
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Review: Design and Simulation of Binary

Floating Point Multiplier Using VHDL

Ujjwala V. Chaudhari
1
, Prof A. P. Dhande

2

1Student, Electronics and Telecommunication Engg,Sant Gadge Baba University Amravati, India

2Assistant Professor, Electronics and Telecommunication Engg, Sant Gadge Baba University Amravati, India

Abstract: Most of the DSP applications need floating point numbers multiplication. The possible ways to represent real numbers in

binary format floating point numbers are; the IEEE 754 standard represents two floating point formats, Binary interchange format and

Decimal interchange format. To improve speed multiplication of mantissa is done using specific multiplier replacing Carry Save

Multiplier. To give more precision, rounding is not implemented for mantissa multiplication. The binary floating point multiplier is

plane to do implemented using VHDL and it is simulated and synthesized by using ModelSim and Xilinx ISE software respectively. The

result so got will be compare with the previous work done. Floating point multiplication is important in many commercial applications

including financial analysis, banking, tax calculation, currency conversion, insurance, and accounting.

Keywords: floating point, ModelSim, Xilinx ISE, Binary interchange format, Decimal interchange format.

1. Introduction

Floating point numbers are one possible way of representing

real numbers in binary format, the IEEE 754 standard

presents two different floating point formats, Binary

interchange format and Decimal interchange format.

Multiplying floating point numbers is a critical requirement

for DSP applications involving large dynamic range. This

paper focuses only on single precision normalized binary

interchange format. It consists of a one bit sign (S), an eight

bit exponent (E), and a twenty three bit fraction (M or

Mantissa).

Figure 1: IEEE single precision floating point format

Z = (-1S) * 2 (E - Bias) * (1.M)

Bias = 127.

An extra bit is added to the fraction to form what is called

the significant. If the exponent is greater than 0 and smaller

than 255, and there is 1 in the MSB of the significant then

the number is said to be a normalized number. Multiplying

two numbers in floating point format is done by adding the

exponent of the two numbers then subtracting the bias from

their result ,and multiplying the significant of the two

numbers, and calculating the sign by XORing the sign of the

two numbers. The multiplier was verified against Xilinx

floating point multiplier. In this paper representation of

floating point multiplier in such a way that rounding support

isn’t implemented, thus accommodating more precision if

the multiplier is connected directly to an adder in a MAC

unit. Exponents addition, Significant multiplication, and

Results sign calculation are independent and are done in

parallel Xilinx ISE Design Suite 13.3 tool & VHDL

programming is used. ISIM tool is used for Simulation

process .Xilinx core generator tool is used to generate Xilinx

floating point multiplier core The whole multiplier (top unit)

was simulated against the Xilinx floating point multiplier

core generated by Xilinx core generator.

A Binary multiplier is an integral part of the arithmetic logic

unit (ALU) subsystem found in many processors. Integer

multiplication can be inefficient and costly, in time and

hardware, depending on the representation of signed

numbers. Both's algorithm and others like Wallace-Tree

suggest techniques for multiplying signed numbers that

works equally well for both negative and positive

multipliers. In this project, we have used VHDL as a HDL

and Mentor Graphics Tools (MODEL-SIM & Leonardo

Spectrum) for describing and verifying a hardware design

based on Both's and some other efficient algorithms. Timing

and correctness properties were verified. Instead of writing

Test- Benches & Test-Cases we used Wave-Form Analyzer

which can give a better understanding of Signals & variables

and also proved a good choice for simulation of design.

Hardware Implementations and synthesizability has been

checked by Leonardo Spectrum and Precision Synthesis.

2. Literature Review

From the review of related work and published literature , it

is observed that many researchers have design floating point

multiplier by applying different techniques. Researchers

have undertaken different systems , processes or phenomena

with regards to design floating point multiplier and

attempted to find the unknown parameters.

 From the study of A High Speed Binary Floating Point

Multiplier Using Dadda algorithm by B. Jeevan, it is

observed that To improve speed multiplication of mantissa is

done using Dadda multiplier replacing Carry Save

Multiplier. The design achieves high speed with maximum

frequency of 526 MHz compared to existing floating point

multipliers. The floating point multiplier is developed to

handle the underflow and overflow cases. To give more

precision, rounding is not implemented for mantissa

multiplication. The multiplier is implemented using Verilog

Paper ID: SUB155127 169

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

HDL and it is targeted for Xilinx. The multiplier is

compared with Xilinx floating point multiplier core.

3. Proposed Work

Although computer arithmetic is sometimes viewed as a

specialized part of CPU design, still the discrete component

designing is also a very important aspect. A tremendous

variety of algorithms have been proposed for use in floating-

point systems. Actual implementations are usually based on

refinements and variations of the few basic algorithms

presented here.

Our discussion of floating point will focus almost

exclusively on the IEEE floating-point standard (IEEE 754)

because of its rapidly increasing acceptance. Although

floating-point arithmetic involves manipulating exponents

and shifting fractions, the bulk of the time in floating-point

operations is spent operating on fractions using integer

algorithms. Thus, after our discussion of floating point, we

will take a more detailed look at efficient algorithms and

architectures.

3.1 An Overview Of the IEEE FP Format

 The number, in binary, must be normalized: the integer

part must always be equal to 1

 The exponent, an integer value, is not represented in 2-

complement, but in a biased representation: a bias of 127

is added to the exponent.

 As the value 0 can not be normalized, a special

representation is reserved for: all bits to zero

 In general, the values 00000000 and 11111111 from the

exponent field are reserved for special cases and are not

biased values:

3.2 Floating point multiplication of two numbers is made

in four steps:

Step 1. Exponents of the two numbers are added

directly,extra bias is subtracted from the exponent result.

Step 2. Significands multiplication of the two numbers using

Dadda algorithm.

Step 3. To find the sign of result, XOR operation is done

among sign bit of two numbers.

Step 4.Finally the result is normalized such that there should

be 1 in the MSB of the result (leading one).

3.3 Proposed multiplier

3.3.1 Dadda Multiplier:

Dadda proposed a sequence of matrix heights that are

predetermined to give the minimum number of reduction

stages. To reduce the N by N partial product matrix, dada

multiplier develops a sequence of matrix heights that are

found by working back from the final two-row matrix. In

order to realize the minimum number of reduction stages,

the height of each intermediate matrix is limited to the least

integer that is no more than 1.5 times the height of its

successor.The process of reduction for a dadda multiplier is

developed using the following recursive algorithm:

1. Let d1=2 and dj+1 = [1.5*dj], where dj is the matrix

height for the jth stage from the end. Find the smallest j such

that at least one column of the original partial product matrix

has more than dj bits.

2. In the jth stage from the end, employ (3, 2) and (2, 2)

counter to obtain a reduced matrix with no more than dj bits

in any column.

3. Let j = j-1 and repeat step 2 until a matrix with only two

rows is generated. This method of reduction, because it

attempts to compress each column, is called a column

compression technique. Another advantage of utilizing

Dadda multipliers is that it utilizes the minimum number of

(3, 2) counters. {Therefore,the number of intermediate

stages is set in terms of lower bounds: 2, 3, 4, 6, 9 . . .For

Dadda multipliers there are N2 bits in the original partial

product matrix and 4.N-3 bits in the final two row matrix.

Since each (3, 2) counter takes three inputs and produces

two outputs, the number of bits in the matrix is

reduced by one with each applied (3, 2) counter therefore},

the total number of (3,2) counters is #(3, 2) = N2 – 4.N+3

the length of the carry propagation adder is CPA length =

2.N–2.

Figure: Dot diagram for 8 by 8 Dadda Multiplier

The number of (2, 2) counters used in Dadda’s reduction

method equals N-1.The calculation diagram for an 8X8

Dadda multiplier is shown in figure.Dot diagrams are useful

tool for predicting the placement of (3, 2) and (2, 2) counter

in parallel multipliers. Each IR bit is represented by a

dot.The output of each (3, 2) and (2, 2) counter are

represented as two dots connected by a plain diagonal line.

Paper ID: SUB155127 170

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 6, June 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The outputs of each (2, 2) counter are represented as two

dots connected by a crossed diagonal line.The 8 by 8

multiplier takes 4 reduction stages, with matrix height 6, 4, 3

and 2. The reduction uses 35 (3, 2) counters, 7(2, 2)

counters, reduction uses 35 (3, 2) counters, 7 (2, 2)counters,

and a 14-bit carry propagate adder. The total delay for the

generation of the final product is the sum of one ANDgate

delay, one (3, 2) counter delay for each of the four reduction

stages, and the delay through the final 14-bit carry propagate

adder arrive later, which effectively reduces the worst case

delay of carry propagate adder. The decimal point is

between bits 45 and 46 in the significand IR. Critical path is

used to determine the time. taken by the Dadda multiplier.

The critical path starts at the AND gate of the first partial

products passes through the full adder of the each stage, then

passes through all the vector merging adders.The stages are

less in this multiplier compared to the carry save multiplier

and therefore it has high speed than that.

4. Objectives

1) To study Dadda algorithm

2) To study the hardware language VHDL

3) 3.To design and implement the various technique about

Floating Point Multiplier

4) Verify the functionality of Floating Point Multiplier

5) Analyze the design for FPGA design utilization

summary, propogation delay and maximum operating

frequency of design.

5. FPGA

FPGA or Field Programmable Gate Arrays can be

programmed or configured by the user or designer after

manufacturing and during implementation. Hence they are

otherwise known as On-Site programmable. Unlike a

Programmable Array Logic (PAL) or other programmable

device, their structure is similar to that of a gate-array or an

ASIC. Thus, they are used to rapidly prototype ASICs, or as

a substitute for places where an ASIC will eventually be

used [17]. This is done when it is important to get the design

to the market first. Later on, when the ASIC is produced in

bulk to reduce the NRE cost, it can replace the FPGA. The

programming of the FPGA is done using a logic circuit

diagram or a source code using a Hardware Description

Language (HDL) to specify how the chip should work.

FPGAs have programmable logic components called ‚logic

blocks‛, and a hierarchy or reconfigurable interconnects

which facilitate the ‚wiring‛ of the blocks together. The

programmable logic blocks are called configurable logic

blocks and reconfigurable interconnects are called switch

boxes. Logic blocks (CLBs) can be programmed to perform

complex combinational functions, or simple logic gates like

AND and XOR. In most FPGAs the logic blocks also

include memory elements, which can be as simple as a flip-

flop or as complex as complete blocks of memory.

6. VHDL

The VHSIC (very high speed integrated circuits) Hardware

Description Language (VHDL) was first proposed in 1981.

The development of VHDL was originated by IBM, Texas

Instruments, and Inter-metrics in 1983. The result,

contributed by many participating EDA (Electronics Design

Automation) groups, was adopted as the IEEE 1076 standard

in December 1987. VHDL is intended to provide a tool that

can be used by the digital systems community to distribute

their designs in a standard format. Using VHDL, they are

able to talk to each other about their complex digital circuits

in a common language without difficulties of revealing

technical details. As a standard description of digital

systems, VHDL is used as input and output to various

simulation, synthesis, and layout tools. The language

provides the ability to describe systems, networks, and

components at a very high behavioral level as well as very

low gate level. It also represents a top-down methodology

and environment. Simulations can be carried out at any level

from a generally functional analysis to a very detailed gate-

level wave form analysis.

References

[1] Remadevi R / International Journal of Engineering

Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com Vol. 3, Issue 2, March -April 2013,

pp.283-286 283 “Design and Simulation of Floating

Point Multiplier Based on VHDL”

[2] International Journal of Engineering Research and

Development e-ISSN: 2278-067X, p-ISSN: 2278-800X,

www.ijerd.com Volume 10, Issue 3 (March 2014),

PP.73-78 73 “Design of Floating Point Multiplier Using

Vhdl” P.Gayatri(Department of Electronics &

Communication Engineering, Lendi Institute of

Engineering and Technology/JNTUK, India).

[3] L. Louca, T. A. Cook, and W. H. Johnson,

“Implementation of IEEESingle Precision Floating Point

Addition and Multiplication on FPGAs,”Proceedings of

83 the IEEE Symposium on FPGAs for

CustomComputing Machines (FCCM’96), pp. 107–116,

1996.

[4] A. Jaenicke and W. Luk, "Parameterized Floating-Point

Arithmetic on FPGAs", Proc. of IEEE ICASSP, 2001,

vol. 2, pp.897-900.

[5] B. Lee and N. Burgess, “Parameterisable Floating-point

Operations on FPGA,” Conference Record of the Thirty-

Sixth Asilomar Conference onSignals, Systems, and

Computers, 2002.

[6] Mohamed Al-Ashrafy, Ashraf Salem and Wagdy Anis”

An Efficient Implementation of Floating PointMultiplier”

Electronics, Communications and Photonics Conference

(SIECPC), 2011 Saudi International.

Author Profile

Ujjwala V. Chaudhari1 received her BE degree in Electronics and

Telecommunication from Sant Gadge Baba Amravati University

2013. Currently pursuing ME degree in Electronics and

Telecommunication from Sant Gadge Baba Amravati

University,India

Prof A.P.hande2 received his BE degree in Electronics and

Telecommunication from Sant Gadge Baba Amravati University

2009 and ME in Electronics and Telecommunication from Sant

Gadge Baba Amravati University in .Currently working as

Assistant Professor in P.R.Patil COET, Amravati, India

Paper ID: SUB155127 171

