Conditions of Boundedness for Compact operators on Banach spaces

Mohammed Ahamed Osman Tom¹, ²

¹Tabuk University, College of Science, Department of Mathematics, ²University of Bahri & College of applied Science and Industrial

Abstract: In this paper we study Compact operator between Banach spaces which are bounded. We establish two conditions that must be satisfies for boundedness of Compact operator.

Keywords: Closure of image ; Continuous at every points ; Compact operator ; Bounded

1. Introduction

A Banach space is a normed linear space that a complete metric space with respect to the metric derived from its norm . See [7] .This space has studied by several authors in different context such a in [3], [1] and [6]. We give a brief discussion of conditions for boundedness of Compact operator. First Condition is the existence of the constant $M \ge 0$ as we done in Remark 3 that the operator $T: X \rightarrow T$ Y between two normed operator bounded by letting T is compact which associate with the closures of the images of B(0,2) and B(0,n) producing $||T|| = \sup_{\|x\|=1}^{sup} ||Tx\|| \le \sup_{x \in B(0,2)}^{sup}$.Since $\sup_{x \in B(0,2)} \in \mathbb{R}_{\ge 0}$ we use a constant M instead of $\sup_{x \in B(0,2)}$ for some $M \in \mathbb{R}_{\ge 0}$, hence $||Tx|| \le M$ is bounded as long as $TB(0,2) \subset \overline{TB(0,2)}$ and TB(0,2) is compact and hence bounded .In Lemma 4 we put $S = \{X \in x : ||x|| = 1\}$. Since T(S) is compact and ||x|| = 1 this result $||T|| \le$ M which is bounded by constant M .Second condition is the operator T must be continuous at every point . See Theorem 6 we show that the operator $T: X \to Y$ is bounded by letting T is continuous for all $x, y \in X$ we have ||Tx - Ty|| = $||T(x-y)|| \le M ||x-y||$ where M is a constant, then by letting T is continuous at 0. Since T is linear we have T(0) = 0 there exists $\delta > 0$ with $||x|| \le \delta$ and $x \ne 0$ we define \tilde{x} by $\tilde{x} = \frac{\delta x}{\|x\|}$. Then $\|\tilde{x}\| \le \delta$. From linearity of T that $\|Tx\| = \frac{\|x\|}{\delta} \|T\tilde{x}\| \le M \|x\|$ where $M = \frac{1}{\delta}$. Thus T is bounded and continuous at zero, then at every point. (See Remark 3, Lemma 4, Definition 5 and Theorem 6).

2. Compact operators on Banach space

A continuous linear operator $T: X \to Y$ on Banach spaces is compact when T maps bounded sets in X pre-compact sets in Y, that is, sets with compact closure. Since bounded sets lies in some ball in X, and since T is linear, its suffices to verify that T maps the unit ball in X to a pre-compact set in Y. Finite –rank operators are clearly compact. Both right and left compositions ToS and SoT of compact T with continuous S produce compact operators. Recall a criterion for pre-compact if and only if its totally bounded, sense that, given $\varepsilon > 0$, E is covered by finitely-many open balls of radius ε . We claim that operator-norm limits $T = \lim_i T_i$ of compact operators T_i are compact : given $\varepsilon > 0$, choose T_i so that $|T_i - T|_{OP} < \varepsilon$, cover the image of the Unit ball B_1 under T_i by finitely-many open ball U_k of radius ε .

Since $|T_i x - Tx| < \varepsilon$ for all $\in X$, enlarging the balls U_k to radius 2ε covers TB_1 .

(If desired, rewrite the proof replacing ε by $\frac{\varepsilon}{2}$). So there exist Banach spaces with compact operators which are not norm-limits of finite –rank operators. Recall that every compact operators $T: X \to Y$ on Hilbert space is an operator norm limit of finite rank operators. Given > o, let y_1, \ldots, y_n be the centers of open ε – balls in Y covering TB_1 , where B_1 is the unit ball in X. Let $T_{\varepsilon} = PoT$ where P is the projection of Y to the span of the y_i , then similarly, the sum of two compact operator is compact.

Definition 1

A compact operator is a linear operator T from Banach space X to anther Banach space Y, such that the image under T of any bounded subset of X is necessarily a bounded operator, and so continuous. Any bounded operator Y that has finite rank is a compact operator, the class of compact operators is a natural generalization of the class of finite –rank operators in an infinite-dimensional setting. When Y is a Hilbert space, it is true that any compact is a limit of finite-rank operators can be defined alternatively as the closure in the operator norm of the finite –rank operators.

Lemma 2 : Let K be a compact operator on \mathcal{H} and suppose (T_n) is a bounded sequence in $\mathcal{B}(\mathcal{H})$ such that , for each $x \in \mathcal{H}$ the sequence $(T_n x)$ converges to Tx, where $T \in \mathcal{B}(\mathcal{H})$. Then $(T_n K)$ converges to TK in norm. Briefly, the above can be rephrased as:

If $K \in \mathcal{K}(\mathcal{H})$ and $||T_n x - Tx|| \to 0$ for all $x \in \mathcal{H}$ then $||T_n K - TK|| \to 0$.

In words: Multiplying by a compact operator on the right converts a pointwise convergent sequence of operators into a norm convergent one .

Proof

Since (T_n) is bounded sequence, $||T_n|| \le M$ for some constant M. Then for all $x \in \mathcal{H}$, $||Tx|| = \lim_n ||T_nx|| \le M ||x||$ and so $||T|| \le M$.

Let K be compact and suppose that $||TK - T_nK|| \neq 0$. Then there exists some $\delta > 0$. And a subsequence $(T_{ni}K)$ such that $||TK - T_{ni}K|| > \delta$. Choose unit vectors (x_{ni}) of \mathcal{H} such that $||(TK - TniK)xni>\delta$. [That this can be done follows directly from the definition of the norm of an operator .]. Using the fact that K is compact, we can find a subsequence (x_{nj}) of (x_{ni}) such that (Kx_{nj}) is convergent. Let the limit of this sequence by . Then for all j

$$\delta < \|(TK - T_{nj}K)x_{nj}\| \le \|(T - T_{nj})(Kx_{nj} - y)\| + \|(T - T_{nj})y\|.$$

Now , using the convergence of (Kx_{nj}) to y, there exists n so that , for $n_j > n$,

 $||Kx_{nj} - y|| < \frac{\delta}{8M}$. Also, using the convergence of (T_{nj}) to T, there exists *m* so that, for $n_j > m$, $||(T - T_{nj})y|| < \frac{\delta}{4}$. Then, for $j > \max[n, m]$ that right hand side of the displayed inequality is less than $\frac{\delta}{2}$, and this contradiction shows that the supposition that $||TK - T_nK|| \neq 0$ is false.

3. First Condition of Boundedness of Compact operator

Remark 3: A compact operator is bounded .

Proof

First we show that a compact linear operator $T: X \to Y$ between normed spaces is bounded, if T is compact, then the closure of the image of B(0,1) and B(0, n) is compact, then

 $||T|| = \sup_{||x||=1} ||Tx|| \le \sup_{x \in B(0,2)} ||Tx|| \le M$

For some $M \in \mathbb{R}_{\geq 0}$ since $TB(0,2) \subset \overline{TB(0,2)}$ and $\overline{TB(0,2)}$ is compact hence bounded

Lemma 4: Every compact operator is bounded.

Proof

Put S = { $x \in X : ||x|| = 1$ }, then T(S) is relatively compact, hence bounded (by M) therefore, $||T|| \le M$.

Definition 5

Let X and Y be two normed linear spaces . We denote that both X and Y norms by $\|.\|$. A linear operator $T : X \rightarrow Y$ is bounded if there is constant $M \ge 0$ such that $\|Tx\| \le M \|x\|$ for all $x \in X$ (1)

If no such constant exists, the we say that t is unbounded. If $T: X \to Y$ is a bounded linear compact operator we define operator norm ||T|| of T by

 $||T|| = in\{M|||Tx|| \le M||x|| \text{ for all } x \in X\}$ (2).

We denote the set of all linear maps $T:X \to Y$ by $\mathcal{L}(X,Y)$, and the set of all bounded linear maps by $\mathcal{B}(X,Y)$. Then the domain and range spaces are the same, we write

 $\mathcal{L}(X, X) = \mathcal{L}(X) \quad \text{and} \quad \mathcal{B}(X, X) = \mathcal{B}(X) \quad \text{equivalent}$ expressions for ||Tx|| are : $||T|| = \sup_{x \neq 0} \frac{||Tx||}{||x||} ; ||T|| = \sup_{||x|| < 1} ||Tx|| ;$ $||T|| = \sup_{||x|| = 1}^{sup} ||Tx|| (3)$

4. Second Condition of Boundedness of Compact operator

Theorem 6

Linear compact operator is bounded if it is continuous .

Proof

First, suppose that $T : X \to Y$ is bounded.

Then, for all $x, y \in X$, we have

 $||Tx - Ty|| = ||T(x - y)|| \le M ||x - y||.$

Where M is a constant for which (1) holds, therefore we can take $= \in /M$.

In the definition of continuity, T is continuous.

Second , suppose that T is continuous at 0 . Since T is linear, we have T(0) = 0 .

Choosing $\in = 1$ in the definition of continuity , we conclude that there is a $\delta > 0$.

Such that $||Tx|| \le 1$ whenever $||x|| \le \delta$ for any $\in X$, with $x \ne 0$, we define

$$\tilde{x}$$
 by $\tilde{x} = \delta \frac{x}{\|x\|}$

Then $\|\tilde{x}\| \leq \delta$, so $\|T\tilde{x}\| \leq 1$.

It follow from linearity of T that $||Tx|| = \frac{||x||}{\delta} ||T\tilde{x}|| \le M ||x||$.

Where $M = \frac{1}{\delta}$. Thus T is bounded . The proof shows that if any compact linear map is continuous at zero , then its continuous at every point .

References

- Bounded operators .Jan Derezinski ,Department of Mathematical Methods in Physics, Warsaw University , Hoza74 , 00-682,Warszawa , Poland ,Lecture Notes ,version of Jan ,2007, January 31,2007 .
- [2] Compact operator and Classical Function Theory , Joel . Shapiro , Portland State University CMFT 2013 .
- [3] Enflo , A counterexample to the approximation problem in Banach spaces , Acta.130 (1973) , 309-317.
- [4] Factorization of weakly Compact operators between Banach spaces and Frechet or (LB)- spaces New Mexico State University, U.S.A, Received :July 2009, Accepted : August 2009.
- [5] Kerss , R.,Linear Integral Equations . Applied Mathematical Science 82 . New York : Springer 1999 .
- [6] T. Kato , Perturbation theory for Linear operators ,Springer ,1966 , reprinted 1955.
- [7] Michael Reed and Barry Simon , Methods of Modern Mathematics Physics I Functional Analysis , Academic press, 1980.