Abstract: One of the basic principles of endodontic treatment of teeth with chronic periapical lesions is to achieve a three-dimensional obturation of the root canal space, with accentuated attention to the obturation of the apical third. The achievement of maximum sealing of the apical zone is much more predictable in the presence of an apical constriction and the possibility of preparing an apical stop and not to overfill. The effect of overfilling is varied, determined by the type of sealer and the sealer’s quantity which passes though the apical foramen. Based on these factors, the most common effects of overfilling are inflammation reaction of the tissue in the apical zone causing severe pain accompanied by swollen tissue, periodontal ligament breakage, and periapical lesion persistence.

Keywords: conservative treatment, granuloma, healing process, inflammation, periapical lesion

1. Introduction

The initiation of apical periodontitis emerges from a pulpal inflammation that exceeds to a necrotic pulp which gives the opportunity for bacteria from the oral environment to enter the pulp chamber and the root canal. This colonization inside the tooth results in a leakage of bacterial products, toxins and bacteria's through the apical foramen causing an inflammatory reaction in the periapical area [9, 25, 30, 32, 35, 39].

The dynamic collision between microorganisms and the macroorganism in the zone of infected radicular pulp tissue and periodontal ligament is defined as local inflammation. The typical signs of hard tissue resorption or destruction of the periapical tissues and finally formation of lesions in various histopathological stages of the development of chronic apical periodontitis (CAP), commonly referred to as periapical lesion [11, 38]. Most periapical lesions (>90%) can be classified as dental granulomas, radicular cysts or abscesses [2]. It is generally accepted that periapical lesions cannot be differentially diagnosed as either radicular cysts or apical granuloma based on radiographic evidence alone [5, 7, 22, 26, 34].

The healing processes in this region can be separated into regeneration and repair. Regeneration results in the complete restitution of lost or damaged tissue, while repair involves restoration of some of the original structures [24].

Processes of repair and regeneration of periapical tissues after conservative or surgical treatment follow the general principles typical of tissue repair. At the same time, there are some specifics since in this zone there are different by its nature tissues that are characterized by different processes [20, 36, 41].

Various materials for sealing the root canal system and apical barrier have been used in endodontic treatment. The choice of a material could be governed by handling properties, biocompatibility, apical seal and long-term clinical success. Some clinical studies have confirmed that simple non-surgical treatment with proper infection control can promote healing of large periapical lesions [9, 16, 18, 19, 27, 28, 40].

2. Case Report 1

A 49-year old woman was referred complaining of repeated swelling and pain in the anterior maxilla over the last few months. Clinical examination revealed that left maxillary lateral incisor (tooth 22) were tender to percussion and palpation. The patient reported that the lateral incisor has undergone apical surgery 9 years ago. The diagnostic radiograph revealed that tooth 22 had an unsatisfactory root canal obturation and radiolucency in the periapical region. Despite the advanced horizontal bone resorption and apical surgery the tooth had a minimum degree of mobility. So the treatment plan was to re-treat the tooth orthograde and wait for 6 months for definitive crown. Following rubber dam isolation the outline of the access cavity in the lateral incisor was modified. The root canal walls were prepared using ProTaper Universal rotary files (Dentsply Maillefer, Ballaigues, Switzerland) till F5 finishing file and irrigated passively with 5.25% NaOCl and 17% EDTA. Intracanal medication - Ca(OH)₂ - was used for 10 days because of resorptive processes in the periapical area. After that period the root canal was definitively obturated using apical barrier, sealer and gutta-percha due to the wide open apex after surgery [16, 17]. Due to satisfactory healing processes in the periapical area six months latera restoration with FRC post and a crown was done. Satisfactory results were obtained also after 4 years. There was no increased tooth mobility of the initial situation (Figure 1. a-f).

3. Case Report 2

A 32-year old man was referred complaining of non-satisfactory appearance of the crown of the left central incisor. The diagnostic radiographic examination shows a large periapical lesion according to periapical index - PAI5. Upon chemo-mechanical preparation of the root canal space...

Four-Year Follow-Up of the Healing Process in Periapical Lesions - A Conservative Approach in Two Cases

Gusiyska A.

Department of Conservative Dentistry, Faculty of Dental Medicine, Medical University-Sofia, Bulgaria

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: SUB155225

543
it was filed with Ca(OH)$_2$ for 10 days. The root canal was definitively obturated using apical barrier of calcium phosphate bioceramic in order to improve both, clinical and radiographic outcome.

This apical barrier initiated regeneration processes in the periapical area and created conditions for maximum sealing of the root canal and eliminated overfilling within the zone. The calcium phosphate bioceramic has the capacity to stop bleeding after application in the periapical zone and gives its antimicrobial effect (Figure 2. a-f).

The basis for success of endodontic treatment is to remove the cause, i.e. all necrotic debris, bacteria and their byproducts. As early as in 1939, it was known that the root canal was the seat of infection [6, 10]. After debridement and disinfection of root canals, periradicular lesion had healed even without obturation of root canal [23]. Research suggests that the high pH and released calcium ions are required for the materials, which should stimulate mineralization in the process of hard tissue healing in teeth with CAP.

The effect of overfilling is varied, determined by the type of sealer and sealer’s quantity which passes though the apical foramen. Based on these factors, the most common effects of overfilling are inflammation reaction of the tissue in apical zone causing severe pain accompanied by swollen tissue, periodontal ligament breakage, and periapical lesion persistence [15, 31, 42, 21]. It is documented that in cases of apical periodontitis, intra-canal bacteria can penetrate dentin to a depth of 150-250μ, where they remain protected from the action of medicament and irrigants [4, 22]. Therefore, apical canal widening to 300-500 μ is required to thoroughly cleanse the apical portion of the canal. Apical foramen widening was done with gradually increasing number of

4. Discussion

Figure 1: a/initial x-ray presents the periapical condition of tooth 22 after apical surgery 9 years ago; b/control x-ray after obturation using biphasic calcium phosphate ceramic as a apical barrier and AH Plus as a sealer and gutta-percha; c/control x-ray at 6th month; d/control x-ray after FRC post placement; e/zoom at initial clinical situation; f/zoom at 4th year after definitive obturation.

Figure 2: a/initial x-ray presents the periapical condition of tooth 21 indicated for primary endodontic treatment; b/definitive obturation of root canal using apical barrier from biphasic calcium phosphate ceramic and after that sealer and gutta-percha; c/control x-ray at the 3rd month; d/control x-ray at the 6th month and after that the old metal-ceramic crown were replaced with new one; e/x-ray after 1 year; f/x-ray after 4 years.
files till #025 or #030. This allowed thorough cleaning of cemental part of the canal and also ensured subsequent smooth passage of instrument taken past the foramen without breakage [37]. When healing process starts the amount of inflammatory mediators, metalloproteinases, and growth factors released by immune cells is substantially reduced in the lesion.

Apical clearing, apical foramen widening and over-instrumentation into the periapical region were done to induce bleeding near the apical foramen. It is assumed that the clot formed provides a scaffold into which locally residing stem cells can get seeded and the cascade of healing process can initiate [37].

The periapical tissues have a rich blood supply, lymphatic drainage and abundant undifferentiated cells. The periapical region of teeth is rich in various stem cells such as - periodontal ligament stem cells, dental pulp stem cells, bone marrow mesenchymal stem cells and the more recently identified stem cells from apical papilla [14].These stem cells are documented to play a significant role in maturation processes of immature teeth using revascularization procedure [14]. Shah (2012) wrote, that it could be hypothesized that the same mechanism probably takes place in cases of mature teeth. The bleeding and clot formed in the area of apical foramen by over-instrumentation can lead to seeding of stem cells, their proliferation, differentiation and mineralized tissue formation, sealing the apical foramen[37]. Bhaskar suggested that if instruments are extended 1 mm beyond the apical foramen, the inflammatory reaction that develops destroys the cyst lining and converts the lesion into a granuloma. Once the causative factors are eliminated, the granuloma heals spontaneously [3]. Bender added that penetration to the center of the apical lesion might help in resolution by establishing the drainage and relieving pressure [1].

According to the latest data, removal of the smear layer is an essential of root canal disinfection and sealing. Contrary to the vulnerable planktonic state, bacteria are protected from the antibacterial agent in biofilms. To date, many methods and antibacterial agents have been proposed against biofilms and are effective within a wide range of activity [29, 13, 33].

Endodontic pathogens have different survival strategies when the conditions are unfavorable. The microbes penetrate the dentinal tubules in 1000 μm depth, creating a firmly bonded biofilm. The use of red light is giving good results in photoactivated disinfection of the root canals as a new method of treatment. The latest results in this area demonstrate the need for further research associated with bacterial pathogens for achieving the best results possible.

5. Conclusion

After the endodontic infection is effectively eliminated by nonsurgical orthograde treatment, inflammation of the periapical lesion gradually subsides, and the healing process is initiated. The biomimetical obturation of dental apex and overfilling of the apical periodontal lesion with calcium phosphate bioceramic, stimulate the remodeling healing processes in the periodontal zone. Most probably the effective orthograde treatment and the application of bioceramic stimulate the reduction of the amount of inflammatory mediators, metalloproteinases, and the growth factors released by the immune cells in the lesion.

References

[22] Ingle J, Bakland L. Endodontics. 6th edn. 2007, PMPH USA.

