
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Complete Bug Report Summarization Using

Task-Based Evaluation

Miss. Rutuja K. Taware
1
, Prof. S. A. Shinde

2

1Student of ME-II, Department of Computer Engineering, VPCOE, Baramati, Savitribai Phule Pune University Maharashtra, India

2 Assistant Professor, Department of Computer Engineering, VPCOE, Baramati, Savitribai Phule Pune University Maharashtra, India

Abstract: A software project's bug reports provide a rich source of information for software Developer in different tasks like

understanding multiple aspects of particular defect when working on the project. For interaction with bug reports developers required

some text so, in this topic investigated if it is possible to summarize bug reports automatically so that developers can performs their

tasks by deliberating short summaries instead of entire bug report. The proposed system deals with existing conversation-based

automated summarizers and found that the quality of generated summaries is similar to summaries produced for email threads and

other conversations. It also focused on training a summarizer on a bug report corpus which helps to check summaries that are

statistically better than summaries produced by existing conversation-based generators. For bug report duplicate detection tasks, system

conduct a task based evaluation so the automatic produced bug reports summaries can help a developer for their tasks and save time of

study participant. There was no proofs which show that accuracy is become weaken when summaries were used and that most

participants preferred working with summaries to working with original bug reports.

Keywords: Summarization of Software Artifacts, Bug Report Duplicate Detection, Extractive System, Abstractive System, Text

Summarization.

1. Introduction

Individuals outside the profession of software development

sometimes incorrectly believe that the profession is all about

programming. Those involved in software development know

that the profession has a strong component of information

management. Any successful large and complex software

system requires the creation and management of many

artifacts: requirements, designs, bug reports, and source code

with embedded documentation to name just a few. To

perform work on the system, a software developer must often

read and understand artifacts associated with the system

development. For example, a developer attempting to fix a

performance bug on a system may be told that a similar bug

was solved six months ago. system may be told that a similar

bug was solved six months ago. Finding the bug report that

captured the knowledge about what was fixed will likely

require the developer to perform searches and read several

bug reports in search of the report of interest. Each report

read may contain several sentences of description as well as

tens of sentences representing discussion amongst team

members. Sometimes, the amount of information may be

overwhelming, causing searches to be abandoned and

duplicate or non-optimized work to be performed, all because

the previous history of the project has been ignored. One way

to reduce the time a developer spends getting to the right

artifacts to perform their work is to provide a summary of

each artifact. An accurate summary can enable a developer to

reduce the time spent perusing artifacts that have been

returned from searches, found through browsing or

recommended by team members or tools. Perhaps optimally,

the authors of system artifacts would write a suitable abstract

to help other developers working on the system. Given the

evolving nature of artifacts and the limited time available to

developers, this optimal path is not likely to occur.

Alternatively, it might be possible to generate summaries of

project artifacts, saving developers effort and enabling up-to-

date summaries on-demand. In this approach the possibility

of automatic summary generation, focusing on one kind of

project artifact, bug reports, to make the investigation

tractable and to focus on these reports as there are a number

of cases in which developers may make use of existing bug

reports, such as when triaging bugs or when performing

change tasks and these reports can often be lengthy,

involving discussions amongst multiple team members. Here

using open source projects bug repositories that are from

KDE, Mozilla, Redhat open source projects.

2. Related Work

Nenkova and K. McKeown[2],they are used two basic

approaches to generating summaries extractive and

abstractive. Selection of subset of existing sentences to form

the summary is known as extractive approach. An abstractive

approach builds an internal semantic representation of the

text. It applies natural-language processing techniques to

create a summary. This technique provides value in other

domain and can be applied at lower cost than abstractive

approaches. Depending on whether we want to produce an

abstract or an extract summary, the summarization process

will be abstraction-based or extraction-based respectively.

Murray and Carenini, [3] developed a generic summarizer for

conversations in various modalities that uses features

inherent to all multi-party conversations. This system used to

meetings and emails and found that the general conversation

system was competitive with state-of the-art domain specific

systems in both cases. Bug report corpus in which the

summaries were created by those involved with the bug

report, they generate the classifiers. For example, the Enron

email corpus, used to train a classifier to summarize email

threads, contains 39 email threads and 1400 sentences. Anvik

and colleagues [4]have shown how to provide

recommendations to help a trigger decide to whom a bug

Paper ID: SUB155182 418

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

report should be assigned. Bettenburg and colleagues found

out that duplicate bug reports are not considered a serious

problem by developers and at times they can even help

developers resolve bugs more efficiently by adding

additional information and also surveyed a large number of

open-source developers to determine what factors constitute

a good bug report and developed a tool to assess bug report

quality. Some of the information they identified as being

helpful in bug reports (e.g, steps to reproduce), could be

added to the content of an automatically produced bug report

summary to make it more informative. Runeson and

colleagues,[9] 2007: Developed a duplicate detector based on

information retrieval methods. The detector introduced by

Sun and colleagues is based on an extended version of

BM25F, a textual similarity measures in information

retrieval. Using the extended BM25F to retrieve a list of

potential duplicates, their approach is better than previous

work by different fellows. Sarah Rastkar, Gail C. Murphy

and Gabriel Murray,2013[1] This work shown that

possibility to generation of summaries for a diverse set of

bug reports with reasonable accuracy. Also shown

summaries were helpful in the context of duplicate detection

tasks. Discuss possible ways to improve the summaries

produced and to evaluate their usefulness. With the help of

classifier framework EM, EMC and BRC classifiers are learn

based on the set of 24 different features. The values of these

features for each sentence are used to compute the

probability of the sentence being part of the summary. The

24 features can be considered into four major groups.

Structural features, Participant features, Length features, and

Lexical features. Short description of the features is in

following table. The table refers to Sprob, Tprob feature.

Basically Sprob provides the probability of a word being

expressed by a particular participant based on the perception

that certain words will tend to be related with area of interest

of conversation participant. Whereas Tprob , which is

describe the probability of a presence of given a word.

Feature selection analysis is analyzes which features are

informative for generating summaries of bug reports. This

system compute the F statistics score for each of the 24

features using the data in the bug report corpus the most

informative in discriminating between important sentences

using higher F statistics scores. The length features (SLEN &

SLEN2) are for longer sentences. Some lexical features:

CWS10, CENT1, CENT211, SMS12 & SMT13. Specific

features have very low F statistics because either each

sentence by a participant gets the same feature value (e.g.,

BEGAUTH) or each sentence in a turn gets the same feature

value (e.g., TPOSE1). Although a particular feature may

have a low F statistics score The distribution of F statistics

scores for the bug report corpus is different from those of the

meeting and email corpi.

Table 1: Feature Key

Feature ID Description

MXS max Sprob score

MNS mean Sprob score

SMS sum of Sprob scores

MXT max Tprob score

MNT mean Tprob score

SMT sum of Tprob scores

TLOC position in turn

CLOC position in conversation

SLEN word count, globally normalized

SLEN2 word count, locally normalized

TPOS1 time from beginning of conversation

TPOS2 time from turn to end of conversation

DOM participant dominance in words

COS1 cosine of conversation splits, w/ Sprob

COS2 cosine of conversation splits, w/Tprob

PENT entropy of conversation up to sentence

SENT entropy of conversation after sentence

THISENT entropy of current sentence

PPAU time between current and prior turn

SPAU time between current and next turn

BEGAUTH is first participant (0/1)

CWS rough ClueWord Score

CENT1 cosine of sentence & conversation

CENT2 cosine of sentence & conversation

For example MXS and MXT have a relatively high value of

F statistics for the email data. Similarly SLEN2 has a

relatively high F statistics score for the bug report data while

it has a low value of F statistics for the meeting data. These

differences further motivates training a new classifier using

the bug report corpus as it may produce better results for bug

reports compared to classifiers trained on meeting and email

data.

3. Implementation Details

3.1 Bug Report Corpus

Set of bug reports is called as bug report corpus. In this

approach bug report corpus is the dataset or information

source to obtain summaries. Corpuses of bug reports with

good summaries are used to train and evaluate the

effectiveness of an extractive summarizer. Existing corpus in

which the summaries were created by those involved with the

bug report.

3.2 Summarizing Bug Report

 Slang Word Dictionary Used for replacing short words into

its original words. eg. K – Ok, OMG – Oh my god, cya –

bye.

Paper ID: SUB155182 419

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1 : System Architecture

3.3 Preprocess

In preprocessing phase of summarization, we break the text

document into sentences, sentences are further broken into

words and after that stop words are removed. Preprocessing

phase involves four steps:

 Segmentation :

In segmentation phase, sentences are segmented based

upon sentence boundary. On every sentence boundary, the

sentence are broken and put into list of lists. The output of

sentence segmentation phase is collection of sentences that

are further processed in next phases.

 Tokenization :

Tokenization is the process of braking down the sentences

into words.

 Stop Words Removal :

Most commonly or frequently used words are called stop

words. Stop words are meaningless and does not have any

importance into the sentences. So these types of words

should be removed from input document, otherwise the

sentence containing more no of stop words could have

higher weight.

 Root Word Identification :

Root word identification is the process of identifying and

converging words towards their root (stem). In most of the

cases, variants of words having similar meaning when we

interpret them.

3.4. Classifier Framework

The bug report corpus is input for producing bug report

summaries automatically. Using binary classifiers that

consider 24 sentence features so the proposed approach

produce summaries for bug reports by using this classifiers.

Based on values of these features, computed for each

sentence, that it is determined whether the sentence should be

involved in the summary. Manually generated summaries are

time consuming but to get new feature it will be useful. So to

assign a weight to each feature, a classifier first has to be

trained on human generated summaries.

So here the classifier is considered which is trained on human

generated summaries as follows:

 The BRC classifier, using the already created bug report

corpus. To form the training set for BRC, combined the

three human annotations for each bug report by scoring

each sentence of a report based on the number of times it

has been linked by annotators.

For each sentence, the score is between zero, when it has not

been linked by any annotators, when all that annotators have

a link to the sentence in their abstractive summary. A

sentence is considered to be part of the extractive summary if

it has a score of two or more.

3.5. Extractive Summarizer

An extraction technique of bug report summarization consists

of selecting important sentences from source document(bug

report) and arrange them in the destination document. Our

main focus is on extraction technique for bug report

summarization. Usually, the information in a given document

is not constant, which means that some parts of document are

more important than others are less important. The main

challenge is to identify important parts of document and

extract them for final summary. Here most work presented

on single-document summarization using extraction method.

Processing

Processing phase is the heart of summarization; here detailed

analysis on text document is done. In processing phase,

feature value for every sentence is calculated. In

summarization some old features and some new features are

used for calculating sentence score are shown below:-

The 24 features can be categorized into four major groups.

1. Structural features are related to the conversational

structure of the bug reports. Examples include the position of

the sentence in the comment and the position of the sentence

in the bug report.

Paper ID: SUB155182 420

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2. Sentence Location: Location of sentence tells its

importance in a text document. Starting sentences are

important in almost all the cases because they express theme

of the document and has higher probability to be extracted

for the summary. Sentence location value is calculated in

such a way that, higher values are assigned to the starting

sentences and lower values are assigned to ending sentences.

3. Participant features are directly related to the conversation

participants. For example if the sentence is made by the

same person who filed the bug report.

4. Length features include the length of the sentence

normalized by the length of the longest sentence in the

comment and also normalized by the length of the longest

sentence in the bug report.

5. Sentence Length : Sentences which are shorter in length

may not represent theme of a text document because of fewer

words contained in it, although selecting longer length

sentences are also not good for summary. So sentence length

values are calculated in such a way that, shorter and longer

sentences are assigned lower values.

6. Lexical features are related to the occurrence of unique

 words in the sentence.

4. Analytic Evaluation

Recall: It evaluates proportion of relevance included in the

summary.

 Retrieved Sentences ∩ Relevant Sentences

 R =

 Relevant Sentences

Precision: It evaluates correctness for the sentences in the

summary.

 Retrieved Sentences ∩ Relevant Sentences

 P =

 Retrieved Sentences

Where, Retrieved Sentences are retrieved from the system

and Relevant Sentences are identified by human.

F-score: F-score combines the values of two other

evaluation measures: precision and recall. As there is always

a trade-off between precision and recall, the F-score is used

as an overall measure

F-score =2

5. Duplicate Detection Task

In this task duplicate sentences from bug reports are removed

by calculating sentence value and sentence similarity. The

following two approaches are used to describe the duplicate

detection task. .

1. Lexicon based approach(TF-IDF)

Lexicon based approach is formed by calculating tf–idf of

summary, tf means term frequency and idf means inverse

document frequency, is a numerical evaluation of that how

important a word is to a document in a corpus. This approach

is using as a weighting factor in information retrieval.

The tf-idf calculates possibility value of the number of times

a word appears in the document. Variations of the tf–idf

weighting scheme are often used ranking a document's

relevance given a user query. It can be effectively used for

stop-words sifting in various subject fields including text

summarization and classification.

2. Concept based approach:

Concept based approach is introduce a word synonyms from

the sentence. It compares sentences from the summaries and

explores the similar sentences and removes that sentence

from summary. And used word net 3.0.

These both approach refers Jaccord’s coefficient of similarity

for duplicate detection task.

6. Results

If considering comparison of classifiers from previous

approach there is no significant difference when comparing

the performance of EC and EMC so the results obtained for

the EC and EMC classifiers were similar to those produced

when the same classifiers applied to meeting and email data.

The results demonstrated that based on standard measures,

while classifiers trained on other conversation-based data

(EC and EMC) generated reasonably good bug report

summaries and a classifier specifically trained on bug report

data (BRC) also generated summaries that are better with

statistical significance.

So the proposed system is based only on bug report summary

generation. Bug report summaries are intended to help a

subject save time performing a bug report duplicate detection

task by not having to interact with bug reports in their

original format. At the same time it is expected that

summaries contain enough information so that the accuracy

of duplicate detection is not compromised.

1. To producing accurate results for bug repositories the

proposed system goal is to develop a summarization

approach. So dataset means bug repository contains bug

reports here using KDE, Mozilla, Red hat open source

projects bug repositories. The bug reports contains

conversational content and avoided selecting bug reports

consisting long stack traces and large chunks of code, so bug

reports are with mainly natural language content.

Preprocessing phase is a training phase which trains the

classifier using slang words dictionary.

2. After preprocessing phase getting summarized report.

3. By removing duplicate bug reports using the method post-

Paper ID: SUB155182 421

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

processing technique. After that finally get summary of bug

reports.

4. Summary Report in PDF format with evaluation result.

7. Conclusions

Using automatically generated software artifact like bug

reports are used to provide developers multiple benefits and

existing conversation-based extractive summary generators

can produce summaries for reports that are better than a

random classifier. An extractive summary generator trained

on bug reports produces the best results. Generated bug

report summaries could help developers perform duplicate

detection tasks in less time with no indication of accuracy

degradation, confirming that bug report summaries help

software developers in performing software tasks.

8. Acknowledgement

I would like to thank my project guide Prof. S. A. Shinde sir

for giving his valuable guidance, inspiration and

encouragement to embark this paper. Prof. S. A. Shinde sir

gave me all the freedom I needed for this project. This

project being conceptual one needed a lot of support from my

guide so that I could achieve what I was set out to get.

References

[1] Sarah Rastkar, Gail C. Murphy and Gabriel Murray,

"Automatic Summarization of Bug Reports,”IEEE

Transactions on Software Engineering,2013.

[2] Nenkova and K. McKeown, “Automatic summarization,”

Foundations and Trends in Information Retrieval, vol. 5,

no. 2-3, pp. 103–233, 2011.

[3] G. Murray and G. Carenini, “Summarizing spoken and

written conversations,” in EMNLP’08: Proc. of the 2008

Conference on Empirical Methods on Natural Language

Processing, 2008.

[4] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an

open bug repository,” in Proc. of the 2005 OOPSLA

Workshop on Eclipse Technology eXchange, 2005, pp.

35–39.

[5] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix

this bug?” in ICSE’06: Proc. of the 28th International

Conference on Software Engineering, 2006, pp. 361–370.

[6] J. Davidson, N. Mohan, and C. Jensen, “Coping with

duplicate bug reports in free/open source software

projects,” in VL/HCC’11: Proc. of the 2011 IEEE

Symposium on Visual Languages and Human-Centric

Computing, 2011, pp. 101 108.

[7] O. Rambow, L. Shrestha, J. Chen, and C. Lauridsen,

“Summarizing email threads,” in HLT-NAACL’04: Proc.

of the Human Language Technology Conference of the

North American Chapter of the Association for

Computational Linguistics, 2004.

[8] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An

approach to detecting duplicate bug reports using natural

language and execution information,” in ICSE’08: Proc.

of the 30th International Conference on Software

Engineering, 2008, pp. 461–470

[9] P. Runeson, M. Alexandersson, and O. Nyholm,

“Detection of duplicate defect reports using natural

language processing,” in ICSE’07: Proc. Of the 29th

International Conference on Software Engineering, 2007,

pp. 499–510

Author Profile

Miss. Rutuja Taware received the B.E. degrees in

Information Technology from Pune University in 2013

and 1999, and pursuing M.E. degree from VPCOE,

Baramati. She has attended various workshops

organized by IITB and IITD with remote center. She has attended

“Computer vision” by Dr. Sumantra Dutta Roy. She attended

workshops of Latex and SciLab conducted by remote center of

VPCOE under IITB. He has published Review paper on same topic

in IJERGS. She has participated in cPGCON-2015 i.e. post

Graduate Conference.

Prof. Santosh Shinde received his B.E. degree in

computer engineering (First Class with Distinction) in

the year 2003 from Pune University and M. E. Degree

(First Class with Distinction) in Computer Engineering

in 2010 from Pune University. He has eleven years of teaching

experience at undergraduate and postgraduate level. He has

attended various National and International Conferences, Seminars

and Workshops on various subjects like Multimedia Techniques,

Multicore Computing and Software Engineering. He is a life

member of ISTE (Indian Society for Technical Education) and

IACSIT (International Association of Computer Science and

Information Technology). He has worked as a review committee

member for the 1st International Conference on recent trends in

Engineering and Technology (ICRTET’2012) held at SNJB’s COE,

Nashik. He has worked as a Judge for the State level paper

presentation (REBEL) held at SVPM’s COE, Malegaon. He has

attended workshops on Robotics, Research paper writing and Latex

conducted by IIT, Bombay remote center at VPCOE, Baramati. He

has to his credit IBM RFT certification with 100% score. He has

organized one day workshop on Software Engineering by Dr. S. A.

Kelkar, adjunct Professor IIT, Powai.

Paper ID: SUB155182 422

