New Types of Connected Spaces by Semi Cocompact Open Set

Raad Aziz Al-Abdulla, Hadeel Husham Al-Zubaidi

Department of Mathematics College of computer sciences and Mathematics, University of Al-Qadisiya

Abstract: The aim of this work studies the definitions of certain types of connected spaces by s-coc-open set and we study the relation between them.

Keyword: s-coc-open set, $\omega s - coc$ open set, s-coc-continuous, s-coc'-continuous, s-coc-open function, s-coc-open function, super s-coc open function, s-coc-connected space, s-coc-locally connected space, s-coc-extremelly disconnected and s-coc-hyper connected space

Math. Sub. Classification 2000 : 54A05, 54C10, 54D30

1. Introduction

In [6] give definition of connected space. In section one; we defined of s-coc-open set and ω s-coc-open set. In section two we study (s-coc-open, s-coc'-open and super s-coc-open) function. Insection three we defined new types of connected spaces and we study the relation between them.

Definition (1.1) [7]

A subset A of a space (X, τ) is called cocompact open set (coc-open-set) if every $x \in A$ there exists open set $U \subseteq X$ and compact subset **K** such that $x \in U - K \subseteq A$, the complement of coc-open set is called coc-closed set.

Definition (1.2) [10]

A subset **A** of space **X** is called semi open set (s-open) if and only if $A \subseteq \overline{A^{\circ}}$ and **A** called s-closed if and only if A^{c} s-open.

Proposition (1.1)[9]

For any subset A of space X the following statements are equivalent.

1. As is s-open set. 2. $\overline{A} = \overline{A^{\circ}}$ 3. There exists open set **G** such that $G \subseteq A \subseteq \overline{G}$

Remark (1.1) [10]

Every open set is semi-open. But the convers is not true.

Proposition (1.2) [3]

For any subset A of a space X the following statements are equivalent

1. A is s-closed

2. $A^\circ = \overline{A}^\circ$ 3. There exists closed set **F** in **X** such that $F^\circ \subseteq A \subseteq F$

Definition (1.3)

A subset A of a space (X, τ) is called semi cocompact open set (s-coc-open-set) if for every $x \in A$ there exists s-open set $U \subseteq x$ and compact subset **K** such that $x \in U - K \subseteq A$, the complement of s-coc-open set is called s-coc-closed set.

Remark (1.2)

Every coc-open set is s-coc-open set. But the convers is not true for the following example:

Example (1.1)

Let $X = \{1, 2, 3, 4,\}, \tau = \{\emptyset, X, \{2\}, \{3\}, \{2, 3\}\}$ topology on **X**, $A = \{1, 2\}$ s-coc-open set but not coc-open set.

Remark (1.3):

i- Every open set is s-coc-open set.

ii- Every s-open set is s-coc-open set proof:

Proof

- i. Let A open set. Then A s-open and K compact. Then for all $x \in A$ we have $x \in A K \subseteq A$.
- ii. Clear.

Remark (1.4):

- 1. The intersection of open set and s-open is s-open [10].
- 2. The intersection of two s-coc-open is s-coc-open set.
- 3. The intersection of s-coc-open and coc-open set is s-cocopen
- 4. The union of s-coc-open is s-coc-open set
- 5. The intersection of s-coc-open sets and open set is s-coc-open

Proof:

2. Let **A** and **B** s-coc-open sets. To prove $A \cap B$ is s-cocopen set. And let $A \cap B$ is not s- coc- open set. Then there exists $x \in A \cap B$ such that for all V_x s-opet set and **K** compact $x \in V_x - K \nsubseteq A \cap B$. Then $x \in V_x - K \nsubseteq A$ orx $\in V_x - K \nsubseteq B$. Then **A** is not s-cocor **B** is not s-coc-

Licensed Under Creative Commons Attribution CC BY

open set. This conduction since A, B s-coc-open sets. Then $A \cap B$ is s-coc-open set.

3. Let **A** s-coc-open set and **B** coc-open set. Since **B** coc-open then **B** s-coc-ope. Then $A \cap B$ is s-coc-open set by (2)

4. $\{A_{\alpha}: \alpha \in \Lambda\}$ s-coc-open set.let $x \in \bigcup A_{\alpha}$. Then $x \in A_{\alpha}$ for some $\alpha \in \Lambda$. Thenthere exists U_{α} s-openset and K_{α} compact such that $x \in U_{\alpha} - K_{\alpha} \subseteq A_{\alpha} \subseteq \bigcup A_{\alpha}$ then $x \in U_{\alpha} - K_{\alpha} \subseteq \bigcup A_{\alpha}$. Then $\bigcup A_{\alpha}$ s-coc-open set.

5.Let **A** s-coc-open set and **B** open set .Then for all $x \in A$ there exists **U** s-open set and **K** compact such that $x \in U - K \subseteq A$, since **U** s-open and **B** open, then $A \cap B$ s-open by (1), then $x \in (U - K) \cap B \subseteq A \cap B$ thenthen $x \in (U \cap B) - K \subseteq A \cap B$ then $A \cap B$ s-coc-open set.

Remark (1.5):

1. The coc-open sets forms topology on X denoted by $\tau^k[11]$.

2. The s-coc-open sets forms topology on X denoted by $\tau^{sk}.$

3. Every s-closed is s-coc-closed but the converse is not true for example.

Example (1.2)

Let X = {1, 2, 3, 4,}, $\tau = \{\emptyset, X, \{2\}, \{3\}, \{2, 3\}\}$ topology on X and A = {1, 2}s-coc-open set then A^c = {3, 4, 5, 6,} s-closed but A^c not s-closed.

Proposition (1.3)

Let **X** and **Y** be topological spaces, and $A \subseteq X, B \subseteq Y$ such that **A** s-coc-open set in **X** and **B** s-coc-open set in **Y** then $A \times B$ is s-coc-open subset in $X \times Y$.

Proof:

Let $(x, y) \in A \times B$, then $x \in A$ and $y \in B$. Since **A** is scoc-open in **X**. Then for all $x \in A$ there exists **U** s-open set and K_1 compact such that $x \in U - K_1 \subseteq A$. Since B is s-coc-open in **Y**. Then for all $y \in B$ there exists **V** sopen set and K_2 compact such that $y \in V - K_2 \subseteq B$.

Since **U** and **V** are s-open sets, Then $U \subseteq \overline{U^{\circ}}$ and $V \subseteq \overline{V^{\circ}}$ then $U \times V \subseteq \overline{U^{\circ}} \times \overline{V^{\circ}} \subseteq \overline{U^{\circ} \times V^{\circ}} \subseteq \overline{(U \times V)^{\circ}}$. Then $U \times V \subseteq \overline{(U \times V)^{\circ}}$, then $U \times V$ s-open in $X \times Y$ and $K_1 \times K_2$ compact in $X \times Y$. Then for all $(x, y) \in A \times B$ there exists s-open $U \times V = W$ and $K_1 \times K_2 = K$ compat such that $(x, y) \in W - K \subseteq A \times B$ therefor $A \times B$ s-cocopen in $X \times Y$.

Definition (1.4)

Let X be space and $A \subseteq X$. The intersection of all s-cocclosed sets X containing A called the s-coc- closure of A defined by \overline{A}^{s-coc} .

 $\overline{A}^{s-coc} = \cap \{B: B \ s-coc-closed \ in \ X \ and \ A \subseteq B\}$

Definition (1.5)[7]

Let **X** be space and $A \subseteq X$. The intersection of all cocclosed sets **X** containing **A** called the coc- closuer of A defined by $\overline{A}^{coc} = \cap \{B: B \ coc-closed \ in X \ and \ A \subseteq B\}$.

Proposition (1.4)

Let **X** be a topological space and $A \subseteq X$ then \overline{A}^{s-coc} is the smallest s-coc-closed set containing **A**.

Proof

Clear.

Proposition (1.5)

Let X be a topological space and $A \subseteq X$, then $x \in \overline{A}^{s-coc}$ if and only if for each s-coc-open in X contained point x we have $U \cap A \neq \emptyset$.

Proof:

Assume that $x \in \overline{A}^{s-coc}$ and let U s-coc-open in X such that $x \in U$, and suppose $U \cap A \neq \emptyset$ then $A \subseteq U^c$. Since U s-coc-open set in X and $x \in U$ then U^c s-coc closed set in X and $x \notin U$ and \overline{A}^{s-coc} is smallest s-coc-closed containing Athen $\overline{A}^{s-coc} \subseteq U^c$. Since $U \cap U^c = \emptyset$ and $x \in U$ then $x \notin U^c$ then $x \notin \overline{A}^{s-coc}$. Conversely:

Let U s-coc-closed set in X such that $x \in U$ and $U \cap A \neq \emptyset$. \emptyset . To provex $\in \overline{A}^{s-coc}$. Let $x \notin \overline{A}^{s-coc}$ then $x \in (\overline{A}^{s-coc})^c$, since \overline{A}^{s-coc} is s-coc-closed in X, $(\overline{A}^{s-coc})^c$ is s-coc-open in Xand $\overline{A}^{s-coc} \cap (\overline{A}^{s-coc})^c = \emptyset$. Then $A \cap (\overline{A}^{s-coc})^c = \emptyset$, since $A \subseteq (\overline{A}^{s-coc})^c$. This contradiction since every scoc-open Uin X, $U \cap A \neq \emptyset$.

Proposition (1.6)[7]

Let **X** be a topological space and $A \subseteq X$, then $x \in \overline{A}^{coc}$ if and only if for each coc-open in **X** contained point **x** we have $U \cap A \neq \emptyset$.

Proposition (1.7)

Let **X** be a topological space and $A \subseteq B$ then

i- $(\overline{A}^{s-coc})^c$ is s-coc-closed set ii- **A** is s-coc-closed if and only if $A = \overline{A}^{s-coc}$ iii- $\overline{A}^{s-coc} = \overline{\overline{A}^{s-coc}}^{s-coc}$ iv- If $A \subseteq B$ then $\overline{A}^{s-coc} \subseteq \overline{B}^{s-coc}$ v- $\overline{A}^{s-coc} \subseteq \overline{A}$ vi- $\overline{A}^{s-coc} \subseteq \overline{A}^{coc}$

i- By definition of s-coc-closed set.

ii- Let **A** is s-coc-closed in X. Since $A \subseteq \overline{A}^{s-coc}$ and \overline{A}^{s-coc} smallest s-coc-closed set containing **A**, then $\overline{A}^{s-coc} \subseteq A$ then $A = \overline{A}^{s-coc}$

Conversely:

Let $A = \overline{A}^{s-coc}$. Since \overline{A}^{s-coc} is s-coc-closed then **A** is s-coc-closed.

iii- From (i) and (ii)

iv- \overline{A}^{s-coc} Let $A \subseteq B$. Since $B \subseteq \overline{B}$ then $A \subseteq \overline{A}^{s-coc}$. Since smallest s-coc-closed set containing **A** then $\overline{A}^{s-coc} \subseteq \overline{B}^{s-coc}$

v- By proposition (1.5).

vi-By proposition (1.5) and proposition (1.6).

Definition (1.6)

Let **X** be space and $A \subseteq X$. The union of all s-coc-open sets of **X** containing in **A** is called s-coc-Interior of **A** denoted by $A^{\circ s-coc} = \bigcup \{B: B \ s - coc - open \ in \ X \ and \ A \subseteq B\}$

Definition (1.7)[7]

Let **X** be space and $A \subseteq X$. The union of all coc-open sets of **X** containing in **A** is called coc-Interior of **A** denoted by $A^{\circ coc} = \bigcup \{B: B \ coc - open \ in X \ and A \subseteq B\}$

Proposition (1.8):

Let X be a topological space and $A \subseteq X$, then $A^{\circ s-coc}$ is the largest s-coc-open set contain A

Proof:

Clear.

Proposition (1.9)

Let **X** be a topological space and $A \subseteq X$, then $x \in A^{\circ s - coc}$ if and only if there exists s-coc-open set **V** containing **x** such that $x \in V \subseteq A$.

Proof:

Let $x \in A^{\circ s - coc}$ then $x \in \cup U$ such that **U** s-coc-open set and $x \in V \subseteq A$.

conversely:

Let there exists V s-coc-open set such that $x \in V \subseteq A$ then $x \in \cup V, V \subseteq A$ and V s-coc-open set then $x \in A^{\circ s-coc}$.

Proposition (1.10)[7]

Let **X** be a topological space and $A \subseteq X$, then $x \in A^{\circ coc}$ if and only if there exists coc-open set **V** containing **x** such that $x \in V \subseteq A$.

Proposition (1.11)

Let X be a topological space and $A \subseteq B \subseteq X$ then.

1. $A^{\circ s - coc}$ is s-coc-open set.

2. **A** is s-coc-open if and only if
$$A = A^{\circ s - coc}$$
.

3. $A^{\circ} \subseteq A^{\circ s - coc}$.

4. $A^{\circ s-coc} = (A^{\circ s-coc})^{\circ s-coc}.$

5. if $A \subseteq B$ then $A^{\circ s - coc} \subseteq B^{\circ s - coc}$.

6. $A^{\circ coc} \subseteq A^{\circ s-coc}$

Proof:

1. and 2. from definition (1.6)

3. Let $x \in A^{\circ s - coc}$ then there exists U s-coc- open set such that $x \in U \subseteq A$ then U s-coc-open set then U scoc-open set such that $x \in U \subseteq A$ thus $x \in A^{\circ s - coc}$

4. from (1) and (2).

5. Let $x \in A^{\circ s - coc}$ then there exists *V* open set such that $x \in V \subseteq A$ by proposition (1.9) since $A \subseteq B$ then $x \in V \subseteq B$. Then $x \in B^{\circ s - coc}$. Thus $A^{\circ s - coc} \subseteq B^{\circ s - coc}$. 6. By proposition (1.9) and proposition (1.10).

Proposition (1.12)

Let *X* be a space and $A \subseteq X$, then $(A^c)^{\circ s - coc} = (\overline{A}^{s - coc})^c$

Proof

Let $x \in (A^c)^{\circ s - coc}$ and $x \notin (\overline{A}^{s - coc})^c$. Then $x \in \overline{A}^{s - coc}$. Then for all $x \in A$ there exists U s-coc-open setsuch that $U \cap A \neq \Phi$. Since $(A^c)^{\circ s - coc}$ s-coc-open set then $(A^c)^{\circ s - coc} \cap A \neq \emptyset$. Then $(A^c)^{\circ s - coc} \subseteq A^c$ then $A \cap A^c \neq \emptyset$. This is contradiction Thus $x \in (\overline{A}^{s - coc})^c$. Then $(A^c)^{\circ s - coc} \subseteq (\overline{A}^{s - coc})^c$. Let $x \in (\overline{A}^{s - coc})^c$ then $x \notin \overline{A}^{s - coc}$. Then there exists U s-coc-open set such that $U \cap A \neq \emptyset$. Then $U \subseteq A^c$ There for $U^{\circ s - coc} \subseteq (\overline{A}^c)^{\circ s - coc} \subseteq (\overline{A}^c)^{\circ s - coc}$ then $(A^c)^{\circ s - coc} \subseteq (\overline{A}^c)^{\circ s - coc}$.

Definition (1.8):[2]

Let X be a space and B any subset of x, a neighborhood (nbd) of B is any subset of X which contains an open set containing BThe neighborhoods of a subset $\{x\}$ is also neighborhood of the point x.

Remark (1.6)

The collection of all neighborhoods of the subset B of X are denoted by N(B). In particular the collection of all neighborhoods of x is denoted by N(x).

Definition (1.9)

Let X be a space and $B \subseteq X$, an s-coc-neighborhood of B is any subset of X which contains an s-coc-open set containing B. The s-coc-neighborhood (s-coc-nbd) of subset $\{x\}$ is also called s-coc-neighborhood of the point x.

Remark (1.7)

The collection of all neighborhoods of the subset *B* of *X* are denoted by $N_{s-coc}(B)$ in particular the collection of all neighborhoods of *x* is denoted by $N_{s-coc}(x)$.

Proposition (1.13)

Let (X, τ) be a topological space and for each $x \in X$, let $N_{s-coc}(x)$ be a collection of all s-coc- neighborhoods of *x*then:

- i. If $A \in N_{s-coc}(x)$ such that $A \subseteq B$ then $B \in N_{s-coc}(x)$
- ii. If $A, B \in N_{s-coc}(x)$ then $A \cap B \in N_{s-coc}(x)$ such that $A, B \subseteq X$
- iii. If $A_{\alpha} \in N_{s-coc}(x)$ then $\bigcup A_{\alpha} \in N_{s-coc}(x)$

- i- Since $A \in N_{s-coc}(x)$ then there exists U s-coc-open set such that $x \in U \subseteq A$, since $A \subseteq B$ then $x \in U \subseteq B$ hence $B \in N_{s-coc}(x)$.
- ii-Let $A, B \in N_{s-coc}(x)$ and $A \cap B \notin N_{s-coc}(x)$. Then $x \in A \cap B$ and for all U scoc-open set such that $x \in U \nsubseteq A \cap B, x \in U \nsubseteq$ $Aor x \in U \nsubseteq B$. Then $A \notin N_{s-coc}(x)$ or $B \notin$ Ns-cocx this contradiction.
- iii- Since $A_{\alpha} \in N_{s-coc}(x)$ exists U_{α} s-coc-open set such that $x \in U_{\alpha} \subseteq A_{\alpha} \subseteq \bigcup A_{\alpha}$. Then $x \in U_{\alpha} \subseteq \bigcup A_{\alpha}$. Therefore $\bigcup A_{\alpha} \in N_{s-coc}(x)$.

Proposition (1.14)

Let (X, τ) be a space and $A \subseteq X$ then A s-coc-open set in X if and only if A is s-coc- neighborhood for all his points in A

Proof

Let A s-coc-open and $x \in A$.Since $x \in A \subseteq A$ then A is s-coc-neighborhood of x for all x hence A is s-coc-neighborhood for all his points

conversely:

Let *A* is s-coc- neighborhood for all his points and $x \in A$. Then *A* is s-coc- neighborhood for *x* then there exists U_x scoc-open set such that $x \in U_x \subseteq A$. Then $A = \bigcup\{x: x \in A\} \subseteq \{U_x: x \in U_x\} \subseteq A$. Then $A = \{U_x: x \in U_x\}$. Then $A = \{U_x: x \in U_x\}$. Then A union of s-coc-open sets. Therefore *A* is s-coc-open set

Proposition (1.15)

Let X be a topological space and τ discret topology in X then $N_{s-coc}(x) = \{A: x \in A\}$

Proof

Since τ discret topology*then* $\tau = \{A : x \in A\}$. Let $A \subseteq X$ and $x \in X$ either $x \in A$ or $x \notin A$

 $-ifx \notin A$ then Anot s-coc- neighborhood of x hence $A \notin Ns - coc(x)$

-if $x \in A$.Since $\{x\} \subseteq X$, and $\{x\}$ open set in X. Then $\{x\}$ scoc-open set $x \in \{x\} \subseteq A$ then A s-coc- neighborhood of x then $A \in N_{s-coc}(x)$ hence $N_{s-coc}(x) = \{A: x \in A\}$

Remark (1.8)

Every neighborhood of x is s-coc- neighborhood of x. But the converse not true for example

Example (1.3)

Let $x = \{1, 2, 3, 4\}$ and $\tau = \{\emptyset, X, \{4\}\}$, $A = \{1, 2\}$ not neighborhood of x but s-coc- neighborhood of x

Definition (1.10)

Let *X* be a topological space and $x \in X, A \subseteq X$. The point *x* is called s-coc-limit point of A if every s-coc-open set containing xcontains apoint of *A* distinct from *x*. we call the set of all s-coc-limit point of *A* the s-coc-derived set of *A* and denoted by A'^{s-coc} . Therefore $x \in A'^{s-coc}$ if and only if for every s-coc-open set*VinX* such that $x \in V$ such that $(V \cap A) - \{x\} \neq \emptyset$

Definition (1.11)[7]

Let *X* be a topological space and $x \in X, A \subseteq X$. The point *x* is called coc-limit point of A if every coc-open set containing x contains a point of *A* distinct from *x*. we call the set of all coc-limit point of *A* the coc-derived set of *A* and denoted by A'^{coc} .

Therefore $x \in A'^{coc}$ if and only if for every coc-open set *VinX* such that $x \in V$ such that $(V \cap A) - \{x\} \neq \emptyset$

Proposition (1.16)

Let \overline{X} be a topological space and $A \subseteq B \subseteq X$ then

1) $\overline{A}^{s-coc} = A \bigcup \hat{A}^{s-coc}$

2) A s-coc-closed set if and only if $A'^{s-coc} \subseteq A$

3) $\hat{A}^{s-coc} \subseteq \hat{B}^{s-coc}$

 $4)\dot{A}^{s-coc} \subseteq \dot{A}^{coc}$

Proof:

1) Since $A \subseteq \overline{A}^{s-coc}$ ---- (*), let $x \in \dot{A}^{s-coc}$, then for each s-coc-open set U containing x such that $(V \cap A) - \{x\} \neq \Phi$ then $U \cap A \neq \emptyset$ for all U s-coc-open set, $x \in U$ then $U \cap A \neq \emptyset$. Then $x \in \overline{A}^{s-coc}$ hence $\dot{A}^{s-coc} \subseteq \overline{A}^{s-coc}$(**)from (*)and(**) we have $A \cup A'^{s-coc} \subseteq \overline{A}^{s-coc}$

Conversely:

Let $x \in \overline{A}^{s-coc}$ Then either $x \in Aorx \notin A$, if $x \in A$ then $x \in A \cup A^{s-coc}$ complete if $x \notin A$, since $x \in \overline{A}^{s-coc}$ then for all *U*s-coc-open set contains x such that $U \cap A \neq \emptyset$ since $x \notin A$ then $(U \cap A) - \{x\} \neq \emptyset$. Then $x \in A^{coc}$ then \overline{A}^{s-coc} then \overline{A}^{s-coc} Ence $\overline{A}^{s-coc} = A \cup A^{coc}$.

2) Let A s-coc-closed set to prove $A'^{s-coc} \subseteq A$, $Athenx \in A^c$, let $AthenA^c$ since A s-coc-closed set, then A^c s-coc set and $A \cap A^c = \emptyset$. $Sincex \notin Athen(A \cap A^c) - \{x\} \neq \emptyset$ then $x \notin A'^{s-coc}$ then $A'^{s-coc} \subseteq A$, let $A'^{s-coc} \subseteq A$, to prove A s-coc-closed set. Since $\overline{A}^{s-coc} = A \cup A'^{s-coc}$ then $\overline{A}^{s-coc} = A$ then A s-coc-closed set 3) Let $x \in A'^{s-coc}$. Then for all U s-coc-open set contain x such that $(U \cap A) - \{x\} \neq \emptyset$. since $A \subseteq B$ then $(U \cap B) - \{x\} \neq \emptyset$. Then $x \in \dot{B}^{s-coc}$ hence $\dot{A}^{s-coc} \subseteq \dot{B}^{s-coc}$

4)By Definition (1.10) and Definition (1.11)

Definition (1.12)

Let (X, τ) be a topological space and let *A* be any subset of *X*, let $x \in X$ is called s-coc-boundary point of *A* if and only if each s-coc-open set U_x of *x* we have $U_x \cap A \neq \emptyset$ and $U_x \cap A^c \neq \emptyset$

The set of all s-coc-boundary point of A is denoted by $b_{s-coc}(A)$

Proposition (1.17)

Let *X* be a space and $A \subseteq X$ then

1) $b_{s-coc}(A) = \overline{A}^{s-coc} \cap \overline{A^c}^{s-coc}$

2)
$$A^{\circ s-coc} = A - b_{s-coc}(A)$$

3) $\overline{A}^{s-coc} = A \cup b_{s-coc}(A)$

Let $x \in b_{s-coc}(A)$ then for all U s-coc-open set 1) contain xsuch that $U \cap A \neq \emptyset$ and $U \cap A^c \neq \emptyset$. Then by proposition (1.5) we have $x \in \overline{A}^{s-coc}$ and $x \in \overline{A}^{s-coc}$. Hence $x \in \overline{A}^{s-coc} \cap \overline{A}^{c}^{s-coc}$. Then $b_{s-coc}(A) \subseteq \overline{A}^{s-coc} \cap \overline{A}^{c}^{s-coc}$ Conversely:

Let $x \in \overline{A}^{s-coc} \cap \overline{A^c}^{s-coc}$. To proof $x \in b_{s-coc}(A)$. Then $x \in \overline{A}^{s-coc}$ and $x \in \overline{A^c}^{s-coc}$. Then by proposition (1.6) we have U s-coc-open set containing $xandU \cap A \neq \emptyset, U \cap A^c \neq \emptyset$. Then $x \in b_{s-coc}(A)$ hv definition Therefore definition (1.12). $b_{s-coc}(A) \subseteq \overline{A}^{s-coc} \cap \overline{A^c}^{s-coc}$. Thus (1.12). $b_{s-coc}(A) =$ $\overline{A}^{s-coc} \cap \overline{A^c}^{s-coc}$

2) Let $x \in A^{\circ s - coc}$ then $x \in A$ (since $A^{\circ s - coc} \subseteq A$). To prove $x \notin b_{s-coc}(A)$, let $x \in b_{s-coc}(A)$, then for all U scoc-open set contain xsuch that $U \cap A^c \neq \emptyset$ and $U \cap A \neq \emptyset$ \emptyset . Since $x \in A^{\circ s - coc}$. Then there exist Vs-coc-open set such that $x \in V \subseteq A$ by proposition (1.10)since $A \cap A^c$ = \emptyset *thenV* $\cap A^c = \emptyset$ contradiction Then $x \notin b_{s-coc}(A)$. Hence $A^{\circ s-coc} \subseteq A - b_{s-coc}(A)$. Conversely:

Let $x \in A - b_{s-coc}(A)$, to prove $x \in A^{\circ s-coc}$. Since $x \notin b_{s-coc}(A)$ then V s-coc-open set contain x such that $V \cap A \neq \emptyset or V \cap A^c \neq \emptyset$, since

 $x \in Vandx \in AthenA \cap V \neq \emptyset thenV \cap A^c = \emptyset$ then $V \subseteq A$ then $x \in V \subseteq A$. Then byproposition (1.10) we have $x \in A^{\circ s - coc}$.

Let $x \in \overline{A}^{s-coc}$. To prove $x \in A \cup b_{s-coc}(A)$, 3) let $x \notin A \cup b_{s-coc}(A)$ then $x \notin Aandx \notin b_{s-coc}(A)$ then there exists V s-coc-open set such that $x \in Vand V \cap A \neq V$ $\Phi \text{ or } V \cap A^c \neq \emptyset$, since $x \notin A$ then $x \in A^c$, since $x \in$ *Vthen* $x \in V \cap A^c$ *then* $V \cap A^c \neq \emptyset$ hence $V \cap A =$ Φ then $x \notin \overline{A}^{s-coc}$ this contradiction, then *x* ∈ $A \cup b_{s-coc}(A)$ Conversely:

Let $x \in A \cup b_{s-coc}(A)$. Then either $x \in A$ then $x \in A$ \overline{A}^{s-coc} or A or $x \in \overline{A}^{s-coc} \cap \overline{A^{c}}^{s-coc}$. then $x \in \overline{A}^{s-coc}$. Then $A \cup b_{s-coc} (A) \subseteq \overline{A}^{s-coc} \text{.Then} \overline{A}^{s-coc} = A \cup b_{s-coc} (A)$

Remark (1.9)

Let X be a topological space and $A \subseteq X$ then $b_{s-coc}(A)$ $=b_{s-coc}(A^{c})$

Proof

Since $b_{s-coc}(A) = \overline{A}^{s-coc} \cap \overline{A^c}^{s-coc} = \overline{(A^c)^c}^{s-coc} \cap \overline{A^c}^{s-coc} =$ $b_{s-coc}\left(A^{c}\right)$

Proposition (1.18)

Let *X* be a topological space and $A \subseteq X$ then: i. $\overline{A}^{s-coc} = A^{\circ s-coc} \cup b_{s-coc}(A)$

- ii. A s-coc-open set if and only if $b_{s-coc}(A) \subseteq A^c$
- iii. A s-coc-closed set if and only if $b_{s-coc}(A) \subseteq A$

Proof

Since $A^{\circ s-coc} \subseteq \overline{A^c}^{s-coc}$, $b_{s-coc}(A) = \overline{A^c}^{s-coc} \cap \overline{A^c}^{s-coc} \subseteq \overline{A}^{s-coc}$. Then $A^{\circ s-coc} \cup b_{s-coc}(A) \subseteq \overline{A^c}^{s-coc} \cup b_{s-coc}(A) \subseteq \overline{A^c}^{s-coc}$. i. \overline{A}^{s-coc}

Conversely:

 $x \in \overline{A}^{s-coc}$ and $x \notin b_{s-coc}(A)$ then there exist U s-coc-open set contain xand

 $U \cap A = \emptyset$ or $U \cap A^c = \emptyset$. if $U \cap A = \emptyset$ then *x* ∉ \overline{A}^{s-coc} contradiction, if $U \cap A^c = \emptyset$ then $U \subseteq A$, then there exist U s-coc-open such that $x \in U$ and $U \subseteq$ A then $x \in A^{\circ s - coc}$

ii. Let A s-coc-open set. Then
$$A^c$$
 s-coc-closed set then $A^\circ \subseteq \overline{A^c}^{s-coc}$. Since

$$\begin{array}{l} b_{s-coc}\left(A\right) = \overline{A}^{s-coc} \cap \overline{A^{c}}^{s-coc} \subseteq \overline{A^{c}}^{s-coc}. \text{ Hence} \\ b_{s-coc}\left(A\right) \subseteq \overline{A^{c}}^{s-coc} \\ \text{Conversely:} \\ \text{Let} \qquad \qquad b_{s-coc}\left(A\right) \subseteq A^{c}. \text{ Since} \\ b_{s-coc}\left(A\right) = \overline{A}^{s-coc} \cap \overline{A^{c}}^{s-coc}. \text{ Then} \\ \overline{A^{s-coc}} \cap \overline{A^{c}}^{s-coc} \cap A = \emptyset. \text{ Since} \\ A \subseteq \overline{A}^{s-coc} \quad then \ \overline{A^{c}}^{s-coc} \cap A = \emptyset. \text{ Then} \\ \overline{A^{c}}^{s-coc} \quad coc \cap A = \emptyset. \text{ Then} \\ \overline{A^{c}}^{s-coc} \quad A^{c} \subseteq \overline{A^{c}}^{s-coc} \text{ hence} A^{c} = \overline{A^{c}}^{s-coc}. \text{ Then} \ A^{c} \text{ s-coc} \text{ s-coc} \\ coc-closed \quad then \ A \text{ s-coc-open} \end{array}$$

Let A s-coc-closed set $A = \overline{A}^{s-coc}$ then $b_{s-coc}(A) = \overline{A}^{s-coc} \cap \overline{A^c}^{s-coc} =$ iii. .Then $A \cap \overline{A^c}^{s-coc} \subseteq A$ Conversely Let $b_{s-coc}(A) \subseteq A$. Then $\overline{A}^{s-coc} \cap \overline{A^c}^{s-coc} \cap A^c = \emptyset$ then $\overline{A}^{s-coc} \cap A^c \subseteq A$ hence $A = \emptyset$ \overline{A}^{s-coc} , Then A s-coc-closed set.

Proposition (1.19)

If X aspace and τ discrete topology on X then $b_{s-coc}(A) = \emptyset forall A \subseteq X$

Proof

Since X discrete then A s-coc-open set, Then $b_{s-coc}(A) \subseteq$ A^c and A s-coc-closed set, Then $b_{s-coc}(A) \subseteq A$ by proposition (1.18)(ii) . Then $b_{s-coc}(A) \subseteq A \cap A^c =$ Ø.Thus $b_{s-coc}(A) = Ø$ by proposition (1.18)(iii)

Definition (1.13) [6]

A subset A is said to be ω -open set if for each $x \in A$, there exists open set U such that $x \in U$ and A - U countable

Definition (1.14)

A subset *A* is said to be ω s-coc-open set if for each $x \in A$, there exists open s-coc-open set U such that $x \in$ U and A - U countable. The complement of ω coc-open set

is ω coc-closed set.

Proposition (1.20)

A subset A of space X is ω s-coc-open set if and only if for each $x \in A$ there exists open s-coc-open set U containing x and countable subset B such that $U - B \subseteq A$

Let *A* be ω s-coc-open and $x \in A$, there exist s-coc-open subset *U* containing *x* such that U - A countable Let $B = U - B = U \cap (X - A)$ then $U - B \subseteq A$ Conversely:

Let $x \in A$ and there exists s-coc-open subset U containing x and countable subset B such that $U - B \subseteq A$. Then U - A countable set. Then A is ω s-coc-open set

Theorem (1.1)

Let X be a space and $C \subseteq X$. If C is ω s-coc-closed set. Then $C \subseteq K \cap B$ for some s-coc-closed subset K and countable subset B

Proof

Since *C* is ω s-coc-closed set then $X - C\omega$ s-coc-open. Then by proposition (1.20) then $\forall x \in X - C \exists U$ s-cocopen and *B* countable set such that $U - B \subseteq X - C$. Then $C \subseteq X - (U - B)$

$$= X = X \cap (U \cap (X - B))^{c} = X \cap (U^{c} \cup B)$$
$$= (X - U) \cup B$$
$$K = X - U \text{ then } C \subseteq K \cap B$$

Proposition (1.21)

The intersection of two ω s-coc-open set is ω s-coc-open set

Proof

Let

Let A and B ω s-coc-open sets and $x \in A \cap B$ then $x \in A$ and $x \in B$. Since A ω s-coc then $\forall x \in A \exists U$ s-coc-open such that U - Acountable.Since B ω s-coc then $\forall x \in B \exists V$ s-coc-open such that V - Bcountable .To prove $(U \cap V) - (A - B)$ countable

 $(U \cap V)$ s-coc-open set by Remark (1.1.4)(2)and $x \in U \cap V$

$$(U \cap V) - (A - B) = (U \cap V) \cap [(X - A) \cup (X - B)]$$

=
$$[(U \cap V) \cap (X - A)] \cap [(U \cap V) \cap (X - B)]$$

$$\subseteq (U - A) \cup (V - B)$$

Since U - A and V - B countable. Then $(U - A) \cup (V - B)$ countable. Then $(U \cap V) - (A - B)$ countable

Proposition (1.22)

The union of any family of ω s-coc-open set is w s-coc-open set

Proof

Let $x \in \bigcup A_{\alpha} and A_{\alpha} \omega$ s-coc-open set .Then $x \in A_{\alpha}$ for some $\alpha \in A$.Then there exists subset U s-coc-open and Bcountable such that $U-B \subseteq A_{\alpha}$. Then $U-B \subseteq A_{\alpha} \subseteq \bigcup A_{\alpha}$. Then $\bigcup A_{\alpha} \omega$ s-coc-open set

Proposition (1.23)

For space *X* then

i. Every ω open is ω s-coc-open set

ii. Every s-coc-open is ω s-coc-open set

Proof

i. Let $A\omega$ -open set. Then for all $x \in A$ there exist U open set such that $x \in U$ and U - A countable. Since every open is s-coc-open set by Remark (1.3)(i). Then U scoc-open set. Thus for all $x \in A$ there is U s-coc-open such that U - A countable ii. Let A s-coc-open set .Then for all $x \in A$ there exist V = A s-coc-open set containing x such that $V - A = A - A = \emptyset$ countable. Therefore $A\omega$ s-coc-open set.

Definition (1.15)[7]

A subset *A* is said to be ω coc-open set if for each $x \in A$, there exists open coc-open set *U* such that $x \in U$ and A - U countable. The complement of ω coc-open set is ω coc-closed set.

Proposition (1.24)

Every ω coc-open set is ω *s*-coc-open set. Proof

Let A is ω coc-open set and $x \in A$ then there exists U coc-open set such that $x \in U$ and U—A countable. Since every coc-open set is s-coc-open set by Remark (1.3) (i) then Uiss-coc-open then A is ω s-coc-open set.

Proposition (1.25)

The intersection of ω s-coc-open set ω coc-open set is ω s-coc-open

Proof

Le tA is ω s-coc-open set and B is ω coc-open set, then B ω s-coc-open set by Proposition (1.24). Then A \cap B is ω s-coc-open set by Proposition (1.21).

Proposition (1.26)

Every s-open set is ω s-coc-open set

Proof

Let A is s-open set then A is s-coc-open set. Then A is ω s-coc-open set.

2. On s-coc-open and super s-coc-open function

We introduce and study s-coc-open and s-coc-closed function also some properties about them

Definition (2.1) [2]

Let $f: X \to Y$ be a function of space X into space Y then:

i- f is called open function if f(A) is open set in Y for every open set A in X.

ii- f is called closed function if f(A) is closed set in Y for every closed set A in X.

Theorem (2.1) [4]

Let $f: X \to Y$ be a function of space X into space Y then the following statements are equivalent.

- i- *f* open function.
- ii- $f(A^\circ) \subseteq (f(A))^\circ$ for every subset A of X.
- iii- $(f^{-1}(A))^{\circ} \subseteq f^{-1}(A^{\circ})$ for every subset A of X.
- iv- $f^{-1}(\overline{A}) \subseteq \overline{f^{-1}(A)}$ for every subset A of X.

Licensed Under Creative Commons Attribution CC BY

Definition (2.2) [7]

Let $f: X \to Y$ be a function of space X into space Y then: f is called coc-closed function if f(A) is cociclosed set in Y for every closed set A in X.

iif is called coc-open function if f(A) is coc-open set in *Y* for every open set *A* in *X*.

Definition (2.3)

Let $f: X \to Y$ be a function of space X into space Y then: f is called s-open function if f(A) is s-open set 1) in *Y* for every open set *A* in *X* [1].

f is called s-closed function if f(A) is s-closed 2) set in Y for every closed set A in X.

Definition (2.4)

Let $f: X \to Y$ be a function of space X into space Y then: f is called s-coc-closed function if f(A) is s-coc-1) closed set in Y for every closed set A in X.

f is called s-coc-open function if f(A) is s-coc-2) open set in Y for every open set A in X.

Proposition (2.1)

1. Every s-closed function is s-coc-closed function

2. Every s-open function is s-coc-open function.

3. Every coc-open function is s-coc-open.

Proof

Let $f: X \to Y$ s-closed function, let *B* closed set in 1-X.Then f(B) is s-closed set in Y then $(f(B))^c$ s-open set then $(f(B))^{c}$ s-coc-open set. Then f(B) s-coc-closed set in Y.Therefore f s-coc-closed function.

2-Let $f: X \to Y$ s-open function.Let A open set in X then f(A) is s-open set in Y. Since every s-open set is s-cocopen then f(A) is s-coc-open set. Hence f s-coc-open function.

3- Let $f: X \to Y$ coc-openfunction, let A open set in X then f(A) is coc-open set in Y.then f(A) is coc-open set in Y. Then f is s-coc-open function. The inverse of 1. and 3.is not hold for examples

Examples (2.1)

Let $X = \{1, 2, 3\}, \tau =$ 1. $\{\emptyset, X, \{1, 2\}\}$ topology on X, $Y = \{a, b\},\$ $\tau = \{\emptyset, Y, \{b\}\}\$ topology on Y, f(1) = f(2) =a, f(3) = b, since $\{1, 2\}$ open set in X and $f(\{1, 2\}) =$ {a} not open inY, since $\{a\}^\circ = \emptyset$ then $\{a\} \not\subset \overline{\{a\}^\circ}$. But $f(\{1,2\})$ s-coc-open set Then *f* s-coc-open but not s-open. 3. Let $X = \{1, 2, 3, ...\}, \tau = \{\emptyset, X, \{2\}\}$ and Y = $\{y_1, y_2, y_3, ...\}, \tau^* = \{\emptyset, Y, \{y_1\}\}, \text{ let } f: X \to Y \text{ defined}$ by $f(1) = y_1, (2) = y_2, f(\{1, 2\}^c) = \{y_1, y_2\}^c$. Since $\{2\}$ open in X and $f(2) = f(y_2)$ not coc-open in Y then f not coc-open function . But τ^{sk} is discrete topology on X and τ^{*sk} is discrete topology on Y then f s-coc-open function.

Proposition (2.2)

A function $f: X \to Y$ s-coc-closed if and only if $\overline{f(A)}^{s-coc} \subseteq f(\overline{A}) \text{ for all} A \subseteq X.$ Proof

Suppose $f: X \to Y$ s-coc-closed function, let $A \subseteq X$. Since \overline{A} closed set in X then $f(\overline{A})$ s-coc-closed in Y. Since

$$\begin{array}{ll} A \subseteq \bar{A} \text{then} & (A) \subseteq f(\bar{A}). & \text{Hence} & \overline{f(A)}^{s-coc} \subseteq \\ \hline f(\bar{A})^{s-coc}. & \text{Since} & f(\bar{A}) \subseteq \overline{f(\bar{A})}^{s-coc}. & \text{Then} & \overline{f(A)}^{s-coc} \subseteq \\ \hline f(\bar{A}). & \text{Conversely} \end{array}$$

Let *B* closed set in *X* then = \overline{B} . Then $\overline{f(B)}^{s-coc} \subseteq f(\overline{B}) = \frac{f(B)}{f(B)}$. Since $f(B) \subseteq \overline{f(B)}^{s-coc}$. Then $f(B) = \overline{f(B)}^{s-coc}$. Hence $f: X \to Y$ s-coc-closed function.

Proposition (2.3)

A function $f: X \to Y$ s-coc-open if and only if $f(A^\circ) \subseteq (f(A))^{\circ s-coc}$ for all $A \subseteq X$.

Proof

Suppose $f: X \to Y$ s-coc-open function and $A \subseteq X$, since A° open in X .then $f(A^{\circ})$ s-coc-open in Y Then $(f(A^\circ))^{\circ s-coc} \subseteq (f(A))^{\circ s-coc}$. Therefore $(f(A^\circ))^{\circ s-coc} \subseteq (f(A))^{\circ s-coc}$. Then $(f(A))^{\circ s-coc}$ for all $A \subseteq X$. $f(A^\circ) =$ $f(A^\circ) \subseteq$

Conversely

Let A open in X. Then
$$A = A^{\circ}$$
, Since $f(A^{\circ}) \subseteq (f(A))^{\circ s-coc}$. Then $f(A) \subseteq (f(A))^{\circ s-coc}$. Then $f(A) = (f(A))^{\circ s-coc}$. Therefore $f: X \to Y$ s-coc-open function.

Definition (2.5)

Let $f: X \to Y$ be a function of a space X in to a space Y. f is called s-coc-continuous function if $f^{-1}(A)$ is open set in X for every open set in Y.

Theorem (2.2)

For bijective function $f: (X, \tau) \rightarrow (Y, t)$ the following statements are equivalent.

- 1) f^{-1} is s-coc-continuous.
- 2) f is s-coc-open.
- 3) f is s-coc-closed.

Proof

 $1 \rightarrow 2$

Let A open set in X and $f^{-1}: Y \to X$ s-coc-continuous, then $(f^{-1})^{-1}(A)$ s-coc-open in X, since f bijective then $f(A) = (f^{-1})^{-1}(A)$. Then $f: X \longrightarrow Y$ s-coc-open.

$2 \rightarrow 3$

Let $f: X \to Y$ s-coc-open function and B closed set in X. Then B^c open set in , hence $f(B^c)$ s-coc-open in Y .Since $f(B^c) = (f(B))^c$. Then $(f(B))^c$ s-coc-open. Then f(B) scoc-closed. Therefore f s-coc-closed function.

$$3 \rightarrow$$

Let f s-coc-closed function. To prove $f^{-1}: Y \to X$ s-coccontinuous.Let F closed set in X.Since f s-cocclosed.then f(F) s-coc-closed.Since f bijective then $f(F) = (f^{-1})^{-1}(F)$. Then $f^{-1}: Y \to X$ s-coc-continuous

Not that: -

The composition of two s-coc-open functions is not s-cocopen function for example:

Example (2.2)

Let $f: \mathcal{R} \to Z_e$ function defined by $f(x) = \begin{cases} 0 & \text{if } x = 0 \\ Z_e^+ & \text{if } x \in \mathcal{R}^+ \text{and} \\ Z_e^- & \text{if } x \in \mathcal{R}^- \end{cases}$ defined by $g(x) = \begin{cases} Z_\circ^+ & \text{if } x = 0 \\ Z_\circ^- & \text{if } x \neq 0 \end{cases}$, $\tau = \{\emptyset, \mathcal{R}, \{0\}\}$ topology on \mathcal{R} and $\dot{\tau} =$

 $\{\emptyset, Z_e, \{-4, -2\}\}$ topology on Z_e ,

 $\tau^{"} = \{\emptyset, Z_{\circ}, Z_{\circ}^{-}\}$ topology on Z_{\circ} . Then f s-coc-open function and g s-coc-open function.But $(g \circ f)(\{0\}) = g(f(0)) = Z_{\circ}^{+}$.Since $1 \in Z_{\circ}^{+}$ and the s-open set contain 1 is Z_{\circ} and K any compact set. But $1 \in Z_{\circ}^{+} - K \nsubseteq Z_{\circ}^{+}$.Then Z_{\circ}^{+} not s-coc-open set.Then $(g \circ f)(\{0\})$ is not s-coc-open set. Then $(g \circ f)$ is not s-coc-open function.

Proposition (2.4)

If $f: X \to Y$ open function and $g: Y \to W$ s-coc-open function then $g \circ f$ s-coc-open function.

Proof

Let A open set in X. Since f open function. Then f(A) open set in Y. Since g open function. Then

g(f(A)) open set in W. Then $g \circ f: X \to W$ s-coc-open function.

Definition (2.6)

Let $f: X \to Y$ be a function of space X into space Y then: i- f is called s-coć-closed function if f(A) is s-cocclosed set in Y for all s-coc-closed A in X.

ii- f is called s-coć-open function if f(A) is s-cocopen set in Y for all s-coc-open A in X.

Definition (2.7)[7]

Let $f: X \to Y$ be a function of space X into space Y then: 1. f is called coć-closed function if f(A) is cocclosed set in Y for all coc-closed A in X.

2. f is called coć-open function if f(A) is coc-open set in Y for all coc-open A in X.

Proposition (2.5)

A function $f: X \to Y$ s-coć-open if and only if $f(A^{\circ s-coc}) \subseteq (f(A))^{\circ s-coc}$ for all $A \subseteq X$.

Proof

Let $f: X \to Y$ s-coć-open function, let $A \subseteq X$.Since $A^{\circ s - coc}$ s-coc-open in X. Then $f(A^{\circ s - coc})$ s-coc-open in Y. Then $f(A^{\circ s - coc}) = (f(A^{\circ s - coc}))^{\circ s - coc}$.Since $A^{\circ s - coc} \subseteq$ Athen $f(A^{\circ s - coc}) \subseteq f(A)$ Then $f(A^{\circ s - coc}) =$ $(f(A^{\circ s - coc}))^{\circ s - coc} \subseteq (f(A))^{\circ s - coc}$.Then $f(A^{\circ s - coc}) \subseteq$ $(f(A))^{\circ s - coc} \forall A \subseteq X$. Conversely

Let A s-coc-open in X. Then $A = A^{\circ s-coc}$. Since $f(A^{\circ s-coc}) \subseteq (f(A))^{\circ s-coc}$. Then $f(A) \subseteq (f(A))^{\circ s-coc}$. Thus $f(A) = (f(A))^{\circ s-coc}$. Then $f: X \to Y$ s-coć-open function.

Proposition (2.6)

If $f: X \to Y$ s-coć-open then f is s-coc-open Proof

Let A open set in X. Then A s-coc-open. Since f is s-coc-open then then f(A) is s-coc-open set in Y then f is s-coc-openfunction

Not that

If f s-coć-open function then it need not to be coć-open for example

Example (2.3)

Let $f: X \to Y$, $X = \{1, 2, 3, ...\}$ and $\tau = \{\emptyset, X, \{1\}\}$, $Y = \{y_1, y_2, y_3, ...\}$ and $\tau = \{\emptyset, Y, \{y_2, y_3\}\}$, $f(i) = y_i$ when $i = 1, 2, 3, ..., since f(1) = y_1$ not coc'-open set in Y then f is not coc'-open function. But f is s-coc'-open function

Proposition (2.7)

If $f: X \to Y$ and $g: Y \to Z$ s-coć-open functions then $g \circ f$ s-coć-open function.

Proof

Clear

Proposition (2.8)

A function $f: X \to Y$ is s-coć-closed if and only if $\overline{f(A)}^{s-coc} \subseteq f(\overline{A}^{s-coc})$ for all $A \subseteq X$.

Proof

Suppose $f: X \to Y$ is s-coć-closed function and $A \subseteq X$.Since \overline{A}^{s-coc} s-coc-closed set in X.Then $f(\overline{A}^{s-coc})$ s-cocclosed set in Y(*) Since $A \subseteq \overline{A}^{s-coc}$ then $f(A) \subseteq f(\overline{A}^{s-coc})$.Hence $\overline{f(A)}^{s-coc} \subseteq \overline{f(\overline{A}^{s-coc})}^{s-coc}$.Since $f(\overline{A}^{s-coc}) = \overline{f(\overline{A}^{s-coc})}^{s-coc}$ by (*). Then $\overline{f(A)}^{s-coc} \subseteq f(\overline{A}^{s-coc})$ Conversely: Let F s-coc-closed set in X then $F = \overline{F}^{s-coc}$.Then $\overline{F}^{s-coc} \subseteq f(\overline{F}^{s-coc}) = f(F)$.Since $f(F) \subseteq \overline{F}^{s-coc}$.Then

$$f(F) = \overline{F}^{s-coc}$$
. Then f is s-coć-closed function.

Definition (2.8)

Let $f: X \to Y$ be a function of a space X in to a space Y then f is called s-coc-irresolute (s - coć - continuous)function if $f^{-1}(A)$ s-coc-open set in X for every s-cocopen set *inY*.

Theorem (2.3)

For a bijective mapping $f: (X, \tau) \to (Y, t)$ then the following statements are equivalent

- 1) f^{-1} is s-coć-continuous
- 2) f is s-coć-open function
- 3) f is s-coć-closed function

Proof

 $1 \rightarrow 2$

Let A s-coc-open set in X and $f^{-1}: Y \to X$ s-coćcontinuous then $(f^{-1})^{-1}(A)$ is s-coć-open in Y .since f bijective, then $f(A) = (f^{-1})^{-1}(A)$. Then f(A) s-coćopen in Y. Thus $f: X \to Y$ is s-coć-open in Y $2 \to 3$

Let $f: X \to Y$ is s-coć-open and F s-coc-closed set in X. Then F^c s-coc-open set in X Since f is s-coć-open function. Then $f(F^c)$ s-coc-open in Y, Since $f(F^c) = (f(F))^c$. Then $(f(F))^c$ s-coc-open . Then f(F) s-coc-closed function. $3 \to 1$

Let $f: X \to Y$ is s-coć-closed function and *B* s-coc-closed set in *X*Then f(B) s-coc-closed set in *Y*, since *f* bijective, then $f(B) = (f^{-1})^{-1}(B)$ Then $f^{-1}: Y \to X$ s-coćcontinuous.

Definition (2.9)

Let X and Y are spaces. Then a function $f: X \to Y$ is called s-coc-homeomorphism if

- 1. *f* bijective
- 2. *f* s-coc-continuous

3. *f* s-coc-closed (s-coc-open)

It is clear that every homeomorphism is s-cochomeomorphism

Definition (2.10)

Let X and Y are spaces. Then a function $f: X \to Y$ is called s-coć-homeomorphism if :

1. *f* bijective

2. *f* s-coć-continuous

3. $f \operatorname{s-co}\acute{c}\operatorname{-closed}$ (s-coc-open)

It is clear that every homeomorphism is s-cochomeomorphism

Proposition (2.11)

Let $f: (X, \tau) \rightarrow (Y, t)$ bijective function then the following statements are equivalent

i- f is s-coć-homeomorphism

ii- f s-coć-continuous and closed

Proof

 $i \rightarrow ii$ by definition of s-coć-homeomorphism $i \rightarrow ii$ clear.

Proposition (2.12)

Let $f: X \to Y$ is s-coć-homeomorphism then $f(B^{\circ}) \subseteq (f(B))^{\circ s-coc} \forall B \subseteq X$

Proof

Since *f* is s-coc-homeomorphism then *f* is s-coc-homeomorphism. Then *f* is s-coc-open function .Then $f(B^{\circ}) \subseteq (f(B))^{\circ s-coc}$ by proposition (2.3).

Theorem (2.4)

If $f: (X, \tau) \to (Y, t)$ s-coc-open function then for all $x \in X$ and all nbd U of x there exists V s-coc-open set in Y containing f(x) such that $V \subseteq f(U)$

Proof

Let U be nbd of x in X then there exists an open set B such that $x \in B \subseteq U$ hence $f(x) \in f(B) \subseteq f(U)$, Since f(B) s-coc-open set in Y.Let V = f(B) then $V \subseteq f(U)$

Theorem (2.5)

If $f: (X, \tau) \to (Y, t)$ s-coć-open function then for all $x \in X$ and all s-coc-nbd *A* of *x* there exists *B* s-coc-open set in *Y* containing f(x) such that $B \subseteq f(A)$.

Proof

Let $x \in X$ and A s-coc-nbd of x. Then there exists F scoc-open set such that $x \in F \subseteq A$. Then $f(x) \in f(F) \subseteq$ f(A), Since f s-coć-open then f(F) s-coc-open set in Y, Let B = f(F) then $f(x) \subseteq B \subseteq f(A)$

Definition (2.11)

A function $f: (X, \tau) \rightarrow (Y, t)$ is called

i- super s-coc-open if f(U) is open in Y for each U s-coc-open in X.

ii- super s-coc-closed if f(U) is closed in Y for each U s-coc-closed in X.

Proposition (2.13)

Every super s-coc-open function is s-coc-open

Proof

Let $f: (X, \tau) \to (Y, t)$ super s-coc-open and *A* open set in *X*. Then *A* s-coc-open. Since *f* super s-coc-open then f(A) s-coc-open in *Y* then s-coc-open function. But the converse is not true for the following example

Example (2.4)

Let $X = \{1, 2, 3\}, \tau = \{\emptyset, X\}$ and $Y = \{a, b\}, \dot{\tau} = \{\emptyset, Y, \{a\}\}$, let $f: (X, \tau) \rightarrow (Y, \dot{\tau})$ defined by $f(X) = \{a \text{ if } x \in \{1, 2\} \ b \text{ if } x \in \{3\}$, since $\{3\}$ s-coc-open in X and $f(\{3\}) = \{b\}$ not open in Y. Then f is not super s-coc-open function But f s-coc-open

Proposition (2.14)

1. Every super s-coc-open function is s-coć-open

2. Every super s-coc-open function is s-open

Proof

1. Clear

2. Let A open in X. then A s-coc-open. Since f super s-cocopen then f(A) is open. Then f(A) s-open

But the converse is not true for the following examples

Example (2.5)

1. Let $X = \{1, 2, 3\}, \tau = \{\emptyset, X\} and Y = \{a, b\}, \dot{\tau} = \{\emptyset, Y, \{a\}\}$, $f(X) = \begin{cases} a & if \ x \in \{1, 2\} \\ b & if \ x \in \{3\} \end{cases}$. Then f s-coćopen but not super s-coc-open. 2. Let $X = \{1, 2, 3\}, \tau = \{\emptyset, X\} and \ Y = \{a, b\}, \dot{\tau} = \{\emptyset, Y\}, f(X) = \begin{cases} a & if \ x \in \{1, 2\} \\ b & if \ x \in \{3\} \end{cases}$. Then f s-open but not

Proposition (2.15)

super s-coc-open.

If f bijective then f is super s-coc-open iff super s-cocclosed

Let *f* super s-coc-open function that $f: X \to Y$ and let *A* scoc-closed set in *X* then A^c s-coc-open. Then $f(A^c)$ open in *Y*, Since *f* bijective then $f(A^c) = (f(A))^c$ then $(f(A))^c$ open in *Y*. Then *f* super s-coc-closed function Conversely: - by the same way

Proposition (2.16)

If $f: (X, \tau) \to (Y, t)$ super s-coc-open function and bijective then:

1. $f(A^{\circ s-coc}) = (f(A))^{\circ}$ for all A s-coc-open set in X.

2. $f(\overline{B}^{s-coc}) = \overline{f(B)}$ for all B s-coc-open set in Y.

Proof

1. Let A s-coc-open set in X. Then $A = A^{\circ s - coc}$. Then $f(A) = f(A^{\circ s - coc})$. Since f super s-coc-open, f(A) open set in Y. Then $f(A) = (f(A))^{\circ}$. Then $f(A^{\circ s - coc}) = (f(A))^{\circ}$

2. Let *B* s-coc-closed set in *X* then $B = \overline{B}^{s-coc}$. Then $f(B) = f(\overline{B}^{s-coc})$.Since *f* super s-coc-open.Then *f* super s-coc-closed function by proposition (2.13). Then f(B) closed set in, then $f(B) = \overline{f(B)}$. Then $f(\overline{B}^{s-coc}) = \overline{f(B)}$.

Proposition (2.17)

If $f: (X, \tau) \to (Y, t)$ super s-coc-open function and B, C have disjoint s-coc-nbds of X. Then f(B), f(C) are disjoint in Y and have disjoint nbds in Y.

Proof

Let F, K are two disjoint s-coc-nbds of B, C then there exists two s-coc-open sets U, V such that $B \subseteq U \subseteq$ F and $C \subseteq V \subseteq K$, Since f super s-coc-open then f(U), f(V) are open sets in Y, $f(B) \subseteq f(U) \subseteq$ f(F) and $f(C) \subseteq f(V) \subseteq f(K)$. Then f(F), f(K) are disjoint nbds of f(B), f(C).Since $F \cap K = \emptyset$ then $f(F \cap K) = \emptyset$ then $f(F) \cap f(K) = \emptyset$ then $f(B) \cap f(C) \subseteq$ $f(U) \cap f(V) \subseteq f(F) \cap f(K) = \emptyset$. Therefore f(B), f(C)are disjoint in Y.

Theorem (2.6)

If $f: (X, \tau) \to (Y, t)$ super s-coc-open function then for each $x \in X$ and each s-coc-nbd U of x there exists nbd V of f(x) such that $V \subseteq f(U)$.

Proof

Let $x \in X$ and U nbd of x then there exists s-coc-open set A such that $x \in A \subseteq U$ then $f(x) \in f(A) \subseteq f(U)$, Since f super s-coc-open and A is s-coc-open set in X then f(A) open set in Y, let V = f(A) thus $f(x) \in V \subseteq f(U)$

Proposition (2.18)

1.If f super s-coc-open function then f coc-open2.If f super s-coc-open function then f coc'-
open

Proof

1. Let $f: X \to Y$ super s-coc-open function and A open set in X then f(A) open set in Y then f(A) coc-open set in Y then f coc-open function

2. Let $f: X \to Y$ super s-coc-open function and A cocopen set in X then f(A) open set in Y then f(A) coc-open set in Y then f coc'-open function

Not that

The convers is not hold for examples

Example (2.6)

1. Let $X = Z, \tau = \{\emptyset, Z, Z_e\}$ and $Y = \{a, b\}, \tau^* = \{\emptyset, Y, \{b\}\}$ and $f: Z \to Y$ defined by $f(X) = \begin{cases} a & if \ x \in Z_e \\ b & if \ x \in Z_o \end{cases}$. It is clear that f coc-open function but not super s-coc-open.

2. Let $X = \{1, 2, 3\}\tau = \{\emptyset, X, \{a\}\}$ and $Y = \{a, b, \}, \tau^* = \{\emptyset, Y\}$ and $f: Z \rightarrow Y$ defined by f(1) = a, f(2) = f(3) = b. It is clear that f coc'-open function but not super s-coc-open

Proposition (2.19)

If f super s-coc-open function and bijective then f^{-1} is s-coc-continuous

Proof Clear

Proposition (2.20)

The composition of two super s-coc-open function is super s-coc-open

Proof

Let $f: X \to Y$ and $g: Y \to W$ super s-coc-open and A scoc-open set in X. Then f(A) is open in Y(since f super scoc-open), Since every open is s-coc-open. Then g(f(A))is open in W.Since $(g \circ f)(A) = g(f(A))$ hen g(f(A))open in W then $g \circ f$ is super s-coc-open function. Not that

if f super s-coc-open and $g \circ f$ is super s-coc-open then g not need super s-coc-open function.

Example (2.7)

Let $f: (X, \tau) \rightarrow (Y, t)$ and $g: (Y, t) \rightarrow (W, \tau^*)$ and X = $Y = W = \{1, 2, 3\}, \tau = \{\emptyset, X, \{1\}\}$ Topology on X $t = \{\emptyset, Y, \{1\}, \{2\}, \{1, 2\}\}$ Topology on Y, $\tau^* =$ $\{\emptyset, W, \{3\}\}$ Topology on W such that f(1) = 1, f(2) = f(3) = 2 and g(1) = g(2) = 3, g(3) = 1 then τ^{sk} on X is discrete Topology then f super s-coc-open and $g \circ f$ is super s-coc-open function. But $\{3\}$ s-coc-open in Y and $g(\{3\}) = \{1\}, \{1\}$ not open in .Then g is not super scoc-open

Not that

If f super s-coc-open and g s-coć-open, then $g \circ f$ is not super s-coc-open for the following example

Example (2.8)

Let $f: (X, \tau) \rightarrow (Y, t)$ and $g: (Y, t) \rightarrow (W, \tau^*)$, let $X = \{a_1, a_2, a_3\}, \tau$ indiscret topology on $X, Y = \{1, 2, 3\}, t$ discret Topology on Y and W =

 $\{b, c\}, \tau^*$ indiscret topology on W and f defined by $(1 \ if x = a_1)$

 $f(x) = \begin{cases} 2 & \text{if } x = a_2 \\ 3 & \text{if } x = a_3 \end{cases} \text{ and } g \text{ defined by } g(x) = \end{cases}$

 $\begin{cases} b & if \ x \in \{1\} \\ c & if \ x \in \{2,3\} \end{cases}$, then f super s-coc-open and g is s-coć-

open function. But $\{a_1\}$ s-coc-open set in X and $(g \circ f\{a_1\}=gf\{a_1\}=g\{1\}=\{b\}$ is not open in W. Then $g \circ f$ is not super s-coc-open

Proposition (2.21)

Let $f: X \to Y$ and $g: Y \to W$

1. If f super s-coc-open and g s-coc-open then $g \circ f$ s-coć-open.

2. If f s-coc'-continuous, bijective and $g \circ f$ super s-cocopen then g super s-coc-open.

Proof

1. Let A s-coc-open set in X. since f super s-coc-open Then f(A) open in Y, Since g s-coc-open then g(f(A)) scoc-open. Since $(g \circ f)(A) = g(f(A))$ then $g \circ f$ s-coćopen.

2.Let A s-coc-open set in Y. Then $f^{-1}(A)$ s-coc-open in X (Since $f \ s - coc' - continuous$), Since $g \circ f$ super s-cocopen.Then $(g \circ f)(f^{-1}(A))$ open in W Since fbijective.Then $(g \circ f)(f^{-1}(A)) = g(A)$.Then g(A) super s-coc-open.

3. On s-coc-connected spaces

We recall the concept of s-coc-connected space and give some important generalization on this concept and we prove some results on this concept.

Definition (3.1) [5]

A space X is said to be connected space if X can be expressed as the union of two disjoint-open and non-empty subsets of X other wise, X is connected space.

Definition (3.2) [7]

Let X be a space two subsets A, B of space X are called coc-separated if and only if $\overline{A}^{s-coc} \cap B = A \cap \overline{B}^{s-coc} = \emptyset$. Not that the family of all s-coc-open subsets of space (X, τ) is denoted by τ^k [10].

Definition (3.3) [7]

Let X be a space and $\emptyset \neq A \subseteq X$.then A is called cocconnected set if and only if is not union of any two cocseparated sets.

Not that (X, τ) is coc-connected if and only if (X, τ^k) is connected.

Remark (3.1) [7]

A set A is called coc-clopen if and only if it is coc-open and coc-closed.

Proposition (3.1) [7]

Let X be space then the following statements are equivalent.

- 1. X is coc-connected space.
- 2. The only coc-clopen set in Xare \emptyset and X.
- 3. There exist no two disjoint coc-open sets A and B such that $X = A \cup B$.

Definition (3.4)

Let X be space. Two subsets U and V of space X called scoc-separated if and only if $\overline{U}^{s-coc} \cap V = U \cap \overline{V}^{s-coc} = \emptyset$.

Definition (3.5)

Let X be a space and $\emptyset \neq A \subseteq X$. Then A is called s-cocconnected set if and only if is not union of any two s-cocseparated sets.

Not that a space (X, τ) is s-coc-connected if and only if (X, τ^{sk}) connected.

Remark (3.2)

A set A is called s-coc-clopen if and only if it is s-cocopen and s-coc-closed.

Proposition (3.2)

Let X be space then the following statements are equivalent.

- i. X is s-coc-connected space.
- ii. The only s-coc-clopen set in X are \emptyset and X.
- iii. There exist no two disjoint s-coc-open sets A and B such that $= A \cup B$.

Proof

 $(i) \rightarrow (ii)$

Let *X* be s-coc-connected space. Suppose that *D* is s-cocclopen set such that $D \neq \emptyset$ and $D \neq X$, let E = X - Dsince $D \neq X$ then $E \neq \emptyset$. Since *D* is s-coc-open set. Then *E* is s-coc-closed But $\overline{D}^{s-coc} \cap E = D \cap E = \emptyset$ (since *D* is scoc-clopen set and *E* is s-coc-closed). Hence $\overline{D}^{s-coc} \cap E =$ $D \cap \overline{E}^{s-coc} = \emptyset$ then *D* and *E* two s-coc-separated sets and $X = D \cup E$. Hence *X* is not s-coc-connected space, which is contradiction. Then the only s-coc-clopen sets in *X* are \emptyset and *X*.

$$(ii) \rightarrow (iii)$$

Suppose the only s-coc-clopen set in the space are \emptyset and X, Let there exists two disjoint s-coc-open set A and B such that $X = A \cup B$. Since $A = B^c$ then A is s-coc-clopen set.But $A \neq \emptyset$ and $A \neq X$, which is

contradiction. Hence there exist no two disjoint s-coc-open sets *A* and *B* such that $X = A \cup B$. (*iii*) \rightarrow (*i*)

Suppose that X is no s-coc-connected space. Then there exist two s-coc-separated sets A, B such that $X = A \cup B$. Since $\overline{A}^{s-coc} \cap B = A \cap \overline{B}^{s-coc} = \emptyset$ and $A \cap B \subseteq \overline{A}^{s-coc} \cap B$. Thus $A \cap B = \emptyset$ since $\overline{A}^{s-coc} \subseteq B^c = A$. Then A is s-coc-closed set.

By the same way we can see that *B* is s-coc-closed set since $A^c = B$. Then *A* and *B* are two disjoint s-coc-open sets such that $X = A \cup B$. This is contradiction. Hence *X* is s-coc-connected space.

Proposition (3.3)

Every s-coc-connected space is connected space.

Proof clrar

But the convers is not true.

Example (3.1)

Let $X = \{1, 2, 3\}, \tau = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}\}$. It is clear that *X* is connected space. But *X* is not s-coc-connected space (Since $\{2\}, \{1, 3\}$ are disjoint s-coc-open sets and $X = \{2\} \cup \{1, 3\}$)

Proposition (3.4)

Let A be s-coc-connected set and D, E s-coc-separated sets. If $A \subseteq D \cup E$ then either $A \subseteq D$ or $\subseteq E$.

Proof

Suppose *A* be s-coc-connected set and *D*, *E* are s-cocseparated sets and $A \subseteq D \cup E$, let $A \notin D$ and $A \notin E$. Suppose $A_1 = D \cap A \neq \emptyset$ and $A_2 = E \cap A \neq \emptyset$.Since $A \subseteq D \cup E$ then $(D \cup E) \cap A = A$. Thus $(D \cap A) \cup E \cap A = A$ then $A \cap A \cup A \subseteq A$. Then $\overline{A_1}^{s-coc} \subseteq \overline{D}^{s-coc}$.Since D, E are s-coc-separated sets then $\overline{D}^{s-coc} \cap E = \emptyset$.Then $\overline{A_1}^{s-coc} \cap A_2 = \emptyset$. Since $A_2 = E \cap A$ then $A_2 \subseteq E$ thus $\overline{A_2}^{s-coc} \subseteq \overline{E}^{s-coc}$.Then $A_1 \cap \overline{A_2}^{s-coc} = \emptyset$ and $A = A_1 \cup A_2$. Therefore *A* is not s-cocconnected sets.This contradiction then either $A \subseteq D$ or $\subseteq E$.

Proposition (3.5)

Let X be a space such that any two elements x and y of X are contained in some s-coc-connected set of X. Then X is s-coc-connected.

Proof

Suppose *X* is not s-coc-connected. Then the union of two scoc-separated sets *A*, *B* .Since *A*, *B* not empty sets then there exists *a*, *b* such that $a \in A, b \in B$, let *F* be s-cocconnected set of *X* which contains *a*, *b* . Therefore $F \subseteq A \text{ or } F \subseteq B$. Which is contradiction (Since $A \cap B = \emptyset$) .Therefore *X* is s-coc-connected space

Proposition (3.6)

If *D* is s-coc-connected set and $D \subseteq E \subseteq \overline{D}^{s-coc}$, then *E* is s-coc-connected.

Proof

Suppose *E* not s-coc-connected, then there exists two sets *A*, *B* such that $\overline{A}^{s-coc} \cap B = A \cap \overline{B}^{s-coc} = \emptyset$ and $E = A \cup B$. Since $D \subseteq E = A \cup B$ then either $D \subseteq A$ or $D \subseteq B$ by proposition (3.2) . If $D \subseteq A$ then $\overline{D}^{s-coc} \subseteq A$, Thus $\overline{D}^{s-coc} \cap B = \emptyset$, since $B \subseteq E = A \cup B \subseteq \overline{D}^{s-coc}$ then $\overline{D}^{s-coc} \cap B = \emptyset$. Therefore $B = \emptyset$ this contradiction hence *E* is s-coc-connected. By the same way we can get a contradiction if $D \subseteq B$ hence *D* is s-coc-connected

Proposition (3.7)

If space X contains a s-coc-connected set E such that $\overline{E}^{s-coc} = X$, then X is s-coc-connected.

Proof

Suppose *E* is s-coc-connected set in *X* such that $\overline{E}^{s-coc} = X$. Since $E \subseteq X = \overline{E}^{s-coc}$. Then byproposition (3. 5).we get *X* is s-coc-connected.

Proposition (3.8)

If A is s-coc-connected set then \overline{A}^{s-coc} is s-coc-connected.

Proof

Suppose A is s-coc-connected and \overline{A}^{s-coc} is not s-cocconnected .Then there exists two sets D, E Such that $\overline{A}^{s-coc} = D \cup E$. Since $A \subseteq \overline{A}^{s-coc}$, then $A \subseteq D \cup E$, since A is s-coc-connected then by proposition (3.4) either $A \subseteq D$ or $A \subseteq E$. If $A \subseteq D$ then $\overline{A}^{s-coc} \subseteq \overline{D}^{s-coc}$ but $\overline{D}^{s-coc} \cap E = \emptyset$ hence $\overline{A}^{s-coc} \cap E = \Phi$, since $\overline{A}^{s-coc} = D \cup E$ then $E = \Phi$ this contradiction. If $A \subseteq E$ then $\overline{A}^{s-coc} \subseteq \overline{E}^{s-coc}$ but $D \cap \overline{E}^{s-coc} = \emptyset$ hence $\overline{A}^{s-coc} \cap D = \emptyset$. Since $\overline{A}^{s-coc} = D \cup E$ then $D = \emptyset$ this contradiction.

Remark (3.3)

Let *X* be a topological space and $A \subseteq X$

- 1) If A is s-coc-connected set in X then Aneed not to be s-coc-connected.
- 2) If A is connected set then \overline{A}^{s-coc} need not to be connected set.
- 3) If \overline{A}^{s-coc} connected set then A need not to be connected.

Examples (3.2)

1) Let $X = \{1, 2, 3\}, \tau = \{\emptyset, X\}$. Then $\tau^{sk} = \{\emptyset, X, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$. If $A = \{1\}$ then A is s-coc-connected. But $\overline{A} = X = \{1\} \cup \{2, 3\}$, since $\{1\}, \{2, 3\}$ are two s-coc-separated sets then \overline{A} is not s-coc-connected. 2) Let X = R and $\tau = \{\emptyset, R, Z, Z_e, Z_o\}$, if $A = \{1, 2\}$ is not union of two separated open sets. Then A is connected. But $\overline{A}^{s-coc} = Z = Z_e \cup Z_o$ and Z_e, Z_o are separated open sets. 3) Let X = Z

 $\{\phi, R, Z, Z_{\rho}, \{1\}, \{3\}, \{1, 3\}, Z_{\rho} \cup \{1\}, Z_{\rho} \cup \{3\}, Z_{\rho} \cup \{1, 3\}\}.$

If $A = \{1, 3\} = \{1\} \cup \{3\}$ then A is union of two disjoint open sets. Thus Adisconnected. But $\overline{A}^{s-coc} = Z_{\circ}$ is not

union of two disjoint s-coc-open sets. Then \overline{A}^{s-coc} connected set.

Proposition (3.9)

Every s-coc-connected space is coc-connected.

Proof

Let X is s-coc-connected set and not coc-connected then there exists two sets U, V such that $X = U \cup V$. Since U, Vcoc-open sets then U, V are s-coc-open sets. Then X is union of two s-coc-separated sets. Thus X is s-cocdisconnected. This conduction. Therefore X is cocconnected. But the converse is not true for the following example.

Example (3.3)

Let $X = \{1, 2, 3, ...\}, \tau = \{\emptyset, X, \{1, 2\}\}$. It is clear that X is coc –connected but not s-coc-connected

Proposition (3.10)

The s-coc-continuous, onto image of s-coc-connected space is connected .

Proof

Let $f: (X, \tau) \to (Y, t)$ be s-coc-continuous, onto function and X is s-coc-connected. To prove Y is connected. Let Y not connected then $Y = A \cup B$ suchthat $A \neq \emptyset B \neq \emptyset$ and $A \cap B = \emptyset$ and A, B are open sets, hence $f^{-1}(Y) = f^{-1}(A \cup B)$ since f onto. Then $X = f^{-1}(A) \cup f^{-1}(B)$. Since A, B are open sets in X and f s-coccontinuous. Then $f^{-1}(A), f^{-1}(B)$ are s-coc-open sets in Y.Since $A \cap B = \emptyset$ thus $f^{-1}(A) \cap f^{-1}(B) = \emptyset$ and $A \neq \emptyset$, $B \neq \emptyset$. Hence X s-coc-disconnected space this is contradiction. Hence Y is connected space.

Remark (3.4)

The s-coc-continuous image of s-coc-connected space need not to be s-coc-connected

Example (3.4)

Let $X = \{1, 2, 3, ...\}, \tau = \{\emptyset, X\}$ and $f: (X, \tau) \rightarrow (Y, t)$ scoc-continuous function and $Y = \{a, b\}, t = \{\emptyset, Y\}$ $f(x) = \begin{cases} a & if \ x = 1 \\ b & if \ x \neq 1 \end{cases}$. Since $\{a, b\} = \{a\} \cup \{b\}$ and $\{a\} \cap \{b\} = \emptyset$.Since $\{a\}, \{b\}$ are s-coc-open sets. Then Y is not s-coc-connected, Y open set in Y and $f^{-1}(Y) = X$ not union of two disjoint s-coc-open sets. Thus X s-cocconnected.

Proposition (3.11)

The s-coć-continuous image, onto of s-coc-connected space is s-coc-connected.

Proof

Let $f:(X,\tau) \to (Y,t)$ s-coć-continuous, onto function and *X* s-coc-connected. To prove *Y* is s-coc-connected. Suppose *Y* is not s-coc-connected.Then $Y = A \cup B$ such that A, B s-coc-open sets and, $B \neq \emptyset, A \cap B = \emptyset$. Hence $f^{-1}(Y) = f^{-1}(A \cup B)$. Since *f* onto then $X = f^{-1}(A) \cup f^{-1}(B)$.Since *A*, *B* s-coc-open sets and *f* s-coć-continuous thus $f^{-1}(A), f^{-1}(B)$ s-coc-open sets in *X* and $f^{-1}(A) \cap f^{-1}(B) = \emptyset$. Then X is not s-coc-connected. This contradiction. then Y is s-coc-connected.

Proposition (3.12)

If $f: X \rightarrow Y$ s-coc'-open and Y s-coc-connected, then X s-coc-connected.

Proof

Let Y s-coc-connected and X is not s-coc-connected. To get contradiction, since is not s-coc-connected then $X = W_1 \cup W_2$ such that W_1, W_2 disjoint s-coc-open sets in X. Since f is s-coc'-open then $f(W_1), f(W_2)$ disjoint scoc-open sets in Y and $f(X) = f(W_1 \cup W_2) =$ $f(W_1) \cup f(W_2)$ then $Y = f(W_1) \cup f(W_2)$. Then Y is not scoc-connected. This contradiction. Then X is s-cocconnected.

Remark (3.5)

If $f: X \to Y$ s-coc'-homeomorphism then X is s-cocconnected if and only if Y is s-coc-connected

Proposition (3.13)

Let *X* be space and $Y = \{0, 1\}$ have the discrete topology *X* is s-coc-connected if and only if there is no s-coc-continuous function from *X* to *Y*.

Proof

Let $f:(X,\tau) \to (Y,t)$ s-coc-continuous onto function. Then there is exists $x, y \in X$ such that $x \neq y$ and f(x) = 0 and f(y) = 1 then $f^{-1}(0) = x = A$ and $f^{-1}(1) = y = B$. Then A, B s-coc-open sets and $X = A \cup B$ such that $A \cap B = \emptyset, A \neq \emptyset, B \neq \emptyset$. Then X is s-cocdisconnected

Conversely:

Let there is no s-coc-continuous onto function, let X is scoc-disconnected. Then $X = A \cup B$ such that $A \neq \emptyset$, $B \neq \emptyset$ and A, B are disjoint s-coc-open sets. Define $g: (X, \tau) \rightarrow (Y, t)$ such that $g(x) = \begin{cases} 0 & \forall x \in A \\ 1 & \forall x \in B \end{cases}$, then $f^{-1}(0) = A$, $f^{-1}(1) = B$. Then f s-coc-continuous, this contradiction. Thus X is s-coc-connected.

Proposition (3.14)

If f is s-coc-continuous onto and g is continuous function and onto then $g \circ f$ image of s-coc-connected set is connected Proof

Let $f: (X, \tau) \to (Y, t)$ and $g: (Y, t) \to (W, \tau^*)$, let A scoc-connected set inX, $(g \circ f)(A) = g(f(A))$.Since f is scoc-continuous then f(A)connected in Y by proposition (3.9). Since g is continuous then g(f(A)) connected set in W.Then $(g \circ f)(A)$ connected set.

Proposition (3.15)

If \bar{f} is s-coć-continuous onto and g is s-coc-continuous onto function then $g \circ f$ image of s-coc-connected set is connected

Proof

Let A s-coc-connected set $inX, (g \circ f)(A) = g(f(A))$. Since f is s-coć-continuous then f(A) is s-coc-

Volume 4 Issue 6, June 2015 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY connected. Then $(g \circ f)(A)$ connected set by proposition (3.10) and proposition (3.2).

Proposition (3.16)

If $f: X \to Y$ super s-coc-open function and Y connected. Then X s-coc-connected.

Proof

Let *X* is not s-coc-connected. To get contradiction.Since X is not s-coc-connected then there exists *A* and *B* disjoint s-coc-open sets such that $X = A \cup B$. Since *f* super s-coc-open then f(A), f(B) are open sets in Y. Since $A \cap B = \emptyset$ then $f(A) \cap f(B) = f(A \cap B) = \emptyset$. Then f(A), f(B) disjoint $f(A) \cup f(B) = f(A \cup B) = f(X) = Y$ Then Y is not connected space.This contradiction then X is s-coc-connected space.

Definition (3.8) [5]

A space (X, τ) is said to be locally connected if for each point $x \in X$ and each open set U such that $x \in U$ there is a connected open set V such that $x \in V \subseteq U$.

Definition (3.9)

A space (X, τ) is said to be s-coc-locally connected if for each point $x \in X$ and each s-coc-open set U such that $x \in U$ there is s-coc-connected open set V such that $x \in V \subseteq U$.

Proposition (3.17)

Every s-coc-locally connected space is locally connected space.

Proof

Let *X* is s-coc-locally connected, let $x \in X$ and *U* open set in *X* such that $x \in U$. Then there is s-coc-connected set *V* such that $x \in V \subseteq U$. Since every s-coc-connected is connected by proposition (3.2). Then *V* is connected open set in *X* such that $\in V \subseteq U$, hence *X* is locally connected space. But the converse is not true for the following example.

Example (3.5)

Let $X = \{1, 2, 3, ...\}, \tau = \{\emptyset, X, \{2, 3\}\}$ Then τ^{sk} *is* discrete Topology in X. Since $1 \in X$ and $\{1, 2\}$ s-coc-open set $\{1\} \in \{1, 2\}$, since there is no s-coc-connected open set *V* such that $1 \in V \subseteq \{1, 2\}$. Thus *X* is not s-coc-locally connected.

Not that:

if $f: (X, \tau) \to (Y, \tau^*)$ super s-coc-open function and Y s-coc-locally connected but X is not s-coc-locally connected for example.

Example (3.6)

Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X\}$ $Y = \{0, 1\}, \tau^* \text{ discrete topology . Define } f(x) = \{0 \text{ if } x \in \{a, b\} \\ 1 \text{ if } x \in \{c, d\}'$

Since τ^{sk} in X is discrete and f(A) open in Y forall A s-cocopen in X. Then f super s-coc-open and Y s-coc-locally connected but $a \in X$ and $\{a, b\}$ s-coc-open set such that $a \in \{a, b\}$ and there exists no s-coc-connected open set V in X such that $a \in V \subseteq \{a, b\}$. Then X is not s-coc-locally connected.

Definition (3.10) [7]

A space (X, τ) is said to be coc-locally connected if for each point $x \in X$ and each coc-open set U such that $x \in U$ there is coc-connected open set V such that $x \in V \subseteq U$.

Proposition (3.18)

Every s-coc-locally connected space is coc-locally connected space.

Proof

Let *X* be s-coc-locally connected space and $x \in X$, *U* open set in *X* such that $x \in U$.Since every coc-open set is s-cocopen set. Then *U* s-coc-open set. Since *X* s-coc-connected then there is *V* s-coc-connected open set such that $x \in V \subseteq$ *U* Thus *V* is coc-connected open set such that $x \in V \subseteq U$. There is *V* coc-connected open set such that $x \in V \subseteq U$. Then *X* is coc-locally connected space.

But the converse is not true for the following example

Example (3.7)

Let $X = \{1, 2, 3, 4, ...\}, \tau = \{\emptyset, X, \{1\}\}$. Since $1 \in X, \{1\}$ coc-open set and $1 \in U = \{1\}$ Since $V = \{1\}$ cocconnected open set and $1 \in V \subseteq U$. Since $x = 2, 3, 4, ... \in X, X$ coc-open set suchthat $x \in X = U$, since V = Xcoc-connected open set and $x \in X \subseteq X$ Thus X coc-locally connected. But X is not s-coc-locally connected. Since scoc-open sets are discrete Topology. Since $5 \in X$ and $U=\{4, 5\}$ s-coc-open set, $5 \in U$ and there is no s-cocconnected open set V such that $5 \in V \subseteq \{4, 5\} = U$.

Remark (3.6)

1) If (X, τ) is s-coc-locally connected space, then it need not to be s-coc-connected.

2) If (X, τ) is s-coc-connected space, then it need not to be s-coc-locally connected.

Examples (3.8)

1) Let $X = \{1, 2, 3, 4, ...\}$ and τ discete Topology. Then s-coc-connected discrete topology Thus for all $x \in X$ and for all U s-coc-open set, $x \in U$ there is V s-cocconnected open set such that $x \in V \subseteq U$. Then X s-coclocally connected. But $X = \{1\} \cup \{1\}^c$ and $\{1\} \cap \{1\}^c = \emptyset$ such that $\{1\}, \{1\}^c \neq \emptyset$ and $\{1\}, \{1\}^c$ are s-coc-open sets. Thus X not s-coc-connected.

2) Let

 $X = \{1, 2, 3, 4, ...\}, \tau = \{\Phi, X, \{1, 2\}^c\}$ then $\tau^{sk} = \{A \subseteq X \ni A$ infinite}. Then X is not union of two disjoints-cocopen sets. Thus X is s-coc-connected. But $5 \in X, U = \{1, 2, 5, 6, 7, ...\}$ s-coc-open set, $5 \in U$ and there is no s-coc-connected open set V such that $5 \in X \subseteq U$. Thus X is not s-coc-locally connected.

Proposition (3.19)

The s-coc-continuous and open onto image of s-coclocally connected space is locally connected.

Let $f:(X,\tau) \to (Y, t)$ be s-coc-continuous, open onto function and (X,τ) is s-coc-locally connected. To prove (Y,t) is locally connected, let $y \in Y$ and U open set in Y such that $\in U$. Since f s-coc-continuous then $f^{-1}(U)$ is s-coc-open sets in Y. Since X is s-coc-locally connected then there is V s-coc-connected open set such that $x \in V \subseteq$ $f^{-1}(U)$. Since f open then f(V) open in Y, since V is scoc-connected then f(V) connected by proposition (3.9). Thus $(x) = y \in f(V) \subseteq U$. Then Y is locally connected.

Remark (3.7)

The s-coc-continuous image of s-coc-locally connected need not to be s-coc-locally connected.

Example (3.9)

Let $X = \{1, 2, 3, ...\}, \tau$ discrete topology, $Y = \{a, b\}, \tau' = \{\emptyset, Y, \{a\}\}.$ Define $f: (X, \tau) \rightarrow (Y, \tau') f(x) = \begin{cases} a & if \ x = 1 \\ b & if \ x \neq 1 \end{cases}$, since open

 $f:(X, t) \to (Y, t)$ $f(X) = \{b \text{ if } x \neq 1 \}$, since open sets in Y are Y, $\{a\}$ and $f^{-1}(Y) = X, f^{-1}(\{a\}) = \{1\}$ scoc-open in X.Thus f s-coc-continuous and X s-coclocallyconnected. But $b \in Y$ and $\{b\}$ s-coc-open set in Y such that $b \in \{b\}$ and there exists no s-coc-connected open set V such that $b \in V \subseteq \{b\}$. Thus Y is not s-coclocally connected.

Proposition (3.20)

The s-coć-continuous, open onto image of s-coc-locally connected space is s-coc-locally connected.

Proof

Let $f:(X,\tau) \to (Y,t)$ be s-coć-continuous, open onto function and (X,τ) is s-coc-locally connected. To prove (Y,t) is s-coc-locally connected. Let $y \in Y$ and U s-cocopen set in Y such that $y \in U$. Since f onto and $y \in Y$ there is $x \in X$ such that f(x) = y. Since f s-coćcontinuous then $f^{-1}(U)$ s-coc-open sets in X. Since X is scoc-locally connected then there is V s-coc-connected open set in X such that $\in V \subseteq f^{-1}(U)$. Since f open then f(V) open in Y and connected by proposition (3.10). Then $y = f(x) \in f(V) \subseteq U$. Thus Y is s-coc-locally connected.

Definition (3.11) [12]

A space (X, τ) is said to be extremely disconnected if the closure of every open subset of the *X* is open in X.

Definition (3.12)

A space (X, τ) is said to be s-coc-extremely disconnected if the closure of every open subset of the X is s-coc-open in X.

Remark (3.8)

Every extremely disconnected space is s-coc-extremely. But the convers is not true.

Example (3.10)

Let $X = \{1, 2, 3, 4, ...\}, \tau = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}\}$. Then τ^{sk} is discrete topologyon X. Then every subset in X is s-cocopen and s-coc-closed set. Thus if A open in X, then \overline{A} is s-coc-open set. Thus X is s-coc-extremely disconnected. But

 $A = \{1\}$ open set and $\overline{A} = \{1, 3, 4, 5, ...\}$ not open. Then X is not extremely disconnected.

Proposition (3.21)

For a topological space (X, τ) if the closure of every s-cocopen set is s-coc-open, then X is s-coc-extremely disconnected.

Proof

Let U is open set of X. Then U is s-coc-open set. Since the closure of s-coc-open set is s-coc-open set. Thus X is s-coc-extremely disconnected.

Proposition (3.22)

If *X* and *Y* s-coc-extremely disconnected then $X \times Y$ s-coc-extremely disconnected.

Proof

Let $W = A \times B$ open in $X \times Y$. Then A, B open in X, Y.Since X, Y s-coc-extremely then $\overline{A}, \overline{B}$ s-coc-open in X, Y then $\overline{W} = \overline{A \times B} = \overline{A} \times \overline{B}$ s-coc-open set by proposition (1.3).Then $\overline{A} \times \overline{B}$ s-coc-open set in $X \times Y$. Then $X \times Y$ s-coc-extremely disconnected.

Remark (3.9)

If X s-coc-extremely disconnected then X need not to be s-coc-connected for example .

Example (3.11)

Let X = R and U usual Topology on R.Since $R = (-\infty, 0) \cup [0, \infty)$ and $(-\infty, 0) \cup [0, \infty) = \emptyset$ and $(-\infty, 0), [0, \infty)$ s-coc-open sets .Thus (R, U) s-coc-disconnected.But for every (a, b) open set in R.Thus $\overline{(a, b)} = [a, b]$ is s-coc-open set in R. Therefore X is s-coc-extremely.

Proposition (3.23)

If X is s-coc-connected then X is not s-coc-extremely disconnected.

Proof

Let X s-coc-connected and X is s-coc-extremely disconnected. To get contradiction. Then for all A open set we get \overline{A} s-coc-open. Since \overline{A} closed set then \overline{A} s-coc-closed. Then X is not s-coc-connected by proposition (3.2) (if X is s-coc-connected then the only s-coc-clopen sets are \emptyset , X). Therefore X is not s-coc-extremely disconnected

Not that

If *X* is s-coc-extremely disconnected then *X* need not to be s-coc-locally connected for the following example.

Example (3.12)

Let $X = \{1, 2, 3, ...\}, \tau = \{\Phi, X, \{1, 2\}\}$, since $\{1, 2\}$ open set in X and $\overline{\{1, 2\}} = X$ s-coc-open set. Then X is s-cocextremely disconnected.But $1 \in \{1, 2\}$ open and there is no V s-coc-connected open set such that $1 \in V \subseteq \{1, 2\}$. Then X is not s-coc-locally connected.

Definition (3.13)

Let X be a space, $A \subseteq X$ is called s-coc-dense set in X if and only if $\overline{A}^{s-coc} = X$

Definition (3.14) [8]

Aspace (X, τ) is said to be hyper connected if every nonempty open subset of X is dense.

Definition (3.15)

Aspace (X, τ) is said to be s-coc-hyper connected if every non-empty s-coc-open subset of X is s-coc-dense.

Proposition (3.24)

Every s-coc-hyper connected space is hyper connected.

Proof

Let X s-coc-hyper connected space. Then for all s-cocopen set of X is s-coc-dense inX.Then $\overline{A}^{s-coc} = X$. To prove $\overline{A} = X$ since $\overline{A} \subseteq X$... (1), let $x \in X$ then $x \in \overline{A}^{s-coc}$.Since $\overline{A}^{s-coc} \subseteq \overline{A}$ then $x \in \overline{A}$ then $X \subseteq \overline{A}$... (2). Therefore $\overline{A} = X$ then X is hyper connected space. But the convers is not true.

Example (3.13)

Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X\}$ then $\tau^{sk} = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$.Since $\overline{A} = X$ for all $A \subseteq X$.But $\overline{A}^{s-coc} = A \neq X$.Then X is not s-cochyper connected but hyper connected

Proposition (3.25)

Every s-coc-hyper connected space is s-coc-connected.

Proof

Let X s-coc-hyper connected space and X is not s-cocconnected. Then there exists A s-coc-clopen set such that $A \neq \emptyset$ and $A \neq X$ hence $A = \overline{A}^{s-coc}$. This contradiction (since $\overline{A}^{s-coc} = X$). Then X is s-coc-connected space.

Proposition (3.26)

Every s-coc-hyper connected is s-coc-extremely disconnected.

Proof

Let X s-coc-hyper connected space. Then for all A s-cocopen is s-coc-dense then $\overline{A}^{s-coc} = X$. Then $X \subseteq \overline{A}$. Since $\overline{A} \subseteq X$ then $\overline{A} = X$. Since X s-coc-open set. Then for all A open set we get the closure is s-coc-open set. Then X s-coc- extremely disconnected. But the converse is not true for example

But the converse is not true for example

Example(3.14)

Let $X = \{1, 2, 3\}$ and $\tau = \{\emptyset, X, \{1\}\}$ then $\tau^{sk} = \{\emptyset, X, \{1\}, \{2\}\{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\}\}$. If $A = \{2\}$ then $\overline{A}^{s-coc} = \{2, 3\} \neq X$. Then A not s-coc-dense we get X is not s-coc-hyper connected.But \overline{B} is s-coc-open for all B open set in X.Then X s-coc- extremely disconnected

Not that

The s-coc-continuous image of the s-coc-hyper connected need not to be s-coc-hyper connected.

Example (3.15)

$$\begin{split} \text{Let} X &= Z, \tau = \{ \emptyset, Z, Z_\circ \} \text{ topology on } Z \text{ and } Y = \{a, b\}, \\ \tau^* &= \{ \emptyset, Y, \{a\} \} \text{ topology on } Y, f: (X, \tau) \longrightarrow (Y, \tau^*) \text{ function} \\ \text{defined by } f(x) &= \begin{cases} a \text{ if } x \in Z_\circ \\ b \text{ if } x \in Z_e \end{cases} \text{.Then } f \text{ s-coc-continuous} \\ \text{and} \end{split}$$

$$\tau^{sk} = \{ \emptyset, Z, Z_{\circ}, Z_{\circ} \bigcup \text{any set}, Z_{\circ} - \text{finite set} \}$$

$$\overline{Z_{\circ}}^{s-\text{coc}} = Z, \overline{Z_{\circ} \bigcup \text{any set}}^{s-\text{coc}} = Z$$

$$Z, \overline{Z_{\circ} - \text{finite set}}^{s-\text{coc}} = Z.$$

Then Z s-coc-hyper connected space.But $\overline{\{a\}}^{s-coc} = \{a\} \neq Y$. Then Y is not s-coc-hyper connected space.

Reference

- N.K. Ahmed "On Some Application of special subset of Topological spaces" M.S.C. Thesis, University of salahaddin, College of science, 1990.
- [2] Bourbaki N., Elements of Mathematics "General topology " Chapter 1-4, Spring Vorlog, Belin, Heidelberg, New- York, London, Paris, Tokyo 2nd Edition (1989).
- [3] S.G. Crossley and S.K.Hildebr and "On Somi Closure" Taxas J. Sci., 22, (1971).
- [4] J. Dugundji, Topology, Allyn and Bacon Baston, 1966.
- [5] M. C. Gemignani, "Elementary Topology" Reading Mass. Addison-wesley Publishing Co.Inc., 1967.
- [6] H. Z. Hdieb "ω-closed mapping", Rev.Colombo Math.16 (1-2) (1982), 65-78.
- [7] F. H. Jasim "On Compactness via Cocompact open sets" M.SC. Thesis University of Al-Qadissiya, college of Mathematics and computer science, 2014.
- [8] N.J. Al-Malaki"Some kinds of Weakly Connected and pair Wise Connected space" M.SC. University of Baghdad College of Education / Abn Al-Latham, 2005.
- [9] N. Levine "Semi-open sets and Semi Continuity in Topological space "Amer Math. Monthy, 70, (1963).
- [10] A. G. Naoum and R.A.H. Al-Abdulla " On parcompact space using semi-open sets "Al-Qadisiya journal for computer science and Mathematics, vol 2, No.1 (2010).
- [11] S.Alghour and S.Samarah"Cocompact open sets and Continuity" Abstract and applied analysis, Volume 2012, Article ID 548612, 9 Pages, 2012.
- [12] M.H.Tone, Applications of the theory of Boolean Rings To general topology, Trans. AmerM.OC.41(3) (1937) 375-481

Licensed Under Creative Commons Attribution CC BY