Assessment of the Nutritional and Antinutritional Components of Tiger nut Residues

Samson Baranzan Wayah¹, Safiya Shehu²

¹,² Department of Biochemistry, Faculty of Science, Kaduna State University, Tafawa Balewa Way, P.M.B 2339, Kaduna, Nigeria

Abstract: *Cyperus esculentus* is a monocotyledonous plant and belongs to the family cyperaceae which is made up of over 4000 species. Its common names include; tiger nut, Aya, chufa sedge, yellow nut sedge and earth almond. The tubers are edible and are consumed fresh, dried or in roasted form in some countries which include Burkina Faso and Nigeria. In Valencia and Nigeria, the tubers are usually processed into milk. Residues obtained from processing the tubers into milk are often considered wastes and discarded. An investigation into the nutritional and antinutritional components of these residues was carried out. Results of this investigation show that these residues contain high amounts of carbohydrates (43.0 %), fibre (18.4 %), lipids (24.8 %) iron (70.179 ppm), sodium (13.611 ppm), magnesium (10.820 ppm), calcium (10.641 ppm), vitamins C (286.00 mg/L), B1 (131.50 mg/L), and B2 (22.49 mg/L). Furthermore, antinutrients which include, cyanogenic glycosides, oxalates, phytates, saponins, alkaloids, and flavonoids are low in these residues. This research has established that tiger nut residues, often regarded as waste materials, contain highly valuable nutrients in substantial quantities that can be harnessed for various applications. These findings pave the way for research on the potential use of tiger nut residues for feed formulation and other applications and consequently, provide a means of converting waste into wealth and cleaning up the environment of this solid waste especially considering the current increase in environmental pollution.

Keywords: Tiger nut; Mineral content; Phytochemicals; Vitamins, Proximate composition

1. Introduction

*Cyperus esculentus* is a monocotyledonous plant and belongs to the family cyperaceae which is made up of over 4000 species [1]. Its common names include; tiger nut, Aya, chufa sedge, yellow nut sedge and earth almond. Tiger nut is a perennial grass that grows in wet areas and often occurs as a weed especially on farmlands used for cultivation of vegetables [2]. The plant grows to a height of 1-3ft and pollination occurs by the wind. It grows mainly in the tropical and warm temperate regions of the world. Main areas of cultivation include; Spain, Nigeria, Senegal, Guinea, and Cameroun [3]. The tubers are edible and are consumed fresh, dried or in roasted form in some countries which include Burkina Faso and Nigeria. Tiger nut tubers are also processed into milk called Horcata (in Valencia) and KunuAya (in Nigeria) [4]. Residues that result from processing tiger nut tubers into milk are often considered waste materials and discarded. Thereby contributing to environmental pollution. The aim of this research was to ascertain the nutritional and antinutritional components of tiger nut residues.

2. Materials and Methods

2.1 Proximate analysis

The recommended methods of the association of official analytical chemists (AOAC) [5] were used for the determination of moisture, ash crude lipid, crude fibre and nitrogen content. Percentage of carbohydrates was determined by difference.

2.2 Phytochemical Screening

Flavonoids were determined by the method of Okwu [6]. A gravimetric method of AOAC [7] was used to determine saponins. Alkaloids determination was conducted using the method of Harborne [8] while phytates were analysed using the method of Reddy et al. [9].

2.3 Determination of vitamins and mineral elements

Vitamins were analyzed using UV spectroscopy while analysis of mineral elements was done using atomic absorption spectroscopy.

3. Results

Results of chemical analysis of tiger nut residues as shown in table 1 revealed that it is rich in carbohydrates (43.0 %) and lipids (24.8 %). It is also a good fibre source as revealed by the high mean value of 18.4 % (Table 1). Substantial amounts of protein (1.5 %) and ash (0.5 %) were also obtained (Table 1).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Percentage Composition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>11.8 ± 0.76</td>
</tr>
<tr>
<td>Ash</td>
<td>0.5 ± 0.06</td>
</tr>
<tr>
<td>Crude Lipid</td>
<td>24.8 ± 0.06</td>
</tr>
<tr>
<td>Crude Protein</td>
<td>1.5 ± 0.18</td>
</tr>
<tr>
<td>Crude Fibre</td>
<td>18.4 ± 0.77</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>43.0 ± 0.42</td>
</tr>
</tbody>
</table>

Values are means of triplicate measurements ± SD

Results of elemental analysis of tiger nut residues revealed that it is a good source of iron (70.179 ppm), sodium (13.611 ppm), magnesium (10.820 ppm), and calcium (10.641 ppm) as shown in Table 2. The heavy metals, cadmium, chromium and copper had the lowest mean values of 0.014 ppm, 0.053 ppm, and 0.060 ppm respectively (Table 2).

<table>
<thead>
<tr>
<th>Element</th>
<th>Concentration (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>0.053 ± 0.010</td>
</tr>
<tr>
<td>Cd</td>
<td>0.014 ± 0.0003</td>
</tr>
</tbody>
</table>
Tiger nut tubers contain small amounts of copper, manganese, zinc and magnesium in addition to high concentration of sodium, calcium and phosphorus. Thus, may be useful in the making infant formulas for the development of strong and healthy bones and teeth. They added that it contains substantial amount of iron which can help in blood formation [12].

The importance of vitamins in maintaining good health cannot be over emphasized and these residues can represent another source for vital vitamins such as vitamin C, vitamin B1 and vitamin B2. The low level of antinutrients in these residues not only represents an advantage with regards its use in feed production but also shows it potential health applications. Adejuyitan et al., [13] also reported that tiger nut tubers can help in reducing risk of colon cancer due to its high glucose composition. In addition, it is suitable for people with diabetes and those that have gluten allergy [14].

5. Conclusion

This research has established that tiger nut residues, often regarded as waste materials, contain highly valuable nutrients in substantial quantities that can be harnessed for various applications. These findings pave the way for research on the potential use of tiger nut residues for feed formulation and other applications. This will provide means of converting waste into wealth and cleaning up the environment of this solid waste especially considering the current increase in environmental pollution.

6. Future Studies

Future research will focus on the effect of processing on antinutrients. Also, the effect of addition of tiger nut residues to animal feed will be investigated.

7. Acknowledgements

Our sincere appreciation goes to all technologists of biochemistry laboratory, department of biochemistry, faculty of science, Kaduna state university for their support during course of this research.

References


Author Profile

Samson Baranzan Wayah obtained a BSc. degree in Biochemistry at Ahmadu Bello University, Zaria, Nigeria in 2008, and an MSc. degree in Crop Biotechnology at University of Nottingham in 2013. Currently lecturing at the department of Biochemistry, Kaduna State University, Kaduna, Nigeria.

Safiya Shehu obtained a BSc. degree in Biochemistry at Kaduna State University, Kaduna, Nigeria in 2014.