A Study on Effect of Inhaled Pesticides on Pulmonary Function Tests in Farmers

Dr. R.S. Khane¹, Bharti Arora²
Department of Physiology, B.K.L. Walawalkar Rural Medical College, Sawarde

Abstract: The present study was done to evaluate the effect of inhaled pesticides on the respiratory function of farmers in rural area of Kolhapur. It was done in 225 participants (Study group-150, Control group- 75). Respiratory symptoms were noted in both the groups. Pulmonary Function Test was done using a Spirometer (RMS-HELIOS 702) by following standard protocols. It was found that respiratory symptoms like cough, dyspnoea, Wheeze, Sore throat, Haemoptosis were more common in study group as compare to control group. Also the parameters of Pulmonary Function Test viz, FVC, FEV₁, PEFR, MVV were significantly decreased (p < 0.0001) in study group as compare to control group. The present study demonstrated significant decline of various parameters of pulmonary function tests in farmers exposed to pesticides, which is indicator of adverse effects of inhaled pesticide on respiratory functions.

Keywords: Pesticide, Farmers, Pulmonary Function Test, Respiratory symptoms

1. Introduction

India is an agricultural country and also a major producer and consumer of pesticides. It is the pesticides which has achieved a central place of agricultural practices in India and also a major contributory factor in green revolution of india. But the use of pesticides have credits in terms of increased economic potential of farmers and so as of nation as well as debits as it has serious effects on health of mankind and his environment.

By their very design most of the pesticides are highly toxic. Protection of workers against work related injuries and illness has over the years been an issue of great concern because safe working environment will promote the physical, mental and social well being of workers at work places resulting in effective work output. With no exception to this, farmers who are the backbone and the marrow of Indian agricultural economy are regularly exposed to pesticides in many ways and face greater threats from pesticides exposure including acute poisoning as well as long term-effects.

Pesticide applications can have unwanted health consequences by affecting no. of enzymes and physiological systems such as CNS, CVS, and Reproductive etc. Several earlier studies have reported increased respiratory problems such as cough, asthma, chronic bronchitis among agricultural workers. Earlier reports also showed that farmers get exposed through inhalation to the pesticides after spraying and cause acute irritant response in the lungs. But relatively small no. studies have assessed the respiratory function among farm workers occupationally exposed to pesticides.

Objective

1) To assess the health status of agricultural workers occupationally exposed to pesticides.
2) To find out the respiratory symptoms in study population.
3) To study the pulmonary function test in study and control population
4) To compare and contrast pulmonary function test and respiratory symptoms in study and control group.

2. Methodology

This cross sectional study was undertaken among 150 farm workers directly exposed to pesticides compared with 75 controls to assess the respiratory illness, lung functions. The farmers were working in farms in the rural area of Kolhapur.

2.1 Study Population

Sample size- Total 225 subjects were included in the study.
Study group-n= 150
Control group-n=75

2.2 Data Collection

Subjects were selected on the basis of the results of a preliminary questionnaire specifically designed for this study. Subject from the control group were selected from the general population not directly exposed to the pesticides.

2.3 Selection Criteria

Farm workers occupationally exposed to the pesticides were randomly selected on the basis of inclusion and exclusion criteria.
The purpose of the lung function test using a Spirometer (RMS-HELIOS 702 by following standard protocols. The volunteer performed the lung function test three times allowing for sufficient rest between repetitions. The best values for PEFR, FEV\(_1\), and FVC from three tests for each subject were recorded. Results were interpreted with the predicted values of lung function parameters calculated by reference equation for Indian population. All data was analyzed statistically by decade age groups adjusting for smoking habits.

4. Observation and Results

The present study was done in 225 participants (study group-n=150, Control group n=75). The Mean age of participants of study group is 32.7±5.2 and that of control group 35.2±4.1. The Mean weight of participants of study group is 60.53±7.3 and their mean height is 152.8±6.3. The Mean weight participants of control group is 62.81±5.5 and their mean height is 153.2±6.12

Table no. 1 showed prevalence of various respiratory symptoms in study and control group. The respiratory symptoms were more common among the study group than control group. Overall prevalence of respiratory symptoms among study group 28.6% which is like statistically significant when compared with control group.

Table no. 2 showed that all the parameters of Pulmonary Function Test were significantly decreased (p < 0.0001) in study group as compare to control group.

5. Discussion

The literature review suggests that the results of majority of the studies are consistent with known respiratory irritant effects associated with significant decline in lung function parameters as well as serum cholinesterase activity due to pesticide exposure. In the present study participants are engaged in farming occupation for 10-15 years on an average. This long term exposure to pesticides leads to the various adverse effects on their health. At the same time it is noteworthy that majority of study population was having unsafe exposure to pesticides. Also they were having very poor knowledge about the pesticide effects and use of personal protective equipment. Chitra GA et al done study of health status of south Indian farmers including both males and females exposed to pesticides. They used questionnaire to assess the health status of participants. It was found that as most of the participants are not using the personal protecting devices get direct exposure to the pesticides which in turn leads to serious health impairment. So, all these factors give a cumulative effect on the health of farmers.

In the present study, out of 150 farmers of study group 43 farmers showed the occurrence of various respiratory symptoms which is in agreement of other studies showing the presence of respiratory symptoms in pesticide exposed population. It clearly indicates that farmers are at increased risk of developing respiratory symptoms than the control group. It is explained by some researchers that pesticides inhibit acetylcholine esterase that in the context of...
respiratory symptoms results in mucus hypersecretion and potentially, airway smooth muscle contraction (bronchospasm). These actions of pesticides results in dyspnea, cough and other respiratory symptoms in pesticide exposed population. Most of the participants of the study showed decline in PFT parameters as detected by spirometry and are considered to be reliable indices of airflow limitation.

The present study showed that the Pulmonary Function Test parameters viz. FVC, FEV1, PEFR, MVV was decreased in farmers exposed to pesticides as compared to control. These derangement in PFT parameters may be due to more duration of working daily and that too again for longer duration (10-15 yrs) as well as continuous unsafe exposure to pesticides.

Similar findings were observed in Chakraborty S et al6, studies done in South Korean farmers, farmers of Ethiopia7. They found statistically significant decrease in FVC, FEV1, PEFR, and MVV.

The decline in lung function parameter could be explained with the association between pesticides agents to influence the immunological and neutrophilic inflammatory response.

In our study as the participants were all non smokers. So the deranged parameters of PFT are not related to the smoking habit. Also, the animal experiments demonstrated that the epithelial hyperplasia, thickening of the alveolar capillary membrane leads to derangement of alveoli and neuromuscular changes in respiratory muscles.

Pesticides get absorbed very slowly through the stomach, intestine and skin but more quickly through the lungs. The decline in lung function parameter could be explained with the association between pesticides agents to influence the immunological and neutrophilic inflammatory response.

Also the study group did not use any protective measures while spraying. So in addition to pesticide inhalation a dermal route of exposure, could be associated with pesticide exposure. But it was reported that the absorption is rapid when exposure occurs via inhalation and pesticides mainly OP compounds reach systemic circulation bypassing the liver where they metabolized.

Studies demonstrated that pesticide exposure causes increase airway resistance, increase closing volume and reversible reduction of FVC. These findings are in agreement with the findings of our study as well as other Indian studies. Also the present study underlines certain physiological dysfunctioning effects of respiratory system which are constantly observed in other studies of occupationally exposed farmers to pesticides.

The data generated in the present study suggests that the chronic exposure to the pesticides account for substantial pulmonary function impairment which merits attention as of the individuals are likely to remain asymptomatic till significant lung damage results.

Farmers are regularly exposed to high levels of pesticides leading to serious health impacts. Workers lack adequate information to protect themselves from pesticides. Thus, the present study demonstrated decreased pulmonary functions in farmers exposed to pesticides, which is similar to findings by previous studies.

6. Summary and Conclusion

While exploring the respiratory status of farmers exposed to inhaled pesticides, the present study considered the subjects having same socioeconomic, demographic profile. Regarding the knowledge about the use of pesticide and use of personal protective equipment working in the farms, it showed very poor response. Majority of participants are working in the farms for more than 10 years. This unsafe exposure for longer duration resulted in decrement in lung function parameters studied by spirometry with increment in respiratory symptoms as compared to control group. Also farm workers have very little or no control over factors that lead to their pesticide related illness such as unsafe exposure to pesticide sprayed area, early re-entry into pesticide treated areas and being present in the treated area at the time of pesticide application as well.

7. Suggestions

It can be suggested that due emphasis should be given on the adaptation of protective measures among the farmers. Also periodic monitoring of pulmonary function test is suggested for early detection of lung disease.

8. Acknowledgement

The authors duly acknowledge the ICMR for providing permission and financial assistance for conducting the study under ICMR-STS Grant 2014.

References


[5] Mohd. Fareed, Manoj Kumar Pathak, Vipin Bihari, Ritel Kamal, Anup Kumar Srivastava, and Chandrasekharan Nair Kesavachandran Adverse Respiratory Health and Hematological Alterations among Agricultural Workers Occupationally Exposed to...


Table 1: Prevalence of respiratory symptoms in study and control group

<table>
<thead>
<tr>
<th>Respiratory symptoms</th>
<th>Study Group (n=150)</th>
<th>Control Group (n=75)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyspnoea</td>
<td>40 (33.3%)</td>
<td>3 (4%)</td>
</tr>
<tr>
<td>Cough-Dry</td>
<td>30 (20%)</td>
<td>7 (9.3%)</td>
</tr>
<tr>
<td>Wet</td>
<td>12 (8%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Wheeze</td>
<td>23 (15.2%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Sore throat</td>
<td>11 (7.2%)</td>
<td>3 (4%)</td>
</tr>
<tr>
<td>Haemoptosis</td>
<td>2 (1.3%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

Table 2: Comparison of PFT parameters in study and control group

<table>
<thead>
<tr>
<th>PFT parameters</th>
<th>Study group</th>
<th>Control group</th>
<th>T-Value</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC(lit)</td>
<td>2.40±0.31</td>
<td>3.52 (±0.59)</td>
<td>18.68</td>
<td>P &lt; 0.0001</td>
</tr>
<tr>
<td>FEV1(lit)</td>
<td>2.37±0.57</td>
<td>3.45 (±0.55)</td>
<td>11.68</td>
<td>P &lt; 0.0001</td>
</tr>
<tr>
<td>PEFR(lit/min)</td>
<td>5.74±1.23</td>
<td>6.28 (±1.5)</td>
<td>2.88</td>
<td>P &lt; 0.0001</td>
</tr>
<tr>
<td>MVV</td>
<td>69.13±10.1</td>
<td>81.3 (±11.5)</td>
<td>8.10</td>
<td>P &lt; 0.0001</td>
</tr>
</tbody>
</table>

FVC - forced Vital Capacity ,FEV1 - Forced expiratory Volume1,PEFR - Peak Expiratory Flow Rate,MVV - Maximum Voluntary Ventilation