for each user based on job

size.

Paper ID: 30061502 262

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: Response times of each WordCount job under FIFO and Fair when the input file sizes have different CV

3.1 Information Collector

To Design an effective scheduling algorithm the job size and

patterns of it must considered. So, a light weight information

collector is used to get the information of jobs and user. This

information is updated when each job is bifurcated as map

and reduce tasks.

In Effective scheduler, the important is workload

information that needs to be collected for each user ui

includes its average task execution time (and),

average size.

Algorithm 1 Effective scheduler

1. When user submit a new job

 a. Job size is estimated for user .

 b. Slot share is modified among users, alg.2

 c. Job Scheduling is tuned for user , alg. 3

2. When job is of task is finished Execution time is

updated.

3. When
 th

 job of user finished average map reduce time

is measured , .

4. After Tuning the available free slots are allotted based of

the tuned scheduling order.

Our Statistics are based on below formulas,

 = (1)

 (2)

2
.((3)

 (4)

 (5)

Where denotes size of
th

job completed of user ui,

(respected) represents the measured average map

(respected reduce) task execution time of means the

measured map (resp. reduce) task number of the . A job’s

size is defined as the summation of the execution times

of all tasks of the job, which is independent on the level of

task concurrency during the execution. The estimation of a

job’s size uses the previous tasks execution times of the job

based on a well accepted assumption that the same type of

tasks (either map or reduce tasks) of the same job have

similar execution times. Additionally, denotes the

variance of job sizes and are both initialized as 0 and

updated each time when a new job is finished and its

information is collected.

The data structure used to collect user’s information that

includes user ID, number of submitted by the user,

map/reduce task execution times, average and variance of

job sizes, and the last update time for detecting inactive

users. The memory space used for each user is 26 bytes and

our proposed system requires a total memory space of 130

bytes when 5 users are taken in our experiments. This is a

overhead for regular MapReduce clusters. To further reduce

the space overhead, proposed system timely checks the

inactive user records if a user has not submitted any jobs in 5

minutes. The average task execution time of each active

jobis recorded in another data structure, e.g., JobInfo used

by Fair. JobInfo is used to store information such as number

of running tasks for each active job, which is created when a

job is submitted and after execution job is deleted.

3.2 Tier 1

This section tells about algorithm used for scheduling

between number of users. The main goal is decide the

number of slots allocate the slots to active user. MapReduce

consists of two kinds of slots map and reduce slots. We have

designed two algorithm, one for allocating map slots and

another one to allocate reduce slots.

Assigning slots equally cannot give better result. So, we

proposed a new scheduler which adaptively allocates slots

shares among all users. Consider an example where two

users, if their job ratio is equal to 1:2, then number of

allotted to user1 will be twice that of user2. Consequently

our scheduler give higher priority to smaller jobs, results in

shorter response time.

One serious problem that has to be addressed is how to

exactly measure the execution time of map or reduce task

that are waiting or running currently. In hadoop it is not

possible to get the exact processing time of job before the

job is completely executed. We can predict the execution

time of job in hadoop as discussed in earlier section. The

Resulting share slot need not to be equal to the actual share

slot assignment between users. After redistribution which

user can get the available slots as shown step 4 in the below

algorithm.

Algorithm 2 Tier 1: Slot Share Allocation to users

for each user do

Update the slot share details of users using Eq.6;

for user ’s
th

job do

 if is submitted first then

 = ;

 else

 =0;

As shown in above algorithm in first step after arriving a

new job, Effective scheduler updates the job size of that user

Paper ID: 30061502 263

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

and adaptively adjusts slot share(among all users using

Eq.5 where represents the estimated slot share that will

be assigned to the users.

The Effective scheduler sorts the user in descending order

with redistributed slots. The scheduler will dispatch the job

towards the slots after assigning slots. When the free slots

are available with new order then that free slots can be

allotted to users waiting.

3.3 Tier 2

The Design principal in our proposed system after adjusting

share slots among multiple users dynamically tunes among

each individual user jobs by observing at each individual

user job details. This tier look into the available resources

and equally distributes it among shared resources and it

avoids small jobs waiting behind large ones i.e., it gives

priority to shortest job first and then looks for the longest

job.

Algorithm 3 Tier 2: Dynamically tuning the scheduling for

each user

for each user do

 if user is active then

 find current jobs

 if <1 and <1 then

 Scheduling is based on job submission;

 if >1 and >1 then

 slots are equally allotted among jobs;

 clear the previous information and start execution

 from beginning.

The above considers the of job sizes, i.e., map plus

reduce size, of each user to find out which scheme should be

used to allocate the free slots to jobs from that user. To

improve the accuracy, we combine the job size information

and the estimated size of running and waiting jobs in system.

 of currently finished jobs sizes of user is provided

directly by the history information collector, and of

waiting and running jobs’ sizes is calculated based on the

estimated job sizes. When the two values of a user are both

smaller than 1, the proposed scheme schedules the current

jobs in that user’s in the order of their submission times,

otherwise the user level scheduler will equally assign slots

among jobs. The previous information will be cleared and a

new collection window will start at this time.

4. Model Description

In this section, we introduce a queuing model Which is

designed to embed the Hadoop system. The main purpose of

this model is to compare with numerous Hadoop scheduling

schemes, and give best proof result to our new approach.

This model does not include all the details of the complex

Hadoop system, but provide a generalized guideline to users

.

Figure 3: Design of the Hadoop MapReduce cluster

simulator.

The model shown in Fig. 3 consists of two queues for map

tasks (Qm) and reduce tasks (Qr), respectively. Once a job is

submitted, tasks will be inserted into Qm through the map

task dispatcher and then it is reduced and inserted to reduce

queue(Qr) through reduce dispatcher.

An very important feature of MapReduce is jobs need to be

considered in the model is the dependency between map and

reduce tasks. In a Hadoop cluster, there is a Key which

decides when a job could start its reduce tasks. By default,

this parameter is set as 5%, which shows that the first reduce

task can be started when 5% of the map tasks are committed.

However, Studies [14] found that this setting would lead to

poor performance under the Fair scheduling scheme and

proposed to launch reduce tasks gradually according to the

progress of map phase. We further found that delaying the

launch time of reduce tasks, can improve the performance of

the Fair and the other slots sharing based schedulers.

However, this is not a necessary assume in the model.

When compared to the complex design of a MapReduce

system, the simulator built based on this model is a much-

simplified tool. Our aim is design a queue that can quikly

adopt any scheduling. Point of the simulation model is to

record the reactions of different scheduling policies on the

job response time under different conditions. Therefore, the

model we designed mainly simulates this key feature, i.e.,

how to share slots, without capturing the low-level details of

a MapReduce system, such as communication costs, locality

of data, and fault-tolerant mechanism.

5. Evaluation

Here we present the performance evolution of our proposed

scheduler which mainly targets on how to improve

efficiency of Hadoop system under different workloads.

5.1 Simulation Results

Initially we test Effective scheduler with the simulation

model shown in previous section which is emulated with

existing Hadoop system. We use a trace driven simulation

model to evaluate the performance of proposed scheduler to

improve it in terms of average response time, we use this on

the top of the model. Later the performance of the scheduler

can be improved by implementing it on a CloudEra Hadoop

cluster.

Paper ID: 30061502 264

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

We have configured number of map reduce slots in the

clusters in the simulation model. We have U users i.e.{ u1,

u2,.. ui,, uU } this users get the slots after submitting their

jobs to the system. Each user specification like jobId, inter

arrival time, job size etc are recorded. Each hadoop job

scheduled is determined with number of map tasks and

respective reduce tasks during the execution.

We consider different workloads to calculate average job

response time and execution time. Here we consider busy

workload, intermediate workload and normal workload. We

consider three simple cases where the available cluster is

shared with two users and with multiple clusters. We

consider different job size in first case, different job arrival

pattern in case two.

5.1.1 Case 1:Different Job Size with Two Users

Here we consider two users u1 and u2 simultaneously

submit their Hadoop jobs to the system. We evaluate this

Hadoop jobs with existing FIFO and Fair scheduler with job

size patterns we consider different job size patterns with user

u1 and u2. We consider scheduler performance with

different jobs and same job size with two users. number of

scheduling policies. Job response is measured from when

job a particular job is submitted and arrived to the job

tracker till it is assigned to map reduce. We noted Figure 4

shows the job response time of both users under that high

variance in job size decreases the performance under FIFO

because a huge number of small jobs will stuck behind the

large ones, it is plotted in Figure 4(a) in contrast with fair

and proposed scheduler where performance is improved in

other two schemes by scheduling the available slots between

users. Our proposed scheduler further improves by

scheduling FIFO with user 1 and other 2 is scheduled with

FIFO and user1 with other policies as shown in Figure 4(c).

Same experiment is done with fair that shows the

performance improvement with two users with our proposed

scheduler.

5.1.2 Case 2: Different Job Size Arrival Pattern with Two

Users

In this Section we consider changes in job arrival pattern.

We conduct some experiments with two users with their

differing arrival pattern the job arrival ratio between user is

considered here so we test with a job arrival ratio say 1:5

with respect user 1 and user 2, we consider the job arrival

with different workload patterns, the average response time

of two users shown in Figure 5.

Our proposed scheduler performs well in terms job response

times as shown in Figure 5(a) we noted that the outcome

benefit come with improvement in response time of user, our

scheduler assigns more slots to user 1 with FIFO scheduling

to smaller jobs based on FIFO because FIFO has low

variability job sizes as shown in Figure 5(c).

5.1.3 Case 3: Different job size/arrival pattern with

multiple users

To further verify our scheduler with multiple

Figure 4: Average job response times of (a) two users, (b) user 1, and (c) user 2 under three different scheduling policies and

different job size distribution settings. The relative improvement with respect to Fair is also plotted on each bar of LsPS.

Figure 5: Average job response times of (a) two users, (b) user 1, and (c) user 2 under different scheduling policies and

different job inter arrival time distributions. The relative job size ratio of two users is 1:5.

number of users we conduct experiments with complex case

of 4 users which have mixed workload of changing job size

arrival and job size patterns. Here user with larger job id will

have larger job size in average. We also adjusted the average

arrival rate such that all the users submit the same load to the

system. Below table 2 shows the average job response times

of jobs of users under different scheduling schemes. We

compare our scheduler with other available schedulers.

Paper ID: 30061502 265

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 7, July 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 2: Average response times (in seconds) of all users

and each user under different scheduling policies.
User FIFO Fair Proposed Proposed Proposed

 0:2 0:4 1:0

1 6398.10 171.83 63.00 50.05 42.41

2 8729.09 233.26 134.64 142.00 142.10

3 8345.62 235.09 176.12 188.88 152.44

4 8509.23 672.11 442.42 534.20 457.81

All 6834.12 745.65 365.23 431.27 342.52

Table 2 shows the average job size in terms time for each

individual users and average of all six users as well. The

above table also gives the simulation results of effective

scheduler with ratio of job size with number of users equal

to 0:2,0:4,1:0.

Table 3: Notations used in the algorithm
U/ui number of users/ i–th user

Ji set of all user i jobs

 average map/reduce task execution time of job

 number of map/reduce task in job

Si,j size of job

Si/ Average size of completed/current jobs from

user ui

 CV of completed/current jobs from user ui

SUi / SJi,j Slot share of ui /slot share of jobi,j

6. Conclusion

The use of FIFO and Fair scheduler will seriously degrade

the performance of the overall Hadoop system. So, the

proposed Effective scheduler is an adaptive scheduling

technique which can improve the performance of the

Hadoop system that process large number of MapReduce

jobs. In enterprise the workload will drastically increase

with different workload patterns this may happen from

seconds to hours that will put workload on MapReduce

cluster as well. Adopting our policy can record job size

patterns based on the job size pattern knowledge can

schedule among all users and further it dynamically tunes

the scheduling among individual user jobs and assigns the

available slots efficiently. Exeriments done in CloudEra had

shown that our Effective scheduler will dramatically

improves the performance in terms of job response time

under varying workloads.

References

[1] J. Dean, S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters,” Communications of the

ACM, 2008, 51(1):1-13.

[2] J. Dean, S. Ghemawat, and G. Inc, “Mapreduce:

simplified data processing on large clusters,” in

OSDI’04, 2004.

[3] Apache Hadoop Users. [Online]. Available:

http://wiki.apache. org/hadoop/PoweredBy D. Borthakur,

The Hadoop Distributed File System: Architecture and

Design. The Apache Software Foundation, 2007.

[4] Apache Hadoop. [Online]. Available:

http://hadoop.apache.org/

[5] Yahoo! Launches World’s Largest Hadoop Production

Application, Yahoo! Developer Network,

http://developer.yahoo.com/blogs/hadoop/2008/02/yahoo

-worldslargest-production-hadoop.html.

[6] M. Zaharia, D. Borthakur, J. Sarma, et al., “Job

scheduling for multiusermapreduce clusters,” EECS

Department University of California Berkeley Tech Rep

UCBEECS200955 Apr, 2009–55. EECSDepartment,

University of California, Berkeley. Retrieved from

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EEC

S-2009-55.pdf.

[7] Chan Tian, Haojie Zhou, Yougqiang He, Li Zha “A

Dyanmic MapReduce Scheduler for Heterogeneous

Workloads” Institute of computing technology ,Chinese

academy sciences,china.

[8] Yongni tao, Lei Shi, Pinhua Chen “Job Scheduling

Optimization for Multi-user MapReduce Cluser”

Zengzhou University,china

Paper ID: 30061502 266

