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1. Introduction 
 

In [6] give definition of connected space. In section one; 

we defined of s-coc-open set and ωs-coc-open set. In 

section two we study (s-coc-open, s-coc´-open and super 
s-coc-open) function. Insection three we defined new 
types of connected spaces and we study the relation 
between them. 
 

Definition (1.1) [7] 

 

A subset A of a space (X, τ)is called cocompact open set 

(coc-open-set) if every x ∈ A there exists open set U ⊆ X 

and compact subset  such that x ∈ U − K ⊆ A, the 

complement of coc-open set is called coc-closed set. 

 

Definition (1.2) [10] 

 

A subset  of space  is called semi open set (s-open) if 

and only if A ⊆ A∘ and  called s-closed if and only if Ac  

s-open. 

  

Proposition (1.1)[9] 

 

For any subset  of space  the following statements are 

equivalent.  

 

1. is s-open set. 

2. A =  A∘    

3. There exists open set  such that  G ⊆ A ⊆ G  

 

Remark (1.1) [10] 

 

Every open set is semi-open. But the convers is not true. 

 

Proposition (1.2) [3] 

 

For any subset  of a space  the following statements 

are equivalent  

 

1.  is s-closed 

2. A∘ = A
°
 

3. There exists closed set  in  such that F∘ ⊆ A ⊆ F 

 

Definition (1.3) 

 

A subset A of a space (X, τ) is called semi cocompact open 

set (s-coc-open-set) if for every x ∈ A there exists s-open 

set U ⊆ x and compact subset  such that x ∈ U − K ⊆ A, 

the complement of s-coc-open set is called s-coc-closed 

set. 

 

Remark (1.2)  

 

Every coc-open set is s-coc-open set. But the convers is 

not true for the following example: 

 

Example (1.1) 

 

Let X =  1, 2, 3, 4, … .  , τ =  ∅, X,  2 ,  3 ,  2, 3   topology 

on , A =  1, 2  s-coc-open set but not coc-open set. 

 

Remark (1.3): 

 

i- Every open set is s-coc-open set. 

ii- Every s-open set is s-coc-open set proof: 
 

Proof 

i. Let  open set. Then  s-open and compact. Then 

for all x ∈ A we havex ∈ A − K ⊆ A. 

ii. Clear. 

 

Remark (1.4): 

 

1. The intersection of open set and s-open is s-open [10]. 

2. The intersection of two s-coc-open is s-coc-open set. 

3. The intersection of s-coc-open and coc-open set is s-coc-

open  

4.  The union of s-coc-open is s-coc-open set  

5.  The intersection of s-coc-open sets and open set is s-

coc-open  

 

Proof: 

2.   Let  and  s-coc-open sets. To prove A ∩ B is s-coc-

open set. And let A ∩ B is not s- coc- open set. Then there 

exists x ∈ A ∩ B such that    for all Vx  s-opet   set and 

compact x ∈ Vx − K ⊈ A ∩ B.  Then x ∈ Vx − K ⊈ A 

orx ∈ Vx − K ⊈ B. Then is not s-cocor  is not s-coc-
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open set. This conduction since ,  s-coc-open sets.  

Then A ∩ B is s-coc-open set. 

 

3.  Let  s-coc-open set and  coc-open set. Since  coc-

open then  s-coc-ope. Then  A ∩ B is s-coc-open set by 

(2) 

 

4.   {Aα : α ∈ Λ}s-coc-open set.let x ∈∪ Aα . Thenx ∈ Aα  for 

some α ∈ Λ.Thenthere exists Uα  s-openset and Kα  compact 

such thatx ∈ Uα − Kα ⊆ Aα ⊆∪ Aα  thenx ∈ Uα − Kα ⊆∪
Aα . Then∪ Aα  s-coc-open set. 

 

5.Let  s-coc-open set and  open set .Then for all 

x ∈ A  there exists  s-open set and   compact such that 

x ∈ U − K ⊆ A, since  s-open and  open, then A ∩ B s-

open by (1), then x ∈ (U − K)⋂B ⊆ A⋂B thenthenx ∈
 U⋂B − K ⊆ A⋂Bthen A ∩ B s-coc-open set. 

 

Remark (1.5): 

1. The coc-open sets forms topology on  denoted 

by τk[11]. 

2. The s-coc-open sets forms topology on  denoted 

byτsk . 

3. Every s-closed is s-coc-closed but the converse is 

not true for example. 

 

Example (1.2) 

LetX =  1, 2, 3, 4, … .  , τ =  ∅, X,  2 ,  3 ,  2, 3   topology 

on  and A =  1, 2 s-coc-open set 

thenAc = {3, 4, 5, 6, … . } s-closed but Ac  not s-closed. 

 

Proposition (1.3)  

Let  and  be topological spaces, and 𝐴 ⊆ 𝑋, 𝐵 ⊆ 𝑌 such 

that  s-coc-open set in   and  s-coc-open set in   

then 𝐴 × 𝐵 is s-coc-open subset in 𝑋 × 𝑌. 

 

Proof: 

Let (𝑥, 𝑦) ∈ 𝐴 × 𝐵, then 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵  .Since  is s-

coc-open in . Then for all 𝑥 ∈ 𝐴 there exists  s-open 

set and  𝐾1 compact such that 𝑥 ∈ 𝑈 − 𝐾1 ⊆ 𝐴.  Since B   

is s-coc-open in . Then for all 𝑦 ∈ 𝐵 there exists  s-

open set and  𝐾2compact such that 𝑦 ∈ 𝑉 − 𝐾2 ⊆ 𝐵. 

 

Since  and  are s-open sets, Then 𝑈 ⊆ 𝑈∘    and 𝑉 ⊆ 𝑉∘     

then 𝑈 × 𝑉 ⊆ 𝑈∘   × 𝑉∘   ⊆ 𝑈∘ × 𝑉∘          ⊆ (𝑈 × 𝑉)∘           .Then 

𝑈 × 𝑉 ⊆ (𝑈 × 𝑉)∘           , then𝑈 × 𝑉 s-open in 𝑋 × 𝑌and 

𝐾1 × 𝐾2 compact in 𝑋 × 𝑌 .Then for all (𝑥, 𝑦) ∈ 𝐴 × 𝐵 

there exists s-open 𝑈 × 𝑉 = 𝑊 and 𝐾1 × 𝐾2 = 𝐾  compat 

such that  𝑥, 𝑦 ∈ 𝑊 − 𝐾 ⊆ 𝐴 × 𝐵therefor𝐴 × 𝐵 s-coc-

open in 𝑋 × 𝑌. 

 

 
 

 

Definition (1.4) 

Let  be space and 𝐴 ⊆ 𝑋. The intersection of all s-coc-

closed sets  containing  called the s-coc- closure of A 

defined by 𝐴
𝑠−𝑐𝑜𝑐

. 

𝐴
𝑠−𝑐𝑜𝑐

=∩ {𝐵: 𝐵 𝑠– 𝑐𝑜𝑐– 𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑛 𝑋 𝑎𝑛𝑑 𝐴 ⊆ 𝐵} 

 

Definition (1.5)[7] 

    Let  be space and 𝐴 ⊆ 𝑋. The intersection of all coc-

closed sets    containing  called the coc- closuer of A 

defined  by𝐴
𝑐𝑜𝑐

=∩ {𝐵: 𝐵   𝑐𝑜𝑐– 𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑛 𝑋 𝑎𝑛𝑑 𝐴 ⊆ 𝐵}. 

 

Proposition (1.4) 

Let  be a topological space and 𝐴 ⊆ 𝑋then 𝐴
𝑠−𝑐𝑜𝑐

 is the 

smallest s-coc-closed set containing . 

 

Proof  

Clear. 

 

Proposition (1.5) 

Let  be a topological space and𝐴 ⊆ 𝑋, then 𝑥 ∈ 𝐴
𝑠−𝑐𝑜𝑐

if 

and only if for each s-coc-open in  contained point  we 

have 𝑈 ∩ 𝐴 ≠ ∅.  

 

𝑷𝒓𝒐𝒐𝒇: 

Assume that  𝑥 ∈  𝐴
𝑠−𝑐𝑜𝑐

and let 𝑈 s-coc-open in  such 

that 𝑥 ∈ 𝑈, and suppose 𝑈 ∩ 𝐴 ≠ ∅then 𝐴 ⊆ 𝑈𝑐 . Since𝑈 

s-coc-open set in  and 𝑥 ∈ 𝑈 then 𝑈𝑐  s-coc closed set in 

 and 𝑥 ∉ 𝑈and 𝐴
𝑠−𝑐𝑜𝑐

is smallest s-coc-closed containing

then 𝐴
𝑠−𝑐𝑜𝑐

⊆ 𝑈𝑐 . Since 𝑈 ∩ 𝑈𝑐 = ∅ and 𝑥 ∈ 𝑈 then 

𝑥 ∉ 𝑈𝑐  then 𝑥 ∉ 𝐴
𝑠−𝑐𝑜𝑐

. 
Conversely: 

 

Let 𝑈 s-coc-closed set in  such that 𝑥 ∈ 𝑈 and 𝑈 ∩ 𝐴 ≠

∅.To prove𝑥 ∈ 𝐴
𝑠−𝑐𝑜𝑐

.Let 𝑥 ∉ 𝐴
𝑠−𝑐𝑜𝑐

 then 𝑥 ∈ (𝐴
𝑠−𝑐𝑜𝑐

)𝑐 , 

since 𝐴
𝑠−𝑐𝑜𝑐

 is s-coc-closed in , (𝐴
𝑠−𝑐𝑜𝑐

)𝑐  is s-coc-open 

in and 𝐴
𝑠−𝑐𝑜𝑐

∩ (𝐴
𝑠−𝑐𝑜𝑐

)𝑐 = ∅ .Then 𝐴 ∩ (𝐴
𝑠−𝑐𝑜𝑐

)𝑐 =

∅ , since𝐴 ⊆ (𝐴
𝑠−𝑐𝑜𝑐

)𝑐  .This contradiction since every s-

coc-open  𝑈in , 𝑈 ∩ 𝐴 ≠ ∅. 

 

Proposition (1.6)[7] 

Let  be a topological space and 𝐴 ⊆ 𝑋, then 𝑥 ∈ 𝐴
𝑐𝑜𝑐

 if  

and only if for each coc-open in  contained point  we 

have 𝑈 ∩ 𝐴 ≠ ∅. 

 

Proposition (1.7) 

Let  be a topological space and 𝐴 ⊆ 𝐵 then  

 

i- (𝐴
𝑠−𝑐𝑜𝑐

)𝑐  is s-coc-closed set  

ii-  is s-coc-closed if and only if 𝐴 = 𝐴
𝑠−𝑐𝑜𝑐

 

iii- 𝐴
𝑠−𝑐𝑜𝑐

= 𝐴
𝑠−𝑐𝑜𝑐        𝑠−𝑐𝑜𝑐

 

iv- If 𝐴 ⊆ 𝐵 then 𝐴
𝑠−𝑐𝑜𝑐

⊆ 𝐵
𝑠−𝑐𝑜𝑐

 

v- 𝐴
𝑠−𝑐𝑜𝑐

⊆ 𝐴 

vi- 𝐴
𝑠−𝑐𝑜𝑐

⊆ 𝐴
𝑐𝑜𝑐
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Proof: 

i- By definition of s-coc-closed set. 

ii- Let  is s-coc-closed in 𝑋. Since 𝐴 ⊆ 𝐴
𝑠−𝑐𝑜𝑐

 and 

𝐴
𝑠−𝑐𝑜𝑐

smallest s-coc-closed  set containing , then 

𝐴
𝑠−𝑐𝑜𝑐

 ⊆ 𝐴  then 𝐴 = 𝐴
𝑠−𝑐𝑜𝑐

 

Conversely: 

Let𝐴 = 𝐴
𝑠−𝑐𝑜𝑐

 . Since𝐴
𝑠−𝑐𝑜𝑐

 is s-coc-closed then  is s-

coc-closed. 

iii- From (i) and (ii) 

iv- Let𝐴 ⊆ 𝐵 . Since𝐵 ⊆ 𝐵  then 𝐴 ⊆ 𝐴
𝑠−𝑐𝑜𝑐

. Since 

𝐴
𝑠−𝑐𝑜𝑐

 smallest s-coc-closed set containing  then 

𝐴
𝑠−𝑐𝑜𝑐

⊆ 𝐵
𝑠−𝑐𝑜𝑐

 

v- By proposition (1.5). 

vi-By proposition (1.5) and proposition (1.6). 

 

Definition (1.6) 

Let  be space and 𝐴 ⊆ 𝑋. The union of all s-coc-open 

sets of  containing in  is called s-coc-Interior of  

denoted by 

𝐴∘𝑠−𝑐𝑜𝑐 =∪ {𝐵: 𝐵 𝑠 − 𝑐𝑜𝑐 − 𝑜𝑝𝑒𝑛 𝑖𝑛 𝑋 𝑎𝑛𝑑 𝐴 ⊆ 𝐵} 

 

Definition (1.7)[7] 

Let  be space and 𝐴 ⊆ 𝑋. The union of all coc-open sets 

of  containing in  is called coc-Interior of  denoted 

by    𝐴∘𝑐𝑜𝑐 =∪ {𝐵: 𝐵   𝑐𝑜𝑐 − 𝑜𝑝𝑒𝑛 𝑖𝑛 𝑋 𝑎𝑛𝑑 𝐴 ⊆ 𝐵} 

 

Proposition (1.8): 

Let  be a topological space and 𝐴 ⊆ 𝑋, then 𝐴∘𝑠−𝑐𝑜𝑐  is 

the largest s-coc-open set contain  

 

Proof: 

Clear. 

 

Proposition (1.9) 

Let  be a topological space and 𝐴 ⊆ 𝑋, then 𝑥 ∈ 𝐴∘𝑠−𝑐𝑜𝑐  

if and only if there exists s-coc-open set  containing 

such that 𝑥 ∈ 𝑉 ⊆ 𝐴.  

 

Proof: 

Let 𝑥 ∈ 𝐴∘𝑠−𝑐𝑜𝑐  then𝑥 ∈∪ 𝑈  such that  s-coc-open set 

and 𝑥 ∈ 𝑉 ⊆ 𝐴  .  

conversely: 

Let there exists  s-coc-open set such that 𝑥 ∈ 𝑉 ⊆ 𝐴then 

𝑥 ∈ ∪ 𝑉, 𝑉 ⊆ 𝐴 and  s-coc-open set then 𝑥 ∈ 𝐴∘𝑠−𝑐𝑜𝑐 . 

 

Proposition (1.10)[7] 
Let  be a topological space and 𝐴 ⊆ 𝑋, then 𝑥 ∈ 𝐴∘𝑐𝑜𝑐  if 

and only if there exists coc-open set  containing   such 

that 𝑥 ∈ 𝑉 ⊆ 𝐴.  

 

Proposition (1.11) 

Let  be a topological space and 𝐴 ⊆ 𝐵 ⊆ 𝑋then. 

1. 𝐴∘𝑠−𝑐𝑜𝑐 is s-coc-open set. 

2.  is s-coc-open  if and only if 𝐴 = 𝐴∘𝑠−𝑐𝑜𝑐 . 

3. 𝐴∘ ⊆ 𝐴∘𝑠−𝑐𝑜𝑐 . 

4. 𝐴∘𝑠−𝑐𝑜𝑐 = (𝐴∘𝑠−𝑐𝑜𝑐 )∘𝑠−𝑐𝑜𝑐 . 

5. if𝐴 ⊆ 𝐵 then 𝐴∘𝑠−𝑐𝑜𝑐 ⊆ 𝐵∘𝑠−𝑐𝑜𝑐 . 

6. 𝐴°𝑐𝑜𝑐 ⊆ 𝐴∘𝑠−𝑐𝑜𝑐  

 

Proof: 

1. and   2.   from definition (1.6)  

3. Let𝑥 ∈ 𝐴∘𝑠−𝑐𝑜𝑐  then there exists 𝑈  s-coc- open 

set such that 𝑥 ∈ 𝑈 ⊆ 𝐴  then 𝑈 s-coc-open set then 𝑈 s-

coc-open set such that 𝑥 ∈ 𝑈 ⊆ 𝐴  thus 𝑥 ∈ 𝐴∘𝑠−𝑐𝑜𝑐  

4. from (1) and (2). 

5. Let 𝑥 ∈ 𝐴∘𝑠−𝑐𝑜𝑐  then there exists 𝑉 open set such 

that 𝑥 ∈ 𝑉 ⊆ 𝐴  by proposition (1.9) since 𝐴 ⊆ 𝐵 then 

𝑥 ∈ 𝑉 ⊆ 𝐵. Then 𝑥 ∈ 𝐵∘𝑠−𝑐𝑜𝑐 .Thus 𝐴∘𝑠−𝑐𝑜𝑐 ⊆ 𝐵∘𝑠−𝑐𝑜𝑐 . 
6. By proposition (1.9) and proposition (1.10). 

 

Proposition (1.12) 

Let 𝑋 be a space and 𝐴 ⊆ 𝑋, then (𝐴𝑐)∘𝑠−𝑐𝑜𝑐 = (𝐴
𝑠−𝑐𝑜𝑐

)𝑐  

 

Proof  

Let 𝑥 ∈ (𝐴𝑐)∘𝑠−𝑐𝑜𝑐  and 𝑥 ∉ (𝐴
𝑠−𝑐𝑜𝑐

)𝑐  . Then 𝑥 ∈

𝐴
𝑠−𝑐𝑜𝑐

.Then for all 𝑥 ∈ 𝐴 there exists 𝑈 s-coc-open 

setsuch that 𝑈⋂𝐴 ≠ 𝛷. Since (𝐴𝑐)∘𝑠−𝑐𝑜𝑐  s-coc-open set 

then (𝐴𝑐)∘𝑠−𝑐𝑜𝑐 ∩ 𝐴 ≠ ∅.Then (𝐴𝑐)∘𝑠−𝑐𝑜𝑐 ⊆ 𝐴𝑐  then𝐴 ∩

𝐴𝑐 ≠ ∅.This is contradiction Thus 𝑥 ∈ (𝐴
𝑠−𝑐𝑜𝑐

)𝑐 .Then 

(𝐴𝑐)∘𝑠−𝑐𝑜𝑐 ⊆ (𝐴
𝑠−𝑐𝑜𝑐

)𝑐   . Let 𝑥 ∈ (𝐴
𝑠−𝑐𝑜𝑐

)𝑐 then 𝑥 ∉

𝐴
𝑠−𝑐𝑜𝑐

. Then there exists 𝑈 s-coc-open set such that 

𝑈⋂𝐴 ≠ ∅ . Then 𝑈 ⊆ 𝐴𝑐There for 𝑈∘𝑠−𝑐𝑜𝑐 ⊆
 𝐴𝑐 ∘𝑠−𝑐𝑜𝑐   .Thus 𝑥 ∈ (𝐴𝑐)∘𝑠−𝑐𝑜𝑐  then (𝐴𝑐)∘𝑠−𝑐𝑜𝑐 =

(𝐴
𝑠−𝑐𝑜𝑐

)𝑐 . 

 

Definition (1.8):[2] 

Let 𝑋 be a space and 𝐵 any subset of x, a neighborhood ﴾ 

nbd﴿ of 𝐵 is any subset of 𝑋 which contains an open set 

containing 𝐵The neighborhoods of a subset {𝑥} is also 

neighborhood of the point 𝑥. 

 

Remark (1.6)  

The collection of all neighborhoods of the subset 𝐵 of 𝑋 

are denoted by 𝑁 𝐵 . In particular the collection of all 

neighborhoods of 𝑥 is denoted by 𝑁(𝑥). 

 

Definition (1.9) 

Let 𝑋 be a space andB⊆ 𝑋, an s-coc-neighborhood of 𝐵 is 

any subset of 𝑋 which contains an s-coc-open set 

containing 𝐵.The s-coc-neighborhood ﴾ s-coc- nbd﴿ of 

subset {𝑥} is also called  s-coc-neighborhood of the point 

𝑥. 

 

Remark (1.7)  

The collection of all neighborhoods of the subset 𝐵 of 𝑋 

are denoted by 𝑁𝑠−𝑐𝑜𝑐 (𝐵) in particular the collection of all 

neighborhoods of 𝑥 is denoted by 𝑁𝑠−𝑐𝑜𝑐 (𝑥). 

 

Proposition (1.13) 

Let (𝑋, 𝜏) be a topological space and for each 𝑥 ∈ 𝑋, let 

𝑁𝑠−𝑐𝑜𝑐 (𝑥) be a collection of all s-coc- neighborhoods of 

𝑥then: 

i. If 𝐴 ∈ 𝑁𝑠−𝑐𝑜𝑐 (𝑥) such that 𝐴 ⊆ 𝐵 then 𝐵 ∈ 𝑁𝑠−𝑐𝑜𝑐 (𝑥) 

ii. If 𝐴, 𝐵 ∈ 𝑁𝑠−𝑐𝑜𝑐 (𝑥) then 𝐴⋂ 𝐵 ∈ 𝑁𝑠−𝑐𝑜𝑐 (𝑥) such that 

𝐴, 𝐵 ⊆ 𝑋 

iii. If 𝐴𝛼 ∈ 𝑁𝑠−𝑐𝑜𝑐 (𝑥) then ⋃𝐴𝛼 ∈ 𝑁𝑠−𝑐𝑜𝑐 (𝑥) 
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Proof 

i- Since 𝐴 ∈ 𝑁𝑠−𝑐𝑜𝑐 (𝑥) then there exists 𝑈 s-coc-open 

set such that𝑥 ∈ 𝑈 ⊆ 𝐴, since 𝐴 ⊆ 𝐵 then 𝑥 ∈ 𝑈 ⊆ 𝐵 

hence 𝐵 ∈ 𝑁𝑠−𝑐𝑜𝑐 (𝑥). 

ii- Let𝐴, 𝐵 ∈ 𝑁𝑠−𝑐𝑜𝑐 (𝑥) and 

𝐴 ∩ 𝐵 ∉ 𝑁𝑠−𝑐𝑜𝑐  𝑥  .Then𝑥 ∈ 𝐴⋂𝐵 and for all  𝑈 s-

coc-open set such that 𝑥 ∈ 𝑈 ⊈ 𝐴⋂𝐵, 𝑥 ∈ 𝑈 ⊈
𝐴𝑜𝑟𝑥 ∈ 𝑈 ⊈ 𝐵.Then𝐴 ∉ 𝑁𝑠−𝑐𝑜𝑐  𝑥 𝑜𝑟𝐵 ∉
𝑁𝑠−𝑐𝑜𝑐𝑥this contradiction. 

iii- Since𝐴𝛼 ∈ 𝑁𝑠−𝑐𝑜𝑐 (𝑥) exists 𝑈𝛼  s-coc-open set 

such that𝑥 ∈ 𝑈𝛼 ⊆ 𝐴𝛼 ⊆ ⋃𝐴𝛼   .Then𝑥 ∈ 𝑈𝛼 ⊆
⋃𝐴𝛼   .Therefore⋃𝐴𝛼 ∈ 𝑁𝑠−𝑐𝑜𝑐 (𝑥). 

 

Proposition (1.14)  

Let (𝑋, 𝜏) be a space and 𝐴 ⊆ 𝑋 then 𝐴 s-coc-open set in 𝑋 

if and only if 𝐴 is s-coc- neighborhood for all his points in 

𝐴 

 

Proof  

Let 𝐴 s-coc-open and 𝑥 ∈ 𝐴.Since 𝑥 ∈ 𝐴 ⊆ 𝐴 then  𝐴 is s-

coc- neighborhood of  𝑥 for all 𝑥  hence𝐴 is s-coc- 

neighborhood for all his points  

conversely: 

Let𝐴 is s-coc- neighborhood for all  his points  and𝑥 ∈ 𝐴 

.Then𝐴 is s-coc- neighborhood for  𝑥then there exists 𝑈𝑥  s-

coc-open set such that 𝑥 ∈ 𝑈𝑥 ⊆ 𝐴 .Then 𝐴 =
⋃ 𝑥: 𝑥 ∈ 𝐴 ⊆ {𝑈𝑥 : 𝑥 ∈ 𝑈𝑥} ⊆ 𝐴  . Then 𝐴 =
 𝑈𝑥 : 𝑥 ∈ 𝑈𝑥 .Then 𝐴 union of s-coc-open sets .Therefore 

𝐴 is  s-coc-open set 

 

Proposition (1.15) 

Let 𝑋 be a topological space and  𝜏  discret topology in 

𝑋 𝑡𝑕𝑒𝑛     𝑁𝑠−𝑐𝑜𝑐  𝑥 = {𝐴: 𝑥 ∈ 𝐴} 

 

Proof  

Since 𝜏 discret topology𝑡𝑕𝑒𝑛  𝜏 =  𝐴: 𝑥 ∈ 𝐴 . Let 𝐴 ⊆ 𝑋 

and 𝑥 ∈ 𝑋 either𝑥 ∈ 𝐴𝑜𝑟𝑥 ∉ 𝐴 

-if𝑥 ∉ 𝐴 then 𝐴not s-coc- neighborhood of  𝑥 hence𝐴 ∉
𝑁𝑠−𝑐𝑜𝑐(𝑥) 

-if 𝑥 ∈ 𝐴 .Since{𝑥} ⊆ 𝑋, and {𝑥} open set in 𝑋 . Then{𝑥} s-

coc-open set 𝑥 ∈  𝑥 ⊆ 𝐴 𝑡𝑕𝑒𝑛𝐴 s-coc- neighborhood of  

𝑥  then𝐴 ∈ 𝑁𝑠−𝑐𝑜𝑐  𝑥 hence𝑁𝑠−𝑐𝑜𝑐  𝑥 = {𝐴: 𝑥 ∈ 𝐴} 

 

Remark (1.8) 

Every neighborhood of 𝑥 is s-coc- neighborhood of  

𝑥 . But the converse not true for example  

 

Example (1.3) 

Let 𝑥 =  1, 2, 3, 4 𝑎𝑛𝑑𝜏 =  ∅, 𝑋,  4   , 𝐴 =  1, 2 not 

neighborhood of 𝑥 but s-coc- neighborhood of  𝑥 

 

Definition (1.10) 

Let 𝑋 be a topological space and  𝑥 ∈ 𝑋, 𝐴 ⊆ 𝑋  .The point 

𝑥 is called s-coc-limit point of A  if  every s-coc-open set  

containing  xcontains apoint  of 𝐴 distinct from 𝑥. we call 

the set of all s-coc-limit point of 𝐴 the s-coc-derived set of 

𝐴 and denoted by 𝐴´𝑠−𝑐𝑜𝑐 . Therefore 𝑥 ∈ 𝐴´𝑠−𝑐𝑜𝑐  if and 

only if for every s-coc-open set𝑉𝑖𝑛𝑋 such that 𝑥 ∈ 𝑉 such 

that (𝑉⋂𝐴)—{𝑥} ≠ ∅ 

 
 

Definition (1.11)[7] 

Let 𝑋 be a topological space and  𝑥 ∈ 𝑋, 𝐴 ⊆ 𝑋  .The point 

𝑥 is called coc-limit point of A  if  every coc-open set  

containing  x contains a point  of 𝐴 distinct from 𝑥. we call 

the set of all coc-limit point of 𝐴 the coc-derived set of 𝐴 

and denoted by 𝐴´𝑐𝑜𝑐 .  

 

Therefore 𝑥 ∈ 𝐴´𝑐𝑜𝑐  if and only if for every coc-open set   

𝑉𝑖𝑛𝑋 such that 𝑥 ∈ 𝑉 such that (𝑉⋂𝐴)—{𝑥} ≠ ∅ 

 
Proposition (1.16) 

Let 𝑋 be a topological space and 𝐴 ⊆ 𝐵 ⊆ 𝑋 then 

1) 𝐴
𝑠−𝑐𝑜𝑐

= 𝐴⋃𝐴 𝑠−𝑐𝑜𝑐  

2) 𝐴 s-coc-closed set if and only if 𝐴´𝑠−𝑐𝑜𝑐 ⊆ 𝐴 

3) 𝐴 𝑠−𝑐𝑜𝑐 ⊆ 𝐵 𝑠−𝑐𝑜𝑐  

4)𝐴 𝑠−𝑐𝑜𝑐 ⊆ 𝐴 𝑐𝑜𝑐  

 

Proof: 

1) 𝑆𝑖𝑛𝑐𝑒  𝐴 ⊆  𝐴
𝑠−𝑐𝑜𝑐

 ---- (*)  , let 𝑥 ∈ 𝐴 𝑠−𝑐𝑜𝑐 , then 

for each  s-coc-open set  U   containing  x  such that  

 𝑉⋂𝐴 −  𝑥 ≠ 𝛷   then 𝑈⋂𝐴 ≠ ∅ for all 𝑈 s-coc-open 

set, x ∈ U then U∩ 𝐴 ≠ ∅ .Then 𝑥 ∈ 𝐴
𝑠−𝑐𝑜𝑐

hence𝐴 𝑠−𝑐𝑜𝑐 ⊆

   𝐴
𝑠−𝑐𝑜𝑐

…….(**)from (*)and(**) we have 𝐴⋃𝐴´𝑠−𝑐𝑜𝑐 ⊆
𝐴 𝑠−𝑐𝑜𝑐  

Conversely: 

Let 𝑥 ∈ 𝐴
𝑠−𝑐𝑜𝑐

Then either 𝑥 ∈ 𝐴𝑜𝑟𝑥 ∉ 𝐴, if𝑥 ∈

𝐴 𝑡𝑕𝑒𝑛 𝑥 ∈ 𝐴⋃𝐴 𝑠−𝑐𝑜𝑐  complete if 𝑥 ∉ 𝐴 ,  since  𝑥 ∈

 𝐴
𝑠−𝑐𝑜𝑐

 then for all𝑈s-coc-open set contains   𝑥 suchthat 

𝑈⋂𝐴 ≠ ∅ since𝑥 ∉ 𝐴  𝑡𝑕𝑒𝑛  𝑈⋂𝐴 −  𝑥 ≠ ∅ .  Then𝑥 ∈
𝐴´𝑠−𝑐𝑜𝑐  then𝑥 ∈ 𝐴⋃𝐴´𝑠−𝑐𝑜𝑐  

Hence𝐴
𝑠−𝑐𝑜𝑐

⊆ 𝐴⋃𝐴´𝑠−𝑐𝑜𝑐 𝑡𝑕𝑒𝑛𝐴
𝑠−𝑐𝑜𝑐

=  𝐴⋃𝐴 𝑠−𝑐𝑜𝑐 . 

 

2) Let A s-coc-closed set to prove 𝐴´𝑠−𝑐𝑜𝑐 ⊆
𝐴, 𝐴𝑡𝑕𝑒𝑛𝑥 ∈ 𝐴𝑐 , let 𝐴𝑡𝑕𝑒𝑛𝐴𝑐since 𝐴 s-coc-closed set, then 

𝐴𝑐s-coc set and 𝐴⋂𝐴𝑐 = ∅. 𝑆𝑖𝑛𝑐𝑒𝑥 ∉ 𝐴𝑡𝑕𝑒𝑛 𝐴⋂𝐴𝑐 −
 𝑥 ≠ ∅   𝑡𝑕𝑒𝑛 𝑥 ∉ 𝐴´𝑠−𝑐𝑜𝑐 𝑡𝑕𝑒𝑛𝐴´𝑠−𝑐𝑜𝑐 ⊆ 𝐴, let𝐴´𝑠−𝑐𝑜𝑐 ⊆

𝐴, to prove 𝐴 s-coc-closed set.Since𝐴
𝑠−𝑐𝑜𝑐

= 𝐴⋃𝐴´𝑠−𝑐𝑜𝑐    

then   𝐴
𝑠−c𝑜𝑐

= 𝐴 then 𝐴 s-coc-closed set 

3)Let𝑥 ∈ 𝐴´𝑠−𝑐𝑜𝑐  .Then for all 𝑈 s-coc-open set contain 

𝑥  such that  𝑈⋂𝐴 − {𝑥} ≠ ∅ 

.since𝐴 ⊆    𝐵  𝑡𝑕𝑒𝑛  𝑈⋂𝐵 −  𝑥 ≠ ∅.  Then𝑥 ∈ 𝐵 𝑠−𝑐𝑜𝑐  

hence 𝐴 𝑠−𝑐𝑜𝑐 ⊆ 𝐵 𝑠−𝑐𝑜𝑐  

4)By Definition (1.10) and Definition (1.11) 

 

Definition (1.12) 

Let (𝑋, 𝜏) be a topological space and let𝐴 be any subset of   

𝑋, let 𝑥 ∈ 𝑋 is called s-coc-boundary point of  𝐴 if  and 

only if each s-coc-open set 𝑈𝑥  of 𝑥 we have 𝑈𝑥⋂𝐴 ≠ ∅ 

and 𝑈𝑥⋂𝐴
𝑐 ≠ ∅ 

The set of all s-coc-boundary point of𝐴 is denoted by 

𝑏𝑠−𝑐𝑜𝑐 (𝐴) 
 

Proposition (1.17) 

Let 𝑋 be a space and 𝐴 ⊆ 𝑋 then 

1) 𝑏𝑠−𝑐𝑜𝑐  𝐴 =   𝐴
𝑠−𝑐𝑜𝑐

⋂𝐴𝑐   
𝑠−𝑐𝑜𝑐

 

2) 𝐴∘𝑠−𝑐𝑜𝑐 = 𝐴 − 𝑏𝑠−𝑐𝑜𝑐  𝐴  

3)  𝐴
𝑠−𝑐𝑜𝑐

= 𝐴⋃𝑏𝑠−𝑐𝑜𝑐  𝐴  
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Proof: 
 

1) Let 𝑥 ∈ 𝑏𝑠−𝑐𝑜𝑐  𝐴  then for all 𝑈 s-coc-open set 

contain  𝑥𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡  𝑈⋂𝐴 ≠ ∅ 𝑎𝑛𝑑𝑈⋂𝐴𝑐 ≠ ∅  . Then by 

proposition (1.5) we have  𝑥 ∈ 𝐴 𝑠−𝑐𝑜𝑐𝑎𝑛𝑑𝑥 ∈

𝐴𝑐   
𝑠−𝑐𝑜𝑐

. Hence 𝑥 ∈ 𝐴
𝑠−𝑐𝑜𝑐

⋂𝐴𝑐   
𝑠−𝑐𝑜𝑐

 .    Then 𝑏𝑠−𝑐𝑜𝑐  𝐴 ⊆

 𝐴
𝑠−𝑐𝑜𝑐

⋂𝐴𝑐   
𝑠−𝑐𝑜𝑐

 
Conversely: 

Let 𝑥 ∈ 𝐴
𝑠−𝑐𝑜𝑐

⋂𝐴𝑐   
𝑠−𝑐𝑜𝑐

.   𝑇𝑜 𝑝𝑟𝑜𝑜𝑓  𝑥 ∈

𝑏𝑠−𝑐𝑜𝑐  𝐴  .  Then     𝑥 ∈ 𝐴
𝑠−𝑐𝑜𝑐

𝑎𝑛𝑑𝑥 ∈ 𝐴𝑐   
𝑠−𝑐𝑜𝑐

 .Then by 

proposition (1.6) we have  𝑈 s-coc-open set   containing 

𝑥𝑎𝑛𝑑𝑈⋂𝐴 ≠ ∅,𝑈⋂𝐴𝑐 ≠ ∅ . Then 𝑥 ∈ 𝑏𝑠−𝑐𝑜𝑐  𝐴  by 

definition (1.12). Therefore 

𝑏𝑠−𝑐𝑜𝑐  𝐴 ⊆ 𝐴
𝑠−𝑐𝑜𝑐

⋂𝐴𝑐   
𝑠−𝑐𝑜𝑐

 . Thus 𝑏𝑠−𝑐𝑜𝑐  𝐴 =

𝐴
𝑠−𝑐𝑜𝑐

⋂𝐴𝑐   
𝑠−𝑐𝑜𝑐

 
 

2 Let 𝑥 ∈ 𝐴∘𝑠−𝑐𝑜𝑐 𝑡𝑕𝑒𝑛𝑥 ∈ 𝐴     ( 𝑠𝑖𝑛𝑐𝑒    𝐴∘𝑠−𝑐𝑜𝑐 ⊆ 𝐴). To 

prove 𝑥 ∉ 𝑏𝑠−𝑐𝑜𝑐  𝐴  , let  𝑥 ∈ 𝑏𝑠−𝑐𝑜𝑐  𝐴 , then for all 𝑈 s-

coc-open set contain 𝑥𝑠𝑢𝑐𝑕 𝑡𝑕𝑎𝑡 𝑈⋂𝐴𝑐 ≠ ∅ 𝑎𝑛𝑑𝑈⋂𝐴 ≠
∅ . Since𝑥 ∈ 𝐴∘𝑠−𝑐𝑜𝑐  .Then 𝑡𝑕ere 𝑒𝑥𝑖𝑠𝑡 𝑉s-coc-open set 

such that 𝑥 ∈ 𝑉 ⊆ 𝐴 by proposition (1.10)since 𝐴⋂𝐴𝑐 =
∅𝑡𝑕𝑒𝑛𝑉⋂𝐴𝑐 = ∅ contradiction Then  𝑥 ∉ 𝑏𝑠−𝑐𝑜𝑐  𝐴 . 
Hence 𝐴∘𝑠−𝑐𝑜𝑐 ⊆ 𝐴 − 𝑏𝑠−𝑐𝑜𝑐  𝐴 . 
Conversely: 
Letx∈ 𝐴 − 𝑏𝑠−𝑐𝑜𝑐  𝐴 , to prove 𝑥 ∈ 𝐴∘𝑠−𝑐𝑜𝑐 . Since 

𝑥 ∉ 𝑏𝑠−𝑐𝑜𝑐  𝐴  then  𝑉 s-coc-open set contain x such that   

𝑉⋂𝐴 ≠ ∅𝑜𝑟𝑉⋂𝐴𝑐 ≠ ∅ , since 

𝑥 ∈ 𝑉𝑎𝑛𝑑𝑥 ∈ 𝐴𝑡𝑕𝑒𝑛𝐴⋂𝑉 ≠ ∅𝑡𝑕𝑒𝑛𝑉⋂𝐴𝑐 = ∅ then 

V⊆ 𝐴  then 𝑥 ∈ 𝑉 ⊆ 𝐴 . Then byproposition (1.10) we 

have 𝑥 ∈ 𝐴∘𝑠−𝑐𝑜𝑐 . 

3) Let 𝑥 ∈ 𝐴
𝑠−𝑐𝑜𝑐

.To prove 𝑥 ∈ 𝐴⋃𝑏𝑠−𝑐𝑜𝑐  𝐴 ,  
let 𝑥 ∉ 𝐴⋃𝑏𝑠−𝑐𝑜𝑐  𝐴    𝑡𝑕𝑒𝑛  𝑥 ∉ 𝐴𝑎𝑛𝑑𝑥 ∉ 𝑏𝑠−𝑐𝑜𝑐 (𝐴)  then 

there exists 𝑉 s-coc-open set such that 𝑥 ∈ 𝑉𝑎𝑛𝑑 𝑉⋂𝐴 ≠
𝛷 𝑜𝑟𝑉⋂𝐴𝑐 ≠ ∅ , since𝑥 ∉ 𝐴  𝑡𝑕𝑒𝑛 𝑥 ∈ 𝐴𝑐 , since 𝑥 ∈
𝑉𝑡𝑕𝑒𝑛𝑥 ∈ 𝑉 ∩ 𝐴𝑐 then 𝑉 ∩ 𝐴𝑐 ≠ ∅hence 𝑉⋂𝐴 =

𝛷𝑡𝑕𝑒𝑛 𝑥 ∉ 𝐴
𝑠−𝑐𝑜𝑐

this contradiction, then  𝑥 ∈
𝐴⋃𝑏𝑠−𝑐𝑜𝑐  𝐴  
Conversely: 
Let 𝑥 ∈ 𝐴⋃𝑏𝑠−𝑐𝑜𝑐  𝐴 . Then either 𝑥 ∈ 𝐴  𝑡𝑕𝑒𝑛 𝑥 ∈

 𝐴
𝑠−𝑐𝑜𝑐

or  𝑥 ∈ 𝑏𝑠−𝑐𝑜𝑐  𝐴 , then 

   𝑥 ∈ 𝐴
𝑠−𝑐𝑜𝑐

⋂𝐴𝑐   
𝑠−𝑐𝑜𝑐

. 𝑡𝑕𝑒𝑛 𝑥 ∈  𝐴
𝑠−𝑐𝑜𝑐

. Then  

𝐴⋃𝑏𝑠−𝑐𝑜𝑐  𝐴 ⊆ 𝐴
𝑠−𝑐𝑜𝑐

.Then𝐴
𝑠−𝑐𝑜𝑐

= 𝐴⋃𝑏𝑠−𝑐𝑜𝑐  𝐴  
 

Remark (1.9) 

Let 𝑋 be a topological space and 𝐴 ⊆ 𝑋 then𝑏𝑠−𝑐𝑜𝑐  𝐴  
=𝑏𝑠−𝑐𝑜𝑐  𝐴

𝑐  
 

Proof  

Since 

𝑏𝑠−𝑐𝑜𝑐  𝐴 = 𝐴
𝑠−𝑐𝑜𝑐

⋂𝐴𝑐   
𝑠−𝑐𝑜𝑐

= (𝐴𝑐)𝑐       𝑠−𝑐𝑜𝑐⋂𝐴𝑐   
𝑠−𝑐𝑜𝑐

=
𝑏𝑠−𝑐𝑜𝑐  𝐴

𝑐  
 

Proposition (1.18) 

Let 𝑋 be a topological space and 𝐴 ⊆ 𝑋 then: 

i. 𝐴
𝑠−𝑐𝑜𝑐

= 𝐴∘𝑠−𝑐𝑜𝑐⋃𝑏𝑠−𝑐𝑜𝑐  𝐴  

ii. 𝐴 s-coc-open set if and only if 𝑏𝑠−𝑐𝑜𝑐  𝐴 ⊆ 𝐴𝑐  

iii. 𝐴 s-coc-closed set if and only if 𝑏𝑠−𝑐𝑜𝑐  𝐴 ⊆ 𝐴 

 

 

Proof 

i. Since 𝐴∘𝑠−𝑐𝑜𝑐 ⊆ 𝐴𝑐   
𝑠−𝑐𝑜𝑐

, 𝑏𝑠−𝑐𝑜𝑐  𝐴 =

𝐴
𝑠−𝑐𝑜𝑐

⋂𝐴𝑐   
𝑠−𝑐𝑜𝑐

⊆ 𝐴
𝑠−𝑐𝑜𝑐

.Then 𝐴∘𝑠−𝑐𝑜𝑐⋃𝑏𝑠−𝑐𝑜𝑐  𝐴 ⊆

𝐴
𝑠−𝑐𝑜𝑐

 

    Conversely: 
𝑥 ∈ 𝐴 𝑠−𝑐𝑜𝑐𝑎𝑛𝑑𝑥 ∉ 𝑏𝑠−𝑐𝑜𝑐  𝐴 then there exist 𝑈 s-coc-open 

set contain 𝑥𝑎𝑛𝑑 

𝑈⋂𝐴 = ∅   𝑜𝑟  𝑈⋂𝐴𝑐 = ∅. if𝑈⋂𝐴 = ∅  then   𝑥 ∉

𝐴
𝑠−𝑐𝑜𝑐

contradiction, if 𝑈⋂𝐴𝑐 =      ∅ then 𝑈 ⊆ 𝐴, then 

there exist 𝑈 s-coc-open  such that 𝑥 ∈ 𝑈and𝑈 ⊆
𝐴  𝑡𝑕𝑒𝑛 𝑥 ∈      𝐴∘𝑠−𝑐𝑜𝑐  

 

ii. Let𝐴 s-coc-open set.Then 𝐴𝑐  s-coc-closed 

set 𝑡𝑕𝑒𝑛 𝐴∘ ⊆ 𝐴𝑐   
𝑠−𝑐𝑜𝑐

. Since  

𝑏𝑠−𝑐𝑜𝑐  𝐴 = 𝐴
𝑠−𝑐𝑜𝑐

⋂𝐴𝑐   
𝑠−𝑐𝑜𝑐

⊆ 𝐴𝑐   
𝑠−𝑐𝑜𝑐

. Hence 

𝑏𝑠−𝑐𝑜𝑐  𝐴 ⊆ 𝐴𝑐   
𝑠−𝑐𝑜𝑐

 

Conversely: 
Let 𝑏𝑠−𝑐𝑜𝑐  𝐴 ⊆ 𝐴𝑐   . Since  

𝑏𝑠−𝑐𝑜𝑐  𝐴 = 𝐴
𝑠−𝑐𝑜𝑐

⋂𝐴𝑐   
𝑠−𝑐𝑜𝑐

 . Then 

𝐴
𝑠−𝑐𝑜𝑐

⋂𝐴𝑐   
𝑠−𝑐𝑜𝑐

⋂𝐴 = ∅ . Since 

𝐴 ⊆ 𝐴
𝑠−𝑐𝑜𝑐

  𝑡𝑕𝑒𝑛 𝐴𝑐   
𝑠−𝑐𝑜𝑐

⋂𝐴 = ∅. Then 𝐴𝑐   
𝑠−𝑐𝑜𝑐

⊆

𝐴𝑐  . Since 𝐴𝑐 ⊆ 𝐴𝑐   
𝑠−𝑐𝑜𝑐

 𝑕𝑒𝑛𝑐𝑒𝐴𝑐 = 𝐴𝑐   
𝑠−𝑐𝑜𝑐

 . Then 𝐴𝑐  s-

coc-closed   𝑡𝑕𝑒𝑛 𝐴 s-coc-open  

 

iii. Let 𝐴 s-coc-closed set .Then 

𝐴 = 𝐴
𝑠−𝑐𝑜𝑐

  𝑡𝑕𝑒𝑛 𝑏𝑠−𝑐𝑜𝑐  𝐴 = 𝐴
𝑠−𝑐𝑜𝑐

⋂𝐴𝑐   
𝑠−𝑐𝑜𝑐

=

𝐴⋂𝐴𝑐   
𝑠−𝑐𝑜𝑐

⊆ 𝐴 
   Conversely  

   Let𝑏𝑠−𝑐𝑜𝑐  𝐴 ⊆ 𝐴.Then𝐴
𝑠−𝑐𝑜𝑐

⋂𝐴𝑐   
𝑠−𝑐𝑜𝑐

⋂𝐴𝑐 =

∅𝑡𝑕𝑒𝑛  𝐴
𝑠−𝑐𝑜𝑐

 ⋂𝐴𝑐 = ∅    𝑡𝑕𝑒𝑛     𝐴
𝑠−𝑐𝑜𝑐

⊆ 𝐴𝑕𝑒𝑛𝑐𝑒𝐴 =

𝐴
𝑠−𝑐𝑜𝑐

,   Then 𝐴 s-coc-closed set. 

  

Proposition (1.19) 

If 𝑋 aspace and 𝜏 discrete topology on X then  

𝑏𝑠−𝑐𝑜𝑐  𝐴 = ∅𝑓𝑜𝑟𝑎𝑙𝑙𝐴 ⊆ 𝑋 

 

Proof 

Since 𝑋 discrete then 𝐴 s-coc-open set, Then𝑏𝑠−𝑐𝑜𝑐  𝐴 ⊆
𝐴𝑐   and 𝐴 s-coc-closed set, Then 𝑏𝑠−𝑐𝑜𝑐  𝐴 ⊆ 𝐴 by 

proposition (1.18)(ii)  . Then  𝑏𝑠−𝑐𝑜𝑐  𝐴 ⊆ 𝐴⋂𝐴𝑐 =
∅.Thus 𝑏𝑠−𝑐𝑜𝑐  𝐴 = ∅ by proposition (1.18)(iii) 

 

Definition (1.13) [6] 

A subset 𝐴 is said to be 𝜔-open set if for eachx∈ 𝐴, there 

exists open set 𝑈 such that 𝑥 ∈ 𝑈 𝑎𝑛𝑑 𝐴 − 𝑈 countable  

 

Definition (1.14) 

A subset 𝐴 is said to be 𝜔 s-coc-open set if for each𝑥 ∈ 𝐴, 

there exists open s-coc-open set 𝑈 such that 𝑥 ∈
𝑈 𝑎𝑛𝑑 𝐴 − 𝑈 countable. The complement of 𝜔 coc-open 

set 

is𝜔 coc-closed set. 

 

Proposition (1.20) 

A subset 𝐴 of space 𝑋 is 𝜔s-coc-open  set if and only if for 

each  𝑥 ∈ 𝐴  there exists open s-coc-open set 𝑈 containing 

𝑥 and countable subset 𝐵 such that 𝑈 − 𝐵 ⊆ 𝐴 
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Proof  

Let 𝐴 be 𝜔 s-coc-open and x ∈ 𝐴, there exist s-coc-open  

subset 𝑈 containing 𝑥 such that  𝑈 − 𝐴 countable  

Let 𝐵 = 𝑈 − 𝐵 = 𝑈 ∩ (𝑋 − 𝐴) then 𝑈 − 𝐵 ⊆ 𝐴 

Conversely: 

Let 𝑥 ∈ 𝐴 and there exists s-coc-open subset 𝑈 containing 

𝑥 and countable subset 𝐵 such that 𝑈 − 𝐵 ⊆ 𝐴 . Then 

𝑈 − 𝐴countable set. Then 𝐴 is 𝜔s-coc-open set  

 

Theorem (1.1) 

Let 𝑋 be a space and 𝐶 ⊆ 𝑋. If 𝐶 is   𝜔 s-coc-closed 

set.Then 𝐶 ⊆ 𝐾 ∩ 𝐵 for some s-coc-closed subset 𝐾 and 

countable subset 𝐵 

 

Proof   

Since 𝐶 is 𝜔s-coc-closed set  𝑡𝑕𝑒𝑛 𝑋 − 𝐶𝜔s-coc-open. 

Then by proposition (1.20)  𝑡𝑕𝑒𝑛 ∀𝑥 ∈ 𝑋 − 𝐶 ∃ 𝑈 s-coc-

open and 𝐵 countable set such that 𝑈 − 𝐵 ⊆ 𝑋 − 𝐶 . Then   

𝐶 ⊆ 𝑋 −  𝑈 − 𝐵  

= 𝑋 = 𝑋 ∩  𝑈 ∩  𝑋 − 𝐵  
𝑐

= 𝑋 ∩ (𝑈𝑐 ∪ 𝐵)

= (𝑋 − 𝑈) ∪ 𝐵 

Let 𝐾 = 𝑋 − 𝑈  𝑡𝑕𝑒𝑛  𝐶 ⊆ 𝐾 ∩ 𝐵 

 

Proposition (1.21) 

The intersection of two 𝜔 s-coc-open set is  𝜔 s-coc-open 

set 

 

Proof  

Let 𝐴 𝑎𝑛𝑑 𝐵 𝜔 s-coc-open sets and 𝑥 ∈ 𝐴 ∩ 𝐵 𝑡𝑕𝑒𝑛 𝑥 ∈
𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵. Since 𝐴 𝜔s-coc 𝑡𝑕𝑒𝑛 ∀𝑥 ∈ 𝐴 ∃ 𝑈 s-coc-

open such that 𝑈 − 𝐴countable.Since 𝐵 𝜔s-coc then∀𝑥 ∈
𝐵 ∃ 𝑉 s-coc-open such that 𝑉 − 𝐵countable .To prove 
 𝑈⋂𝑉 − (𝐴 − 𝐵) countable  

 𝑈⋂𝑉 s-coc-open set by Remark (1.1.4)(2)and   𝑥 ∈ 𝑈 ∩
𝑉 
 𝑈⋂𝑉 −  𝐴 − 𝐵 =  𝑈 ∩ 𝑉 ⋂  𝑋 − 𝐴 ⋃ 𝑋 − 𝐵   

 =   𝑈 ∩ 𝑉 ⋂ 𝑋 − 𝐴  ⋂  𝑈 ∩ 𝑉 ⋂ 𝑋 − 𝐵  
⊆ (𝑈 − 𝐴)⋃(𝑉 − 𝐵) 

Since𝑈 − 𝐴 𝑎𝑛𝑑 𝑉 − 𝐵countable.Then (𝑈 − 𝐴)⋃(𝑉 −
𝐵)countable.Then  𝑈⋂𝑉 − (𝐴 − 𝐵) countable  

 

Proposition (1.22) 

The union of any family of 𝜔 s-coc-open set is w s-coc-

open set  

 

Proof  

Let 𝑥 ∈ ⋃𝐴∝𝑎𝑛𝑑𝐴∝𝜔 s-coc-open set .Then 𝑥 ∈ 𝐴∝for 

some∝∈ 𝛬.Then there exists subset 𝑈 s-coc-open and  𝐵  

countable such that U−𝐵 ⊆ 𝐴∝. Then 𝑈 − 𝐵 ⊆ 𝐴∝ ⊆
⋃𝐴∝. Then ⋃𝐴∝ 𝜔s-coc-open set 

 

Proposition (1.23) 

For space 𝑋 then  

i. 𝐸𝑣𝑒𝑟𝑦 𝜔open is 𝜔s-coc-open set  

ii. Every  s-coc-open is 𝜔s-coc-open set  

 

Proof  

i. Let 𝐴𝜔-open set.Then for all 𝑥 ∈ 𝐴 there exist 𝑈 open 

set such that 𝑥 ∈ 𝑈 and 𝑈 − 𝐴countable. Since every 

open is s-coc-open set by Remark (1.3)(i). Then 𝑈 s-

coc-open set. Thus for all 𝑥 ∈ 𝐴 there is 𝑈 s-coc-open 

such that 𝑈 − 𝐴countable  

ii. Let 𝐴 s-coc-open set .Then for all 𝑥 ∈ 𝐴 there exist 

𝑉 = 𝐴  s-coc-open set containing 𝑥 such that 𝑉 − 𝐴 =
𝐴 − 𝐴 = ∅ countable. Therefore 𝐴𝜔 s-coc-open set. 

 

Definition (1.15)[7] 

A subset 𝐴 is said to be 𝜔 coc-open set if for each 𝑥 ∈ 𝐴, 

there exists open coc-open set 𝑈 such that 𝑥 ∈ 𝑈 𝑎𝑛𝑑 𝐴 −
𝑈 countable.The complement of 𝜔 coc-open set is 𝜔 coc-

closed set. 

 

Proposition (1.24) 

Every 𝜔 coc-open set is 𝜔 𝑠-coc-open set. 

Proof 

Let A is 𝜔 coc-open set and  𝑥 ∈ 𝐴 then there exists U 

coc-open set such that 𝑥 ∈ 𝑈  and U—A countable. Since 

every coc-open set is s-coc-open set by Remark (1.3) (i) 

then Uiss-coc-open then A is 𝜔 𝑠-coc-open set. 

 

Proposition (1.25) 

The intersection of  𝜔 s-coc-open set  𝜔 coc-open set is 𝜔 

s-coc-open 

Proof  

Le tA is 𝜔 s-coc-open set and B is  𝜔 coc-open set, then B 

𝜔 s-coc-open set by Proposition (1.24). Then A B is 𝜔 s-

coc-open set by Proposition (1.21). 

 

Proposition (1.26) 

Every s-open set is 𝜔 s-coc-open set   

 

Proof 

Let A is s-open set then A is s-coc-open set. Then A is 𝜔 

s-coc-open set. 

 

 
 

2. On s-coc-open and super s-coc-open 

function 
 

We introduce and study s-coc-open and s-coc-closed 

function also some properties about them 

 

Definition (2.1) [2] 

Let 𝑓: 𝑋 ⟶ 𝑌 be a function of space 𝑋 into space 𝑌 then: 
 

i-  𝑓is called open function if 𝑓(𝐴) is open set in 𝑌 

for every open set 𝐴 𝑖𝑛 𝑋. 

ii- 𝑓 is called closed function if 𝑓(𝐴) is closed set in 

𝑌 for every closed set 𝐴 𝑖𝑛 𝑋. 

 

Theorem (2.1) [4] 

Let 𝑓: 𝑋 ⟶ 𝑌 be a function of space 𝑋 into space 𝑌 then 

the following statements are equivalent. 

i- 𝑓 open function. 

ii- 𝑓(𝐴∘) ⊆  𝑓 𝐴  
∘
for every subset A of   X. 

iii-  𝑓−1 𝐴  
∘
⊆ 𝑓−1 𝐴∘ for every subset 𝐴 of  X. 

iv- 𝑓−1 𝐴  ⊆ 𝑓−1(𝐴)         for every subset  A of  X. 
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Definition (2.2) [7]  

Let 𝑓: 𝑋 ⟶ 𝑌 be a function of space 𝑋 into space 𝑌 then: 

i- 𝑓 is called coc-closed function if 𝑓(𝐴) is coc-

closed set in 𝑌 for every closed set 𝐴 𝑖𝑛 𝑋. 

ii- 𝑓 is called coc-open function if 𝑓(𝐴) is coc-open 

set in 𝑌 for every open set 𝐴 𝑖𝑛 𝑋. 

 

Definition (2.3) 

Let 𝑓: 𝑋 ⟶ 𝑌 be a function of space 𝑋 into space 𝑌 then: 

1)  𝑓 is called s-open function if 𝑓(𝐴) is s-open set 

in 𝑌 for every open set 𝐴 𝑖𝑛 𝑋 [1]. 

2)  𝑓 is called s-closed function if 𝑓(𝐴) is s-closed 

set in 𝑌 for every closed set 𝐴 𝑖𝑛 𝑋. 

 

Definition (2.4) 

Let 𝑓: 𝑋 ⟶ 𝑌 be a function of space 𝑋 into space 𝑌 then: 

1)  𝑓 is called s-coc-closed function if 𝑓(𝐴) is s-coc-

closed set in 𝑌 for every closed set 𝐴 𝑖𝑛 𝑋. 

2)  𝑓 is called s-coc-open function if 𝑓(𝐴) is s-coc-

open set in 𝑌 for every open set 𝐴 𝑖𝑛 𝑋. 
 

Proposition (2.1) 
1. Every s-closed function is s-coc-closed function 

2. Every s-open function is s-coc-open function. 

3. Every coc-open function is s-coc-open. 

Proof 

1- Let 𝑓: 𝑋 ⟶ 𝑌 s-closed function, let𝐵 closed set in 

𝑋.Then 𝑓(𝐵) is s-closed set in 𝑌 𝑡𝑕𝑒𝑛  𝑓 𝐵  
𝑐
s-open set 

then  𝑓 𝐵  
𝑐
 s-coc-open set.Then 𝑓(𝐵) s-coc-closed set in 

𝑌.Therefore 𝑓 s-coc-closed function.  

2-Let 𝑓:𝑋 ⟶ 𝑌 s-open function.Let 𝐴 open set in 𝑋 then 

𝑓(𝐴) is s-open set in 𝑌. Since every s-open set is   s-coc-

open then 𝑓(𝐴) is s-coc-open set.Hence 𝑓 s-coc-open 

function. 

 

3- Let 𝑓: 𝑋 ⟶ 𝑌coc-openfunction, let 𝐴 open set in 

𝑋  𝑡𝑕𝑒𝑛  𝑓(𝐴) is coc-open set in Y.𝑡𝑕𝑒𝑛  𝑓(𝐴)is   coc-open 

set in Y. Then 𝑓 is s-coc-open function .The inverse of 1. 

and 3.is not hold for examples 

 

Examples (2.1) 

1. Let   𝑋 =  1, 2, 3 , 𝜏 =

 ∅, 𝑋,  1, 2   𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝑜𝑛 𝑋 , 𝑌 =  𝑎, 𝑏 ,  

 𝜏 =   ∅, 𝑌,  𝑏    𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝑜𝑛 𝑌 , 𝑓 1 = 𝑓 2 =

𝑎   ,   𝑓 3 = 𝑏, since  1, 2  open set in 𝑋 and𝑓  1, 2  =

{𝑎} not open in𝑌, 𝑠𝑖𝑛𝑐𝑒 {𝑎}∘ = ∅  𝑡𝑕𝑒𝑛 {𝑎} ⊄ {𝑎}∘     . But 

𝑓  1, 2   s-coc-open set  Then𝑓s-coc-open but not s-open. 

3. Let   𝑋 =  1, 2, 3, …  , 𝜏 =   ∅, 𝑋,  2   and  𝑌 =

 𝑦1 , 𝑦2 , 𝑦3 , …  , 𝜏∗  =   ∅, 𝑌,  𝑦1  , let 𝑓:𝑋 ⟶ 𝑌 defined 

by   𝑓 1 = 𝑦1 ,  2 = 𝑦2 , 𝑓  1, 2 𝑐 =  𝑦1 , 𝑦2 
𝑐 .  Since 2  

open in X and 𝑓 2 =  𝑓 𝑦2   not coc-open in Y then 𝑓 

not coc-open function . But 𝜏𝑠𝑘  is discrete topology on X 

and 𝜏∗𝑠𝑘  is discrete topology on Y then 𝑓 s-coc-open 

function. 

 

Proposition (2.2) 

A function 𝑓: 𝑋 ⟶ 𝑌 s-coc-closed if and only if  

𝑓 𝐴 
𝑠−𝑐𝑜𝑐

⊆ 𝑓(𝐴 ) for all𝐴 ⊆ 𝑋. 

Proof 

Suppose 𝑓:𝑋 ⟶ 𝑌 s-coc-closed function, let 𝐴 ⊆ 𝑋 . 

Since 𝐴  closed set in 𝑋 then 𝑓(𝐴 ) s-coc-closed in 𝑌. Since 

𝐴 ⊆ 𝐴 then (𝐴) ⊆ 𝑓(𝐴 ). Hence 𝑓 𝐴 
𝑠−𝑐𝑜𝑐

⊆

𝑓(𝐴 )
𝑠−𝑐𝑜𝑐

.Since 𝑓(𝐴 ) ⊆ 𝑓(𝐴 )
𝑠−𝑐𝑜𝑐

.Then 𝑓 𝐴 
𝑠−𝑐𝑜𝑐

⊆
𝑓(𝐴 ). 

Conversely  

Let 𝐵 closed set in 𝑋then = 𝐵 . Then 𝑓 𝐵 
𝑠−𝑐𝑜𝑐

⊆ 𝑓 𝐵  =

𝑓(𝐵). Since 𝑓(𝐵) ⊆ 𝑓 𝐵 
𝑠−𝑐𝑜𝑐

.Then 𝑓 𝐵 =

𝑓 𝐵 
𝑠−𝑐𝑜𝑐

.Hence 𝑓: 𝑋 ⟶ 𝑌 s-coc-closed function. 

 

Proposition (2.3) 

A function 𝑓: 𝑋 ⟶ 𝑌 s-coc-open if and only if 𝑓(𝐴∘) ⊆

 𝑓 𝐴  
∘ 𝑠−𝑐𝑜𝑐

 for all 𝐴 ⊆ 𝑋. 

Proof 

Suppose 𝑓:𝑋 ⟶ 𝑌 s-coc-open function and A ⊆ 𝑋, since 

𝐴∘ open in 𝑋 .then 𝑓(𝐴∘) s-coc-open in 𝑌  Then 

 𝑓 𝐴∘  
∘𝑠−𝑐𝑜𝑐

⊆  𝑓 𝐴  
∘ 𝑠−𝑐𝑜𝑐

.Therefore 𝑓 𝐴∘ =

 𝑓 𝐴∘  
∘𝑠−𝑐𝑜𝑐

⊆  𝑓 𝐴  
∘ 𝑠−𝑐𝑜𝑐

.Then 𝑓(𝐴∘) ⊆

 𝑓 𝐴  
∘ 𝑠−𝑐𝑜𝑐

 for all 𝐴 ⊆ 𝑋. 

Conversely  

Let 𝐴 open in 𝑋. Then 𝐴 = 𝐴∘, Since𝑓(𝐴∘) ⊆

 𝑓 𝐴  
∘ 𝑠−𝑐𝑜𝑐

 .Then 𝑓(𝐴) ⊆  𝑓 𝐴  
∘ 𝑠−𝑐𝑜𝑐

.Then 𝑓 𝐴 =

 𝑓 𝐴  
∘ 𝑠−𝑐𝑜𝑐

.Therefore 𝑓: 𝑋 ⟶ 𝑌 s-coc-open function. 

 

Definition (2.5) 

Let 𝑓: 𝑋 ⟶ 𝑌 be a function of a space 𝑋 in to a space 

𝑌. 𝑓is called s-coc-continuous function if 𝑓−1 𝐴  is open 

set in   𝑋 for every  open set in 𝑌. 

 

Theorem (2.2) 

For bijective function𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜏 ) the following 

statements are equivalent. 

1) 𝑓−1is s-coc-continuous. 

2)  𝑓is s-coc-open. 

3)  𝑓is s-coc-closed. 

 

Proof  

1 ⟶ 2 

Let 𝐴 open set in 𝑋 and 𝑓−1: 𝑌 ⟶ 𝑋 s-coc-continuous, 

then  𝑓−1 −1(𝐴) s-coc-open in 𝑋, since 𝑓 bijective  then 

𝑓 𝐴 =  𝑓−1 −1(𝐴) .Then 𝑓: 𝑋 ⟶ 𝑌 s-coc-open. 

 

2 ⟶ 3 

Let 𝑓: 𝑋 ⟶ 𝑌 s-coc-open function and 𝐵 closed set in 𝑋 . 

Then 𝐵𝑐  open set in , hence 𝑓(𝐵𝑐) s-coc-open in 𝑌 .Since 

𝑓 𝐵𝑐 =  𝑓 𝐵  
𝑐
. Then  𝑓 𝐵  

𝑐
 s-coc-open.Then 𝑓 𝐵  s-

coc-closed.Therefore 𝑓 s-coc-closed function. 

3 ⟶ 1 

Let 𝑓 s-coc-closed function.To prove 𝑓−1: 𝑌 ⟶ 𝑋 s-coc-

continuous.Let 𝐹 closed set in 𝑋.Since 𝑓 s-coc-

closed.then𝑓 𝐹  s-coc-closed.Since 𝑓 bijective then 

𝑓 𝐹 = (𝑓−1)−1 𝐹 . Then 𝑓−1: 𝑌 ⟶ 𝑋 s-coc-continuous  

 

Not that: - 

The composition of two s-coc-open functions is not s-coc-

open function for example: 
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Example (2.2) 

Let 𝑓:ℛ ⟶ 𝒵𝑒  function defined by 

𝑓 𝑥 =  

0      𝑖𝑓 𝑥 = 0      

𝒵𝑒
+    𝑖𝑓 𝑥 ∈ ℛ+

𝒵𝑒
−    𝑖𝑓 𝑥 ∈ ℛ−

 and  𝑔: 𝒵𝑒 ⟶𝒵∘ defined 

 𝑏𝑦 𝑔 𝑥 =  
𝒵∘

+   𝑖𝑓 𝑥 = 0
𝒵∘

−  𝑖𝑓 𝑥 ≠ 0
    , 𝜏 =

 ∅, ℛ,  0   𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝑜𝑛 ℛ 𝑎𝑛𝑑  𝜏 =

 ∅, 𝒵𝑒 ,  −4, −2   𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝑜𝑛 𝑍𝑒  ,   

𝜏" =  ∅, 𝒵∘, 𝒵∘
−  𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝑜𝑛 𝒵∘. Then 𝑓 s-coc-open 

function and  𝑔 s-coc-open function.But  𝑔 ∘ 𝑓   0  =

𝑔 𝑓 0  = 𝒵∘
+  .Since 1 ∈ 𝒵∘

+ and the s-open set contain 

1 𝑖𝑠  𝒵∘and 𝐾 any compact set . But 1 ∈ 𝒵∘
+ − 𝐾 ⊈

𝒵∘
+.Then 𝒵∘

+ not s-coc-open set.Then   𝑔 ∘ 𝑓   0   is not 

s-coc-open set. Then   𝑔 ∘ 𝑓   is not s-coc-open function. 

 

Proposition (2.4) 

If  𝑓: 𝑋 ⟶ 𝑌 open function and 𝑔: 𝑌 ⟶ 𝑊 s-coc-open 

function then 𝑔 ∘ 𝑓 s-coc-open function. 

 

Proof  

Let 𝐴 open set in 𝑋 . Since 𝑓 open function. Then 𝑓(𝐴) 

open set in 𝑌 .Since  𝑔 open function. Then 

𝑔 𝑓 𝐴  open set in 𝑊 .Then  𝑔 ∘ 𝑓: 𝑋 ⟶ 𝑊  s-coc-open 

function. 

 

Definition (2.6) 

Let 𝑓: 𝑋 ⟶ 𝑌 be a function of space 𝑋 into space 𝑌then: 

i- 𝑓 is called s-co𝑐 -closed function if 𝑓(𝐴) is s-coc-

closed set in 𝑌 for all s-coc-closed 𝐴 in 𝑋. 

ii- 𝑓 is called s-co𝑐 -open function if 𝑓(𝐴) is s-coc-

open set in 𝑌 for all s-co𝑐-open 𝐴 in 𝑋. 

  

Definition (2.7)[7] 

Let 𝑓: 𝑋 ⟶ 𝑌 be a function of space 𝑋 into space 𝑌then: 

1. 𝑓 is called co𝑐 -closed function if 𝑓(𝐴) is coc-

closed set in 𝑌 for all coc-closed 𝐴 in 𝑋. 

2. 𝑓 is called co𝑐 -open function if 𝑓(𝐴) is coc-open 

set in 𝑌 for all co𝑐-open 𝐴 in 𝑋. 

 

Proposition (2.5) 

A function 𝑓: 𝑋 ⟶ 𝑌 s-co𝑐 -open if and only if   

𝑓 𝐴∘𝑠−𝑐𝑜𝑐  ⊆  𝑓 𝐴  
∘𝑠−𝑐𝑜𝑐

 for all 𝐴 ⊆ 𝑋. 

 

Proof  

Let 𝑓: 𝑋 ⟶ 𝑌 s-co𝑐 -open function, let 𝐴 ⊆ 𝑋.Since 

𝐴∘𝑠−𝑐𝑜𝑐  s-coc-open in 𝑋 .Then 𝑓 𝐴∘𝑠−𝑐𝑜𝑐   s-coc-open in Y. 

Then𝑓 𝐴∘𝑠−𝑐𝑜𝑐  =  𝑓 𝐴∘𝑠−𝑐𝑜𝑐   
∘𝑠−𝑐𝑜𝑐

.Since𝐴∘𝑠−𝑐𝑜𝑐 ⊆

𝐴then 

𝑓 𝐴∘𝑠−𝑐𝑜𝑐  ⊆ 𝑓 𝐴 Then𝑓 𝐴∘𝑠−𝑐𝑜𝑐  =

 𝑓 𝐴∘𝑠−𝑐𝑜𝑐   
∘𝑠−𝑐𝑜𝑐

⊆  𝑓 𝐴  
∘𝑠−𝑐𝑜𝑐

.Then𝑓 𝐴∘𝑠−𝑐𝑜𝑐  ⊆

 𝑓 𝐴  
∘𝑠−𝑐𝑜𝑐

 ∀ 𝐴 ⊆ 𝑋. 

Conversely 

Let 𝐴 s-coc-open in 𝑋 .Then 𝐴 = 𝐴∘𝑠−𝑐𝑜𝑐   . Since 

𝑓 𝐴∘𝑠−𝑐𝑜𝑐  ⊆  𝑓 𝐴  
∘𝑠−𝑐𝑜𝑐

.Then 𝑓(𝐴) ⊆  𝑓 𝐴  
∘𝑠−𝑐𝑜𝑐

  

.Thus 𝑓 𝐴 =  𝑓 𝐴  
∘𝑠−𝑐𝑜𝑐

.Then 𝑓: 𝑋 ⟶ 𝑌 s-co𝑐 -open 

function. 

 

 

 

Proposition (2.6) 

If 𝑓:𝑋 ⟶ 𝑌 s-co𝑐 -open then 𝑓 is s-coc-open  

Proof 

 

Let A open set in X. Then A s-coc-open. Since 𝑓 is s-co𝑐 -
open then then 𝑓(𝐴) is s-coc-open set in 𝑌 then 𝑓 is s-coc-

openfunction 

 

Not that  

I𝑓 𝑓 s-co𝑐 -open function then it need not to be co𝑐 -open 

for example  

 

Example (2.3) 

Let𝑓: 𝑋 ⟶ 𝑌, X {1, 2, 3, … and 𝜏 = {∅, 𝑋, {1}}, Y

{𝑦 1, 𝑦2 , 𝑦3 , … and𝜏 = {∅, 𝑌, {𝑦2,𝑦3}},  𝑓(𝑖)= 𝑦𝑖  when 

𝑖 = 1, 2, 3, … , 𝑠𝑖𝑛𝑐𝑒𝑓(1)= 𝑦1not coc´-open set in Y then 

𝑓is not coc´-open function. But 𝑓is s-coc´-open function 

 

Proposition (2.7) 

If  𝑓: 𝑋 ⟶ 𝑌 and 𝑔: 𝑌 ⟶ 𝑍  s-co𝑐 -open functions then 

𝑔 ∘ 𝑓 s-co𝑐 -open function. 

 

Proof  

Clear 

 

Proposition (2.8) 

A function 𝑓: 𝑋 ⟶ 𝑌is  s-co𝑐 -closed if and only if  

𝑓(𝐴)
𝑠−𝑐𝑜𝑐

⊆ 𝑓(𝐴
𝑠−𝑐𝑜𝑐

) for all 𝐴 ⊆ 𝑋. 

 

Proof 

Suppose 𝑓:𝑋 ⟶ 𝑌is  s-co𝑐 -closed function and 𝐴 ⊆ 𝑋 

.Since 𝐴
𝑠−𝑐𝑜𝑐

 s-coc-closed set in 𝑋.Then 𝑓(𝐴
𝑠−𝑐𝑜𝑐

) s-coc-

closed set in 𝑌  ……..( ) 

Since   𝐴 ⊆ 𝐴
𝑠−𝑐𝑜𝑐

 𝑡𝑕𝑒𝑛 𝑓(𝐴) ⊆ 𝑓(𝐴
𝑠−𝑐𝑜𝑐

).Hence 

𝑓(𝐴)
𝑠−𝑐𝑜𝑐

⊆ 𝑓(𝐴
𝑠−𝑐𝑜𝑐

)
𝑠−𝑐𝑜𝑐

.Since 𝑓  𝐴
𝑠−𝑐𝑜𝑐

 =

𝑓(𝐴
𝑠−𝑐𝑜𝑐

)
𝑠−𝑐𝑜𝑐

  by  (∗). Then  𝑓(𝐴)
𝑠−𝑐𝑜𝑐

⊆ 𝑓(𝐴
𝑠−𝑐𝑜𝑐

) 

Conversely: 

     Let 𝐹 s-coc-closed set in 𝑋 then 𝐹 = 𝐹
𝑠−𝑐𝑜𝑐

.Then 

𝐹
𝑠−𝑐𝑜𝑐

⊆ 𝑓  𝐹
𝑠−𝑐𝑜𝑐

 = 𝑓(𝐹).Since  𝑓(𝐹) ⊆ 𝐹
𝑠−𝑐𝑜𝑐

.Then 

 𝑓 𝐹 = 𝐹
𝑠−𝑐𝑜𝑐

. Then  𝑓is  s-co𝑐 -closed function. 

 

Definition (2.8) 

Let 𝑓: 𝑋 ⟶ 𝑌 be a function of a space 𝑋 in to a space 𝑌  

then 𝑓 is called s-coc-irresolute (𝑠– 𝑐𝑜𝑐 – 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ) 

function if 𝑓−1(𝐴) s-coc-open set in 𝑋 for every s-coc-

open set 𝑖𝑛𝑌. 

 

Theorem (2.3) 

For a bijective mapping 𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜏 ) then the 

following statements are equivalent  

1) 𝑓−1is s-co𝑐 -continuous  

2)  𝑓 is s-co𝑐 -open function 

3)  𝑓 is s-co𝑐 -closed function 

 

Proof  

1 ⟶ 2 

Let 𝐴 s-coc-open set in 𝑋 and 𝑓−1: 𝑌 ⟶ 𝑋 s-co𝑐 -
continuous then  (𝑓−1)−1(𝐴) is s-co𝑐 -open in 𝑌 .since 
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𝑓bijective, then 𝑓 𝐴 =  (𝑓−1)−1(𝐴)  .Then 𝑓 𝐴  s-co𝑐 -
open in 𝑌 .Thus 𝑓: 𝑋 ⟶ 𝑌  is s-co𝑐 -open in 𝑌 

2 ⟶ 3 

Let  𝑓: 𝑋 ⟶ 𝑌  is s-co𝑐 -open   and 𝐹 s-coc-closed set in 𝑋 

.Then 𝐹𝑐s-coc-open set in 𝑋  Since 𝑓 is s-co𝑐 -open 

function .Then 𝑓(𝐹𝑐) s-coc-open in 𝑌 , Since 𝑓(𝐹𝑐) =

 𝑓 𝐹  
𝑐
.Then  𝑓 𝐹  

𝑐
 s-coc-open .Then 𝑓 𝐹  s-coc-

closed  .Thus 𝑓 is s-co𝑐 -closed function. 

 3 ⟶ 1 

Let 𝑓: 𝑋 ⟶ 𝑌  is s-co𝑐 -closed function and 𝐵 s-coc-closed 

set in 𝑋Then 𝑓 𝐵  s-coc-closed set in 𝑌, since 𝑓 bijective, 

then 𝑓 𝐵 =  (𝑓−1)−1(𝐵)  Then  𝑓−1: 𝑌 ⟶ 𝑋 s-co𝑐 -
continuous. 

 

Definition (2.9) 

Let 𝑋 𝑎𝑛𝑑 𝑌 are spaces. Then a function 𝑓: 𝑋 ⟶ 𝑌 is 

called s-coc-homeomorphism if  

1. 𝑓 bijective  

2. 𝑓 s-coc-continuous  

3. 𝑓 s-coc-closed  (s-coc-open) 

 

It is clear that every homeomorphism is s-coc-

homeomorphism 

 

Definition (2.10) 

 

Let 𝑋 𝑎𝑛𝑑 𝑌 are spaces. Then a function 𝑓: 𝑋 ⟶ 𝑌 is 

called s-co𝑐 -homeomorphism if : 

1. 𝑓 bijective  

2. 𝑓 s-co𝑐 -continuous  

3. 𝑓 s-co𝑐 -closed  (s-coc-open) 

 

It is clear that every homeomorphism is s-coc-

homeomorphism 

 

Proposition (2.11) 

Let  𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜏 )  bijective function then the 

following statements are equivalent  

i- 𝑓 is s-co𝑐 -homeomorphism 

ii- 𝑓 s-co𝑐 -continuous and closed  

Proof 

𝑖 ⟶ 𝑖𝑖by definition of  s-co𝑐 -homeomorphism 

𝑖 ⟶ 𝑖𝑖 clear. 

 

Proposition (2.12) 

Let 𝑓: 𝑋 ⟶ 𝑌 is s-co𝑐 -homeomorphism then  𝑓 𝐵∘ ⊆

 𝑓 𝐵  
∘𝑠−𝑐𝑜𝑐

  ∀ 𝐵 ⊆ 𝑋 

Proof  

Since 𝑓 is s-coc-homeomorphism then 𝑓 is s-coc-

homeomorphism. Then 𝑓 is s-coc-open function  .Then 

𝑓 𝐵∘ ⊆  𝑓 𝐵  
∘𝑠−𝑐𝑜𝑐

 by proposition (2.3). 

 

Theorem (2.4) 

If  𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜏 ) s-coc-open function then for all 

𝑥 ∈ 𝑋 and all nbd 𝑈 𝑜𝑓 𝑥 there exists 𝑉 s-coc-open set in 

𝑌 containing 𝑓 𝑥  such that 𝑉 ⊆ 𝑓(𝑈) 

 

Proof  

Let 𝑈 be nbd of 𝑥 in 𝑋  then there exists an open set 𝐵  
such that 𝑥 ∈ 𝐵 ⊆ 𝑈  hence  𝑓(𝑥) ∈ 𝑓(𝐵) ⊆ 𝑓(𝑈) , Since 

𝑓(𝐵) s-coc-open  set in 𝑌 .Let  𝑉 = 𝑓(𝐵) then 𝑉 ⊆ 𝑓(𝑈) 

Theorem (2.5) 

If  𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜏 ) s-co𝑐 -open function then for all 

𝑥 ∈ 𝑋 and all  s-coc-nbd 𝐴 𝑜𝑓 𝑥 there exists 𝐵 s-coc-open 

set in 𝑌 containing 𝑓 𝑥  such that 𝐵 ⊆ 𝑓(𝐴). 

 

Proof  

Let  𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝐴 s-coc-nbd of 𝑥.Then there exists 𝐹 s-

coc-open set such that 𝑥 ∈ 𝐹 ⊆ 𝐴 . Then  𝑓(𝑥) ∈ 𝑓(𝐹) ⊆
𝑓(𝐴) , Since 𝑓 s-co𝑐 -open then 𝑓(𝐹) s-coc-open  set in 𝑌 , 

Let  𝐵 = 𝑓(𝐹) then 𝑓(𝑥) ⊆ 𝐵 ⊆ 𝑓(𝐴) 

 

Definition (2.11) 

A function 𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜏 ) is called  

i- super s-coc-open if 𝑓(𝑈) is open in 𝑌 for each 𝑈 

s-coc-open in 𝑋. 

ii- super s-coc-closed if 𝑓(𝑈) is closed in 𝑌 for each 

𝑈  s-coc-closed in 𝑋. 

 

Proposition (2.13) 

Every super s-coc-open function is s-coc-open  

 

Proof  

Let 𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜏 ) super s-coc-open  and𝐴 open set in 

𝑋.Then 𝐴 s-coc-open. Since 𝑓 super s-coc-open then 𝑓(𝐴) 

s-coc-open in 𝑌 then   s-coc-open function.But the 

converse is not true for the following example  

 

Example (2.4) 

Let 𝑋 =  1, 2, 3 , 𝜏 =  ∅, 𝑋 𝑎𝑛𝑑  𝑌 =  𝑎, 𝑏 , 𝜏 =

 ∅, 𝑌,  𝑎   , let 𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜏 ) defined by 𝑓 𝑋 =

 
  𝑎   𝑖𝑓 𝑥 ∈ {1, 2}

𝑏    𝑖𝑓 𝑥 ∈  3 
    , since 3  s-coc-open in 𝑋 and 

𝑓  3  = {𝑏} not open in Y. Then𝑓 is not super s-coc-open 

function But 𝑓 s-coc-open  

 

Proposition (2.14) 

1. Every super s-coc-open function is s-co𝑐 -open 

2. Every super s-coc-open function is s-open 

 

Proof  

1. Clear 

2. Let 𝐴 open in 𝑋. then 𝐴 s-coc-open. Since 𝑓 super s-coc-

open then 𝑓 (𝐴) is open. Then 𝑓 (𝐴) s-open 

 

But the converse is not true for the following examples  

 

Example (2.5) 

1. Let 𝑋 =  1, 2, 3 , 𝜏 =  ∅, 𝑋 𝑎𝑛𝑑  𝑌 =  𝑎, 𝑏 , 𝜏 =

 ∅, 𝑌,  𝑎    , 𝑓 𝑋 =  
  𝑎   𝑖𝑓 𝑥 ∈ {1, 2}

𝑏    𝑖𝑓 𝑥 ∈  3 
 . Then 𝑓 s-co𝑐 -

open but not super s-coc-open. 

2. Let  𝑋 =  1, 2, 3 , 𝜏 =  ∅, 𝑋 𝑎𝑛𝑑  𝑌 =  𝑎, 𝑏 , 𝜏 =

 ∅, 𝑌 , 𝑓 𝑋 =  
  𝑎   𝑖𝑓 𝑥 ∈ {1, 2}

𝑏    𝑖𝑓 𝑥 ∈  3 
  . Then 𝑓 s-open but not 

super s-coc-open. 

 

Proposition (2.15) 

If 𝑓 bijective then 𝑓  is super s-coc-open iff super s-coc-

closed  
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Proof  

Let 𝑓 super s-coc-open function that 𝑓: 𝑋 ⟶ 𝑌 and let 𝐴 s-

coc-closed set in 𝑋 then 𝐴𝑐  s-coc-open. Then 𝑓(𝐴𝑐) open 

in Y, Since𝑓 bijective then 𝑓(𝐴𝑐) =  𝑓 𝐴  
𝑐
 then 

 𝑓 𝐴  
𝑐
open in 𝑌.Then 𝑓 super s-coc-closed function  

Conversely: - by the same way  

 

Proposition (2.16) 

If 𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜏 ) super s-coc-open function and 

bijective then: 

1. 𝑓 𝐴∘𝑠−𝑐𝑜𝑐  =  𝑓 𝐴  
∘
  for all A s-coc-open set 

in X. 

2. 𝑓  𝐵
𝑠−𝑐𝑜𝑐

 = 𝑓 𝐵       for all B  s-coc-open 

set in Y. 

Proof 

1. Let 𝐴 s-coc-open set in 𝑋 .Then 𝐴 = 𝐴∘𝑠−𝑐𝑜𝑐 . Then 

𝑓 𝐴 = 𝑓 𝐴∘𝑠−𝑐𝑜𝑐  . Since 𝑓 super s-coc-open, 𝑓(𝐴) open 

set in 𝑌. Then 𝑓 𝐴 =  𝑓 𝐴  
∘
. Then 𝑓 𝐴∘𝑠−𝑐𝑜𝑐  =

 𝑓 𝐴  
∘
 

2. Let 𝐵 s-coc-closed set in 𝑋  then 𝐵 = 𝐵
𝑠−𝑐𝑜𝑐

. Then 

𝑓(𝐵) = 𝑓(𝐵
𝑠−𝑐𝑜𝑐

).Since 𝑓 super s-coc-open.Then 𝑓 super 

s-coc-closedfunction by proposition (2.13). Then  𝑓(𝐵) 

closed set in, then 𝑓 𝐵 =  𝑓 𝐵 .   Then 𝑓  𝐵
𝑠−𝑐𝑜𝑐

 =

𝑓 𝐵  . 
 

Proposition (2.17) 

If  𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜏 )  super s-coc-open function and 𝐵, 𝐶 

have disjoint s-coc-nbds of  𝑋 .Then 𝑓 (𝐵), 𝑓 (𝐶) are 

disjoint in 𝑌 and have disjoint nbds in 𝑌. 
 

Proof  

Let 𝐹, 𝐾 are two disjoint s-coc-nbds of 𝐵, 𝐶  then there 

exists two s-coc-open sets 𝑈, 𝑉such that 𝐵 ⊆ 𝑈 ⊆
𝐹 𝑎𝑛𝑑 𝐶 ⊆ 𝑉 ⊆ 𝐾, Since𝑓 super s-coc-open then 

𝑓(𝑈), 𝑓(𝑉) are open sets in 𝑌 , 𝑓(𝐵) ⊆ 𝑓(𝑈) ⊆
𝑓(𝐹) 𝑎𝑛𝑑 𝑓(𝐶) ⊆ 𝑓(𝑉) ⊆ 𝑓(𝐾). Then 𝑓(𝐹), 𝑓(𝐾) are 

disjoint nbds of 𝑓(𝐵), 𝑓(𝐶).Since 𝐹⋂𝐾 = ∅ then 

𝑓 𝐹⋂𝐾 = ∅ then 𝑓(𝐹)⋂𝑓(𝐾) = ∅then 𝑓 𝐵 ⋂𝑓 𝐶 ⊆
𝑓 𝑈 ⋂𝑓 𝑉 ⊆ 𝑓 𝐹 ⋂𝑓 𝐾 = ∅ .Therefore 𝑓(𝐵), 𝑓(𝐶) 

are disjoint in Y. 

 

Theorem (2.6) 

If  𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜏 )  super s-coc-open function then for 

each 𝑥 ∈ 𝑋 and each s-coc-nbd 𝑈 𝑜𝑓 𝑥there exists 

nbd 𝑉 𝑜𝑓 𝑓(𝑥) such that 𝑉 ⊆ 𝑓(𝑈). 

 

Proof   

Let 𝑥 ∈ 𝑋 and 𝑈 nbd of 𝑥then there exists s-coc-open set 𝐴 

such that 𝑥 ∈ 𝐴 ⊆ 𝑈then 𝑓(𝑥) ∈ 𝑓(𝐴) ⊆ 𝑓(𝑈) , Since 

𝑓 super s-coc-open and 𝐴 is s-coc-open set in 𝑋then 𝑓(𝐴) 

open set in 𝑌 , let 𝑉 = 𝑓(𝐴) thus 𝑓(𝑥) ∈ 𝑉 ⊆ 𝑓(𝑈) 

 

Proposition (2.18) 

1. If 𝑓 super s-coc-open function then 𝑓 coc-open 

2. If 𝑓 super s-coc-open function then 𝑓 coc´-
open 

 

 

 

Proof 

1.  Let 𝑓: 𝑋 ⟶ 𝑌 super s-coc-open function and A open 

set in X then 𝑓(𝐴) open set in Y  𝑡𝑕𝑒𝑛 𝑓(𝐴)  coc-open set 

in Y   then 𝑓 coc-open function 

2.  Let 𝑓: 𝑋 ⟶ 𝑌  super s-coc-open function and A coc-

open set in X then 𝑓(𝐴) open set in Y then 𝑓(𝐴) coc-open 

set in Y then 𝑓 coc´-open function 

 

Not that  

 

The convers is not hold for examples 

 

Example (2.6) 

1.   Let X= 𝑍, 𝜏 = {∅, 𝑍, 𝑍𝑒 } and Y= {𝑎, 𝑏 }, 𝜏∗ =
{∅, 𝑌, {𝑏}}   and 𝑓: 𝑍 ⟶ 𝑌 defined by 𝑓 𝑋 =

 
  𝑎   𝑖𝑓 𝑥 ∈ 𝑍𝑒
𝑏    𝑖𝑓 𝑥 ∈ 𝑍𝑜

    .  It is clear that 𝑓 coc-open function but 

not super s-coc-open. 

2. Let X {1, 2, 3}𝜏 = {∅, 𝑋, {𝑎 }}  and   Y= {𝑎, 𝑏, }, 

𝜏∗ = {∅, 𝑌 }  and 𝑓: 𝑍 ⟶ 𝑌 defined by 𝑓 1 = a , 𝑓 2 =
𝑓 3 =b.  It is clear that 𝑓 coc´-open function but not 

super s-coc-open 

 

Proposition (2.19) 

If  𝑓  super s-coc-open function and bijective then 𝑓−1 is s-

coc-continuous 

 

Proof    Clear 

 

Proposition (2.20) 

The composition of two super s-coc-open function is super 

s-coc-open  

 

Proof  

Let 𝑓: 𝑋 ⟶ 𝑌 𝑎𝑛𝑑 𝑔: 𝑌 ⟶ 𝑊super s-coc-open and 𝐴 s-

coc-open set in 𝑋.  Then 𝑓(𝐴) is open in 𝑌(since 𝑓 super s-

coc-open), Since every open is s-coc-open. Then 𝑔 𝑓 𝐴   

is open in W.Since 𝑔 ∘ 𝑓  𝐴 = 𝑔 𝑓 𝐴  hen 𝑔 𝑓 𝐴   

open in 𝑊 then 𝑔 ∘ 𝑓  is super s-coc-open function. 

Not that 

if𝑓 super s-coc-open and 𝑔 ∘ 𝑓is super s-coc-open  then 𝑔 

not need super s-coc-open function. 

 

Example (2.7) 

Let  

𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜏 )  𝑎𝑛𝑑  𝑔: (𝑌, 𝜏 ) ⟶ (𝑊, 𝜏∗)𝑎𝑛𝑑  𝑋 =

𝑌 = 𝑊 =  1, 2, 3 , 𝜏 =  ∅, 𝑋,  1   

𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝑜𝑛  𝑋 , 

𝜏 =  ∅, 𝑌,  1 ,  2 ,  1, 2   𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝑜𝑛  𝑌,  𝜏∗ =

 ∅,𝑊,  3  𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝑜𝑛  𝑊 such that 𝑓 1 = 1, 𝑓 2 =

𝑓 3 = 2  and 𝑔 1 = 𝑔 2 = 3, 𝑔 3 = 1  then 𝜏𝑠𝑘on 𝑋 

is discrete Topology  then 𝑓super s-coc-open and 𝑔 ∘ 𝑓 is 

super s-coc-open function. But  3  s-coc-open in 𝑌 

and 𝑔 {3} = {1}, {1} not open in .Then  𝑔 is not super s-

coc-open 

 

Not that 

If 𝑓 super s-coc-open and  g s-co𝑐 -open. then𝑔 ∘ 𝑓  is not 

super s-coc-open for the following example 
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Example (2.8) 

𝐿𝑒𝑡 𝑓:  𝑋, 𝜏 ⟶  𝑌, 𝜏    𝑎𝑛𝑑  𝑔:  𝑌, 𝜏  ⟶  𝑊, 𝜏∗ , let 

X=  𝑎1 , 𝑎2, 𝑎3  , 𝜏 𝑖𝑛𝑑𝑖𝑠𝑐𝑟𝑒𝑡 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝑜𝑛 𝑋, 𝑌 =
 1, 2, 3 , 𝜏   𝑑𝑖𝑠𝑐𝑟𝑒𝑡 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝑜𝑛 𝑌  𝑎𝑛𝑑  𝑊 =
 𝑏, 𝑐  , 𝜏∗ 𝑖𝑛𝑑𝑖𝑠𝑐𝑟𝑒𝑡 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 𝑜𝑛 𝑊 and 𝑓 defined by 

𝑓 𝑥 =  

1   𝑖𝑓 𝑥 =  𝑎1

2   𝑖𝑓 𝑥 =  𝑎2

3   𝑖𝑓 𝑥 =  𝑎3

  and 𝑔 defined by 𝑔 𝑥 =

 
𝑏  𝑖𝑓   𝑥 ∈ {1}

  𝑐  𝑖𝑓  𝑥 ∈ {2, 3}
 , then 𝑓 super s-coc-open and 𝑔 is s-co𝑐 -

open function. But {𝑎1} s-coc-open set in 𝑋  and  𝑔 ∘
𝑓{𝑎1}=𝑔𝑓{𝑎1}=𝑔{1}={𝑏} is not open in𝑊. Then 𝑔∘𝑓  is 

not super s-coc-open 

 

Proposition (2.21) 

Let 𝑓: 𝑋 ⟶ 𝑌 𝑎𝑛𝑑 𝑔: 𝑌 ⟶ 𝑊 

1. If 𝑓 super s-coc-open and 𝑔 s-coc-open then 𝑔 ∘ 𝑓 s-

co𝑐 -open. 

2. If 𝑓 s-coc´-continuous, bijective and 𝑔 ∘ 𝑓 super s-coc-

open then 𝑔 super s-coc-open. 

 

Proof  

1. Let𝐴 s-coc-open set in X. since 𝑓 super s-coc-open 

.Then 𝑓(𝐴) open in 𝑌, Since 𝑔 s-coc-open then 𝑔 𝑓 𝐴   s-

coc-open. Since  𝑔 ∘ 𝑓  𝐴 = 𝑔 𝑓 𝐴  then 𝑔 ∘ 𝑓 s-co𝑐 -
open. 

2.Let 𝐴 s-coc-open set in 𝑌 .Then 𝑓−1(𝐴)  s-coc-open in 𝑋 

(Since 𝑓 𝑠– 𝑐𝑜𝑐´– 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ), Since 𝑔 ∘ 𝑓 super s-coc-

open.Then (𝑔 ∘ 𝑓) 𝑓−1(𝐴)  open in 𝑊 Since 𝑓 

bijective.Then  𝑔 ∘ 𝑓  𝑓−1 𝐴  = 𝑔 𝐴 .Then 𝑔(𝐴) super 

s-coc-open. 

 

 
 

3. On s-coc-connected spaces   
 

We recall the concept of s-coc-connected space and give 

some important generalization on this concept and we 

prove some results on this concept.  

 

Definition (3.1) [5] 

A space 𝑋 is said to be connected space if 𝑋 can be 

expressed as the union of two disjoint-open and non-empty 

subsets of 𝑋 other wise, 𝑋 is connected space. 

 

Definition (3.2) [7] 

Let 𝑋 be a space two subsets 𝐴, 𝐵 of space 𝑋 are called 

coc-separated if and only if 𝐴
𝑠−𝑐𝑜𝑐

⋂𝐵 = 𝐴⋂𝐵
𝑠−𝑐𝑜𝑐

= ∅. 
Not that the family of all s-coc-open subsets of space 

(𝑋, 𝜏) is denoted by 𝜏𝑘  [10]. 

 

Definition (3.3) [7] 

Let 𝑋 be a space and ∅ ≠ 𝐴 ⊆ 𝑋.then 𝐴 is called coc-

connected set if and only if is not union of any two coc-

separated sets. 

Not that (𝑋, 𝜏) is coc-connected if and only if  (𝑋, 𝜏𝑘) is 

connected. 

 

Remark (3.1) [7] 

A set 𝐴 is called coc-clopen if and only if it is coc-open 

and coc-closed. 

 

Proposition (3.1) [7] 

Let 𝑋 be space then the following statements are 

equivalent. 

 

1. 𝑋is coc-connected space. 

2. The only coc-clopen set in 𝑋are ∅ 𝑎𝑛𝑑 𝑋. 

3. There exist no two disjoint coc-open sets 𝐴 𝑎𝑛𝑑 𝐵 such 

thatX= 𝐴⋃𝐵. 

 

Definition (3.4) 

Let 𝑋 be space.Two subsets 𝑈 and 𝑉 of space 𝑋 called s-

coc-separated if and only if  𝑈
𝑠−𝑐𝑜𝑐

⋂𝑉 = 𝑈⋂𝑉
𝑠−𝑐𝑜𝑐

= ∅. 

 

Definition (3.5) 

Let 𝑋 be a space and ∅ ≠ 𝐴 ⊆ 𝑋.Then 𝐴 is called s-coc-

connected set if and only if is not union of any two s-coc-

separated sets. 

Not that a space  (𝑋, 𝜏) is s-coc-connected if and only if 

(𝑋, 𝜏𝑠𝑘)connected.  

 

Remark (3.2) 

A set A is called s-coc-clopen if and only if it is s-coc-

open and s-coc-closed. 

 

Proposition (3.2)  

Let 𝑋 be space then the following statements are 

equivalent. 

i. 𝑋 is s-coc-connected space. 

ii. The only s-coc-clopen set in 𝑋 are ∅ 𝑎𝑛𝑑 𝑋. 
iii. There exist no two disjoint s-coc-open sets 𝐴 𝑎𝑛𝑑 𝐵 

such that = 𝐴⋃𝐵. 

 

Proof  

(𝑖) ⟶ (𝑖𝑖) 

Let 𝑋 be s-coc-connected space.Suppose that 𝐷 is s-coc-

clopen set such that 𝐷 ≠ ∅ 𝑎𝑛𝑑 𝐷 ≠ 𝑋 , let 𝐸 = 𝑋 − 𝐷 

since 𝐷 ≠ 𝑋 thenE≠ ∅. Since 𝐷 is s-coc-open set. Then 𝐸 

is s-coc-closed But  𝐷
𝑠−𝑐𝑜𝑐

⋂𝐸 = 𝐷⋂𝐸 = ∅ (since 𝐷 is s-

coc-clopen set and 𝐸 is s-coc-closed).Hence  𝐷
𝑠−𝑐𝑜𝑐

⋂𝐸 =

𝐷⋂𝐸
𝑠−𝑐𝑜𝑐

= ∅ then 𝐷 𝑎𝑛𝑑 𝐸 two s-coc-separated sets and 

𝑋 = 𝐷 ∪ 𝐸.Hence 𝑋 is not s-coc-connected space, which 

is contradiction. Then the only s-coc-clopen sets in 𝑋 are 

∅ 𝑎𝑛𝑑 𝑋. 

 𝑖𝑖 ⟶  𝑖𝑖𝑖  
Suppose the only s-coc-clopen set in the space are 

∅ 𝑎𝑛𝑑 𝑋, Let there exists two disjoint s-coc-open set 

𝐴 𝑎𝑛𝑑 𝐵 such that  𝑋 = 𝐴⋃𝐵. Since 𝐴 = 𝐵𝑐  then 𝐴 is s-

coc-clopen set.But 𝐴 ≠ ∅ and 𝐴 ≠ 𝑋, which is 
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contradiction. Hence there exist no two disjoint s-coc-open 

sets 𝐴 𝑎𝑛𝑑 𝐵 such that 𝑋 = 𝐴⋃𝐵. 

(𝑖𝑖𝑖) ⟶ (𝑖) 

Suppose that 𝑋 is no s-coc-connected space.Then there 

exist two s-coc-separated sets 𝐴,𝐵 such that 𝑋 = 𝐴⋃𝐵 

.Since  𝐴
𝑠−𝑐𝑜𝑐

⋂𝐵 = 𝐴⋂𝐵
𝑠−𝑐𝑜𝑐

= ∅ and 𝐴⋂𝐵 ⊆

𝐴
𝑠−𝑐𝑜𝑐

⋂𝐵.Thus 𝐴⋂𝐵 = ∅ since 𝐴
𝑠−𝑐𝑜𝑐

⊆ 𝐵𝑐 = 𝐴.Then 𝐴 

is s-coc-closed set . 

By the same way we can see that 𝐵 is s-coc-closed set 

since 𝐴𝑐 = 𝐵.Then 𝐴 𝑎𝑛𝑑 𝐵 are two disjoint s-coc-open 

sets such that 𝑋 = 𝐴⋃𝐵.This is contradiction. Hence 𝑋 is 

s-coc-connected space. 

 

Proposition (3.3) 

Every s-coc-connected space is connected space.  

 

Proof clrar 

But the convers is not true. 

 

Example (3.1) 

Let 𝑋 =  1, 2, 3 , 𝜏 =  ∅, 𝑋,  1 ,  2 ,  1, 2   .It is clear that 

𝑋 is connected space.But 𝑋 is not s-coc-connected space 

(Since  2 , {1, 3} are disjoint s-coc-open sets and 𝑋 =
{2}⋃{1, 3}) 

 

Proposition (3.4)  

Let 𝐴 be s-coc-connected set and 𝐷, 𝐸 s-coc-separated 

sets.If 𝐴 ⊆ 𝐷⋃𝐸 then either 𝐴 ⊆ 𝐷or ⊆ 𝐸. 

 

Proof  

Suppose 𝐴 be s-coc-connected set and  𝐷, 𝐸 are s-coc-

separated sets and 𝐴 ⊆ 𝐷⋃𝐸, let 𝐴 ⊈ 𝐷 𝑎𝑛𝑑 𝐴 ⊈ 𝐸. 

Suppose 𝐴1 = 𝐷⋂𝐴 ≠ ∅ 𝑎𝑛𝑑 𝐴2 = 𝐸⋂𝐴 ≠ ∅.Since 

𝐴 ⊆ 𝐷⋃𝐸 then  𝐷 ∪ 𝐸 ∩ 𝐴 = 𝐴. 𝑇𝑕𝑢𝑠   𝐷 ∩ 𝐴 ∪
𝐸∩𝐴=𝐴  𝑡𝑕𝑒𝑛 𝐴1∪ 𝐴2=𝐴.𝑆𝑖𝑛𝑐𝑒 𝐴1=𝐷⋂𝐴 then 𝐴1⊆𝐷  

𝑡𝑕𝑒𝑛   𝐴1

𝑠−𝑐𝑜𝑐
⊆ 𝐷

𝑠−𝑐𝑜𝑐
.Since 𝐷, 𝐸 are s-coc-separated 

sets then 𝐷
𝑠−𝑐𝑜𝑐

⋂𝐸 = ∅.Then 𝐴1

𝑠−𝑐𝑜𝑐
⋂𝐴2 = ∅. Since 

𝐴2 = 𝐸⋂𝐴 then 𝐴2 ⊆ 𝐸 thus 𝐴2

𝑠−𝑐𝑜𝑐
⊆ 𝐸

𝑠−𝑐𝑜𝑐
.Then 

𝐴1⋂𝐴2

𝑠−𝑐𝑜𝑐
= ∅and 𝐴 = 𝐴1⋃𝐴2.Then 𝐴 is a union of two 

s-coc-separated sets 𝐴1, 𝐴2. Therefore 𝐴 is not s-coc-

connected sets.This contradiction then either  𝐴 ⊆ 𝐷or 

⊆ 𝐸. 
 

Proposition (3.5) 

Let 𝑋 be a space such that any two elements 𝑥 𝑎𝑛𝑑 𝑦 𝑜𝑓 𝑋 

are contained in some s-coc-connected set of 𝑋. Then 𝑋 is 

s-coc-connected. 

 

Proof  

Suppose 𝑋 is not s-coc-connected.Then the union of two s-

coc-separated sets 𝐴, 𝐵 .Since 𝐴, 𝐵 not empty sets then 

there exists 𝑎, 𝑏 such that 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 , let 𝐹 be s-coc-

connected set of 𝑋 which contains 𝑎, 𝑏 . Therefore 

𝐹 ⊆ 𝐴 𝑜𝑟 𝐹 ⊆ 𝐵.Which is contradiction (Since 𝐴⋂𝐵 = ∅) 

.Therefore 𝑋 is s-coc-connected space 

 

Proposition (3.6) 

If 𝐷 is s-coc-connected set and 𝐷 ⊆ 𝐸 ⊆  𝐷
𝑠−𝑐𝑜𝑐

, then 𝐸 is  

s-coc-connected. 

 

Proof  

Suppose 𝐸 not s-coc-connected, then there exists two sets 

𝐴, 𝐵such that  𝐴
𝑠−𝑐𝑜𝑐

⋂𝐵 = 𝐴⋂𝐵
𝑠−𝑐𝑜𝑐

= ∅ 𝑎𝑛𝑑 𝐸 =
𝐴⋃𝐵. Since 𝐷 ⊆ 𝐸 = 𝐴⋃𝐵then either 𝐷 ⊆ 𝐴 𝑜𝑟 𝐷 ⊆ 𝐵by 

proposition (3.2) .If 𝐷 ⊆ 𝐴then  𝐷
𝑠−𝑐𝑜𝑐

⊆ 𝐴, Thus 

 𝐷
𝑠−𝑐𝑜𝑐

⋂𝐵 = ∅ , since 𝐵 ⊆ 𝐸 = 𝐴⋃𝐵 ⊆  𝐷
𝑠−𝑐𝑜𝑐

then 

 𝐷
𝑠−𝑐𝑜𝑐

⋂𝐵 = 𝐵. Therefore 𝐵 = ∅ this contradiction hence 

𝐸 is s-coc-connected. By the same way we can get a 

contradiction if 𝐷 ⊆ 𝐵  hence 𝐷 is s-coc-connected 

 

Proposition (3.7) 

If space 𝑋 contains a s-coc-connected set 𝐸 such that 

 𝐸
𝑠−𝑐𝑜𝑐

= 𝑋, then 𝑋 is s-coc-connected.  

 

Proof  

Suppose 𝐸 is s-coc-connected set in 𝑋 such that  𝐸
𝑠−𝑐𝑜𝑐

=

𝑋 . Since 𝐸 ⊆ 𝑋 =  𝐸
𝑠−𝑐𝑜𝑐

.Then byproposition (3. 5).we 

get 𝑋 is s-coc-connected. 

 

Proposition (3.8) 

If 𝐴 is s-coc-connected set then  𝐴
𝑠−𝑐𝑜𝑐

 is s-coc-connected. 

 

Proof  

Suppose 𝐴 is s-coc-connected and  𝐴
𝑠−𝑐𝑜𝑐

 is not s-coc-

connected .Then there exists two sets 𝐷, 𝐸 Such that 

 𝐴
𝑠−𝑐𝑜𝑐

= 𝐷⋃𝐸. Since 𝐴 ⊆  𝐴
𝑠−𝑐𝑜𝑐

, then 𝐴 ⊆ 𝐷⋃𝐸, since 

𝐴 is s-coc-connected then by proposition (3.4) either 

𝐴 ⊆ 𝐷 𝑜𝑟 𝐴 ⊆ 𝐸.If 𝐴 ⊆ 𝐷 then  𝐴
𝑠−𝑐𝑜𝑐

⊆  𝐷
𝑠−𝑐𝑜𝑐

 but 

 𝐷
𝑠−𝑐𝑜𝑐

⋂𝐸 = ∅ hence 𝐴
𝑠−𝑐𝑜𝑐

⋂𝐸 = 𝛷, since  𝐴
𝑠−𝑐𝑜𝑐

=
𝐷⋃𝐸 then 𝐸 = 𝛷 this contradiction.If 𝐴 ⊆ 𝐸 then 

 𝐴
𝑠−𝑐𝑜𝑐

⊆  𝐸
𝑠−𝑐𝑜𝑐

 but 𝐷⋂ 𝐸
𝑠−𝑐𝑜𝑐

= ∅hence  𝐴
𝑠−𝑐𝑜𝑐

⋂𝐷 =

∅. Since  𝐴
𝑠−𝑐𝑜𝑐

= 𝐷⋃𝐸 then 𝐷 = ∅ this contradiction. 

 

Remark (3.3) 

Let 𝑋 be a topological space and 𝐴 ⊆ 𝑋 

1) If 𝐴 is s-coc-connected set in 𝑋 then  𝐴need not to 

be s-coc-connected. 

2) If 𝐴 is connected set then  𝐴
𝑠−𝑐𝑜𝑐

 need not to be 

connected set. 

3) If 𝐴
𝑠−𝑐𝑜𝑐

 connected set then 𝐴 need not to be 

connected. 

 

Examples (3.2) 

1) Let 𝑋 =  1, 2, 3 , 𝜏 =  ∅, 𝑋 . Then  𝜏𝑠𝑘 =

 ∅, 𝑋,  1 ,  2 ,  3 ,  1, 2 ,  1, 3 ,  2, 3  .If 𝐴 = {1} then 𝐴 is 

s-coc-connected. But 𝐴 = 𝑋 =  1 ⋃ 2, 3 , since  1 , {2, 3} 

are two s-coc-separated sets then 𝐴 is not s-coc-connected. 

2)Let𝑋 = 𝑅 and 𝜏 =  ∅, 𝑅, 𝑍, 𝑍𝑒 , 𝑍∘ , 𝑖𝑓𝐴 =  1, 2 is not 

union of two separated open sets.Then 𝐴 𝑖𝑠 connected . 

But  𝐴
𝑠−𝑐𝑜𝑐

= 𝑍 = 𝑍𝑒⋃𝑍∘and 𝑍𝑒 , 𝑍∘ are separated open 

sets.  

3) Let 𝑋 = 𝑍  , 

𝜏 =

 ∅, 𝑅, 𝑍, 𝑍𝑒 ,  1 ,  3 ,  1, 3 , 𝑍𝑒⋃ 1 , 𝑍𝑒⋃ 3 , 𝑍𝑒⋃ 1, 3   . 

If 𝐴 =  1, 3 =  1 ⋃ 3   then 𝐴 is union of two disjoint 

open sets.Thus 𝐴disconnected. But  𝐴
𝑠−𝑐𝑜𝑐

= 𝑍∘ is not 
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union of two disjoint s-coc-open sets.Then  𝐴
𝑠−𝑐𝑜𝑐

 

connected set. 

 

Proposition (3.9)  

Every s-coc-connected space is coc-connected. 

 

Proof  

Let 𝑋 is s-coc-connected set and not coc-connected then 

there exists two sets 𝑈, 𝑉 such that 𝑋 = 𝑈⋃𝑉 . Since 𝑈, 𝑉 

coc-open sets then 𝑈, 𝑉 are s-coc-open sets.Then 𝑋 is 

union of two s-coc-separated sets.Thus 𝑋 is s-coc-

disconnected.This conduction. Therefore 𝑋 is coc-

connected.But the converse is not true for the following 

example. 

 

Example (3.3) 

Let  𝑋 =  1, 2, 3, …   , 𝜏 =  ∅, 𝑋,  1, 2   . It is clear that X 

is coc –connected but not s-coc-connected 

 

Proposition (3.10) 

The s-coc-continuous, onto image of s-coc-connected 

space is connected . 

 

Proof  

Let 𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜏 ) be s-coc-continuous, onto function 

and 𝑋 is s-coc-connected.To prove 𝑌 is connected. Let 

𝑌 not connected then 𝑌 = 𝐴 ∪ 𝐵 suchthat 𝐴 ≠ ∅  𝐵 ≠
∅ 𝑎𝑛𝑑 𝐴 ∩ 𝐵 = ∅ and 𝐴, 𝐵  are open sets, hence 𝑓−1 𝑌 =
𝑓−1(𝐴 ∪ 𝐵) since 𝑓 onto.Then 𝑋 = 𝑓−1(𝐴)  ∪
𝑓−1(𝐵).Since 𝐴, 𝐵 are open sets in 𝑋 and 𝑓 s-coc-

continuous.Then 𝑓−1 𝐴 , 𝑓−1(𝐵) are s-coc-open sets in 

𝑌.Since 𝐴 ∩ 𝐵 = ∅ thus 𝑓−1 𝐴 ∩ 𝑓−1 𝐵 = ∅ 𝑎𝑛𝑑 𝐴 ≠
∅, 𝐵 ≠ ∅.Hence 𝑋 s-coc-disconnected space this is 

contradiction. Hence 𝑌 is connected space. 

 

Remark (3.4) 

The s-coc-continuous  image of s-coc-connected space 

need not to be s-coc-connected 

 

Example (3.4) 

Let 𝑋 =  1, 2, 3, …  , 𝜏 = {∅, 𝑋} and𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜏 )s-

coc-continuous function and 𝑌 =  𝑎, 𝑏 , 𝜏 = {∅, 𝑌}  

f 𝑥 =  
𝑎  𝑖𝑓 𝑥 = 1
 𝑏  𝑖𝑓 𝑥 ≠ 1

 . Since  𝑎, 𝑏 =  𝑎 ∪  𝑏   𝑎𝑛𝑑  𝑎 ∩

 𝑏 = ∅.Since  𝑎 ,  𝑏  𝑎𝑟𝑒  s-coc-open sets.Then 𝑌 is not 

s-coc-connected , 𝑌 open set in 𝑌 and 𝑓−1 𝑌 = 𝑋 not 

union of two disjoint s-coc-open sets. Thus 𝑋 s-coc-

connected. 

 

Proposition (3.11) 

The s-co𝑐 -continuous image, onto of s-coc-connected 

space is  s-coc-connected. 

 

Proof 

Let 𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜏 ) s-co𝑐 -continuous, onto function and 

𝑋 s-coc-connected. To prove 𝑌  𝑖𝑠 s-coc-connected. 

Suppose 𝑌 is not s-coc-connected.Then 𝑌 = 𝐴 ∪ 𝐵 such 

that 𝐴, 𝐵 s-coc-open sets and, 𝐵 ≠ ∅, 𝐴 ∩ 𝐵 = ∅. 

Hence𝑓−1 𝑌 = 𝑓−1(𝐴⋃𝐵). Since 𝑓 onto then 𝑋 =
𝑓−1(𝐴) ⋃𝑓−1(𝐵).Since 𝐴, 𝐵 s-coc-open sets and 𝑓 s-co𝑐 -
continuous thus 𝑓−1 𝐴 , 𝑓−1(𝐵) s-coc-open sets in 𝑋  and 

𝑓−1 𝐴 ⋂𝑓−1 𝐵 = ∅.Then 𝑋 is not s-coc-connected. This 

contradiction.then 𝑌 is s-coc-connected. 

 

Proposition (3.12) 

If 𝑓: 𝑋 ⟶ 𝑌 s-coc´-open and 𝑌 s-coc-connected, then X  s-

coc-connected. 

 

Proof  

Let 𝑌 s-coc-connected and 𝑋 is not s-coc-connected. To 

get contradiction, since is not s-coc-connected then 

𝑋 = 𝑊1⋃𝑊2 such that 𝑊1,𝑊2 disjoint s-coc-open sets in 

𝑋. Since 𝑓 𝑖𝑠 s-coc´-open then 𝑓 𝑊1 , 𝑓 𝑊2 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡s-

coc-open sets in 𝑌 and 𝑓(𝑋) = 𝑓(𝑊1⋃𝑊2) =
𝑓 𝑊1  ⋃𝑓 𝑊2  then 𝑌 = 𝑓 𝑊1  ⋃𝑓 𝑊2 .Then 𝑌 is not s-

coc-connected.This contradiction. Then 𝑋 is s-coc-

connected. 

 

Remark (3.5) 

    If 𝑓: 𝑋 ⟶ 𝑌 s-coc´-homeomorphism then 𝑋 is s-coc-

connected if and only if 𝑌 is s-coc-connected  

 

Proposition (3.13) 

Let 𝑋 be space and 𝑌 =  0, 1  have the discrete topology 

𝑋 is s-coc-connected if and only if there is no s-coc-

continuous function from 𝑋 𝑡𝑜 𝑌. 

 

Proof  

Let 𝑓:  𝑋, 𝜏 ⟶  𝑌, 𝜏    s-coc-continuous onto 

function.Then there is exists 𝑥, 𝑦 ∈ 𝑋 such that 𝑥 ≠ 𝑦 and 

𝑓 𝑥 = 0𝑎𝑛𝑑 𝑓 𝑦 = 1  then 𝑓−1 0 = 𝑥 = 𝐴 and 

𝑓−1 1 = 𝑦 = 𝐵.Then 𝐴, 𝐵 s-coc-open sets and 𝑋 = 𝐴 ∪
𝐵   such that 𝐴 ∩ 𝐵 = ∅, 𝐴 ≠ ∅, 𝐵 ≠ ∅.Then 𝑋 is s-coc- 

disconnected 

Conversely: 

 Let there is no s-coc-continuous onto function, let 𝑋 is s-

coc-disconnected.Then 𝑋 = 𝐴 ∪ 𝐵 such that 𝐴 ≠ ∅, 𝐵 ≠
∅  and 𝐴, 𝐵  𝑎𝑟𝑒 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 s-coc-open sets. Define 

𝑔: (𝑋, 𝜏) ⟶ (𝑌, 𝜏 ) such that 𝑔 𝑥 =  
0   ∀ 𝑥 ∈ 𝐴
1   ∀ 𝑥 ∈ 𝐵

 , 

then𝑓−1 0 = 𝐴 , 𝑓−1 1 = 𝐵.Then 𝑓 s-coc-continuous, 

this contradiction. Thus 𝑋 is s-coc-connected. 

 

Proposition (3.14) 

If 𝑓 is s-coc-continuous onto and 𝑔 is continuous function 

and onto then 𝑔 ∘ 𝑓 image of s-coc-connected set is 

connected 

Proof  

 

Let  𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜏 ) and  𝑔: (𝑌, 𝜏 ) ⟶ (𝑊, 𝜏∗), let 𝐴 s-

coc-connected set in𝑋,  𝑔 ∘ 𝑓  𝐴 = 𝑔 𝑓 𝐴  .Since 𝑓 is s-

coc-continuous then 𝑓 𝐴 connected in Y by proposition 

(3.9). Since 𝑔 is continuous then 𝑔 𝑓 𝐴   connected set in 

W.Then  𝑔 ∘ 𝑓  𝐴  connected set. 

 

Proposition (3.15) 

If 𝑓 is s-co𝑐 -continuous onto and 𝑔 is s-coc-continuous 

onto function then 𝑔 ∘ 𝑓 image of s-coc-connected set is 

connected  

 

Proof  

Let 𝐴 s-coc-connected set in𝑋,  𝑔 ∘ 𝑓  𝐴 =

𝑔 𝑓 𝐴  .Since 𝑓 is s-co𝑐 -continuous then 𝑓 𝐴  is s-coc-
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connected.Then  𝑔 ∘ 𝑓  𝐴  connected set by proposition 

(3.10) and proposition (3.2). 

 

Proposition (3.16) 

If 𝑓: 𝑋 ⟶ 𝑌 super s-coc-open function and 𝑌 connected. 

Then 𝑋 s-coc-connected. 

 

Proof  

Let 𝑋 is not s-coc-connected. To get contradiction.Since X 

is not s-coc-connected then there exists 𝐴 𝑎𝑛𝑑 𝐵 disjoint s-

coc-open sets such that X= 𝐴⋃𝐵. Since 𝑓 super s-coc-

open then 𝑓 𝐴 , 𝑓 (𝐵) are open sets in Y. Since 𝐴⋂𝐵 =
∅then 𝑓 𝐴 ⋂𝑓 𝐵 = 𝑓 𝐴⋂𝐵 = ∅. Then 𝑓 𝐴 , 𝑓 (𝐵) 

disjoint  𝑓 𝐴 ⋃𝑓 𝐵 = 𝑓 𝐴⋃𝐵 = 𝑓 𝑋 = 𝑌 Then 𝑌 is 

not connected space.This contradiction then 𝑋 is s-coc-

connected space. 

 

Definition (3.8) [5] 

A space (𝑋, 𝜏) is said to be locally connected if for each 

point 𝑥 ∈ 𝑋 and each open set 𝑈  such that 𝑥 ∈ 𝑈 there is a 

connected open set 𝑉 such that 𝑥 ∈ 𝑉 ⊆ 𝑈. 

 

Definition (3.9) 

A space (𝑋, 𝜏) is said to be s-coc-locally connected if for 

each point 𝑥 ∈ 𝑋 and each s-coc-open set 𝑈 such that 

𝑥 ∈ 𝑈 there is  s-coc-connected open set 𝑉 such that 

𝑥 ∈ 𝑉 ⊆ 𝑈. 

 

Proposition (3.17) 

Every s-coc-locally connected space is locally connected 

space. 

 

Proof 

Let 𝑋 is s-coc-locally connected, let 𝑥 ∈ 𝑋 and 𝑈 open set 

in 𝑋 such that 𝑥 ∈ 𝑈.Then there is s-coc-connected  set 𝑉 

such that 𝑥 ∈ 𝑉 ⊆ 𝑈. Since every s-coc-connected is 

connected by proposition (3.2). Then 𝑉 is connected open 

set in 𝑋 such that ∈ 𝑉 ⊆ 𝑈, hence 𝑋 is locally connected 

space. But the converse is not true for the following 

example. 

 

Example (3.5) 

Let 𝑋 =  1, 2, 3, …   , 𝜏 =  ∅, 𝑋,  2, 3  Then 𝜏𝑠𝑘  𝑖𝑠 discrete 

Topology in X. Since 1 ∈ 𝑋 and {1, 2} s-coc-open set 
 1 ∈ {1, 2}, since there is no s-coc-connected open set 𝑉 

such that 1 ∈ 𝑉 ⊆ {1, 2} .Thus 𝑋 is not s-coc-locally 

connected. 

 

Not that: 

if𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜏∗) super s-coc-open function and 𝑌 s-

coc-locally connected but 𝑋 is not s-coc-locally connected 

for example. 

 

Example (3.6) 

Let 𝑋 =  𝑎, 𝑏, 𝑐, 𝑑 , 𝜏 = {∅, 𝑋} , 

𝑌 =  0, 1 , 𝜏∗ 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦 . Define𝑓 𝑥 =

 
0  𝑖𝑓  𝑥 ∈ {𝑎, 𝑏}

1  𝑖𝑓  𝑥 ∈ {𝑐, 𝑑}
 ,  

Since𝜏𝑠𝑘 in 𝑋 is discrete and 𝑓 𝐴  open in 𝑌 forall 𝐴 s-coc-

open in𝑋. Then 𝑓 super s-coc-open and 𝑌 s-coc-locally 

connected but 𝑎 ∈ 𝑋 and  𝑎, 𝑏  s-coc-open set such that 

𝑎 ∈  𝑎, 𝑏  and there exists no s-coc-connected open set 𝑉 

in 𝑋 such that𝑎 ∈ 𝑉 ⊆  {𝑎, 𝑏}. Then 𝑋 is not s-coc-locally 

connected. 

 

Definition (3.10) [7] 

A space (𝑋, 𝜏) is said to be coc-locally connected if for 

each point 𝑥 ∈ 𝑋 and each coc-open set 𝑈 such that 𝑥 ∈
𝑈 there is coc-connected open set 𝑉 such that 𝑥 ∈ 𝑉 ⊆ 𝑈. 

 

Proposition (3.18) 

Every s-coc-locally connected space is coc-locally 

connected space. 

 

Proof 

Let 𝑋 be s-coc-locally connected space and𝑥 ∈ 𝑋, 𝑈 open 

set in 𝑋  such that 𝑥 ∈ 𝑈.Since every coc-open set is s-coc-

open set. Then 𝑈 s-coc-open set. Since 𝑋 s-coc-connected 

then there is 𝑉 s-coc-connected open set such that 𝑥 ∈ 𝑉 ⊆
𝑈 Thus 𝑉 is coc-connectedopen by proposition (3.8).Then 

there is 𝑉 coc-connected open set such that x∈ 𝑉 ⊆ 𝑈. 

Then 𝑋 is coc-locally connected space. 

 

But the converse is not true for the following example 

 

Example (3.7) 

Let 𝑋 =  1, 2, 3, 4, …  , 𝜏 =  ∅, 𝑋,  1   . Since1 ∈ 𝑋, {1} 

coc-open set  𝑎𝑛𝑑 1 ∈ 𝑈 = {1}Since𝑉 = {1} coc-

connected open set and 1 ∈ 𝑉 ⊆ 𝑈. Since𝑥 = 2, 3, 4, … ∈
𝑋, 𝑋 coc-open set  𝑠𝑢𝑐𝑕𝑡𝑕𝑎𝑡 𝑥 ∈ 𝑋 = 𝑈 , since 𝑉 = 𝑋 

coc-connected open set and 𝑥 ∈ 𝑋 ⊆ 𝑋Thus𝑋 coc-locally 

connected.But 𝑋 is not s-coc-locally connected. Since s-

coc-open sets are discrete Topology. Since 5 ∈ 𝑋 and 

U={4, 5} s-coc-open set, 5 ∈ 𝑈 and there is no s-coc-

connected open set V such that 5 ∈ 𝑉 ⊆  4, 5 = 𝑈. 
  

Remark (3.6) 

 

1) If (𝑋, 𝜏) is s-coc-locally connected space, then  it 

need not to be s-coc-connected. 

2) If (𝑋, 𝜏) is s-coc-connected space, then  it need 

not to be  s-coc-locally connected. 

 

Examples (3.8) 

1) Let 𝑋 =  1, 2, 3, 4, …   𝑎𝑛𝑑 𝜏 𝑑𝑖𝑠𝑐𝑒𝑡𝑒 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦. 
Then s-coc-connected discrete topology Thus 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥 ∈
𝑋 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑈 s-coc-open set, 𝑥 ∈ 𝑈 𝑡𝑕𝑒𝑟𝑒 𝑖𝑠  𝑉 s-coc-

connected open set such that 𝑥 ∈ 𝑉 ⊆ 𝑈.Then 𝑋 s-coc-

locally connected. But 𝑋 =  1 ⋃ 1 𝑐  and  1 ⋂ 1 𝑐 = ∅ 

such that  1 ,  1 𝑐 ≠ ∅  𝑎𝑛𝑑  1 ,  1 𝑐  are s-coc-open sets. 

Thus 𝑋 not s-coc-connected. 

 

2) Let 

𝑋 =  1, 2, 3, 4, …  , 𝜏 =  𝛷, 𝑋,  1, 2 𝑐   𝑡𝑕𝑒𝑛  𝜏𝑠𝑘 = {𝐴 ⊆
 𝑋 ∋ 𝐴infinite}.Then 𝑋 is not union of two disjoints-coc-

open sets. Thus 𝑋 is s-coc-connected.But5 ∈ 𝑋, 𝑈 =
{1, 2, 5, 6, 7, … } s-coc-open set, 5 ∈ 𝑈 and there is no s-

coc-connected open set 𝑉 such that 5 ∈ 𝑋 ⊆ 𝑈.Thus 𝑋 is 

not s-coc-locally connected. 

 

Proposition (3.19) 

The s-coc-continuous and open onto image of s-coc-

locally connected space is locally connected. 
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Proof 

Let 𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜏 ) be s-coc-continuous, open onto 

function and (𝑋, 𝜏) is s-coc-locally connected. To prove 

(𝑌, 𝜏 ) is locally connected, let 𝑦 ∈ 𝑌 and 𝑈 open set in 

𝑌 such that ∈ 𝑈. Since 𝑓 s-coc-continuous then 𝑓−1 𝑈  is 

s-coc-open sets in 𝑌. Since 𝑋 is s-coc-locally connected 

then there is 𝑉 s-coc-connected open set such that 𝑥 ∈ 𝑉 ⊆
𝑓−1 𝑈 . Since 𝑓 open then 𝑓 (𝑉) open in 𝑌, since V is s-

coc-connected then 𝑓  𝑉  𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 by proposition (3.9). 

Thus  𝑥 = 𝑦 ∈ 𝑓 (𝑉)  ⊆ 𝑈. Then 𝑌 is locally connected.  

 

Remark (3.7) 

The s-coc-continuous image of s-coc-locally connected 

need not to be s-coc-locally connected. 

 

Example (3.9) 

Let 𝑋 =  1, 2, 3, …   , 𝜏 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦, 𝑌 =

 𝑎, 𝑏 , 𝜏′ =  ∅, 𝑌,  𝑎  . Define 

𝑓: (𝑋, 𝜏)  ⟶ (𝑌, 𝜏′)𝑓 𝑥 =  
𝑎   𝑖𝑓  𝑥 = 1
𝑏   𝑖𝑓  𝑥 ≠ 1

  , since open 

sets in 𝑌 are 𝑌, {𝑎} and 𝑓−1 𝑌 = 𝑋, 𝑓−1  𝑎  = {1} s-

coc-open in 𝑋.Thus 𝑓 s-coc-continuous and 𝑋 s-coc-

locallyconnected. But 𝑏 ∈ 𝑌 𝑎𝑛𝑑 {𝑏} s-coc-open set in 𝑌 

such that 𝑏 ∈  {𝑏} and there exists no s-coc-connected 

open set 𝑉 such that b∈ 𝑉 ⊆ {𝑏}. Thus 𝑌 is not s-coc-

locally connected. 

 

Proposition (3.20) 

The s-co𝑐 -continuous, open onto image of s-coc-locally 

connected space is s-coc-locally connected. 

 

Proof 

Let 𝑓: (𝑋, 𝜏)  ⟶  (𝑌, 𝜏 ) be s-co𝑐 -continuous, open onto 

function and (𝑋, 𝜏) is s-coc-locally connected. To prove 

(𝑌, 𝜏 ) is s-coc-locally connected. Let 𝑦 ∈ 𝑌 and 𝑈 s-coc-

open set in 𝑌 such that y ∈ 𝑈. Since 𝑓 onto and 𝑦 ∈ 𝑌 

there is 𝑥 ∈ 𝑋 such that𝑓 𝑥 = 𝑦. Since 𝑓 s-co𝑐 -
continuous then 𝑓−1 𝑈  s-coc-open sets in 𝑿. Since 𝑋 is s-

coc-locally connected then there is 𝑉 s-coc-connected 

open set in 𝑋 such that ∈ 𝑉 ⊆ 𝑓−1 𝑈 . Since 𝑓 open then 

𝑓 (𝑉) open in 𝑌 and connected by proposition (3.10). Then 

y= 𝑓 𝑥 ∈ 𝑓 (𝑉)  ⊆ 𝑈. Thus 𝑌 is s-coc-locally connected. 

 

Definition (3.11) [12] 

A space  𝑋, 𝜏  is said to be extremely disconnected if the 

closure of every open subset of the 𝑋 is open in X. 

 

Definition (3.12)  

A space  𝑋, 𝜏  is said to be s-coc-extremely disconnected 

if the closure of every open subset of the 𝑋 is s-coc-open 

in X . 

 

Remark (3.8) 

Every extremely disconnected space is s-coc-extremely. 

But the convers is not true. 

 

Example (3.10) 

Let 𝑋 =  1, 2, 3, 4, …  , 𝜏 =  ∅, 𝑋,  1 ,  2 ,  1, 2  .Then 𝜏𝑠𝑘  

is discrete topologyon X. Then every subset in 𝑋 is s-coc-

open and s-coc-closed set.Thus if 𝐴 open in 𝑋, then 𝐴  is s-

coc-open set. Thus 𝑋 is s-coc-extremely disconnected. But 

𝐴 = {1} open set and 𝐴 = {1, 3, 4, 5, … } not open. Then 𝑋 

is not extremely disconnected. 

 

Proposition (3.21) 

For a topological space  𝑋, 𝜏  if the closure of every s-coc-

open set is s-coc-open, then 𝑋 is s-coc-extremely 

disconnected. 

 

Proof  

Let 𝑈 is open set of 𝑋. Then 𝑈 is s-coc-open set. Since the 

closure of s-coc-open set is s-coc-open set. Thus 𝑋 is s-

coc-extremely disconnected. 

 

Proposition (3.22) 

If 𝑋 𝑎𝑛𝑑 𝑌 s-coc-extremely disconnected then 𝑋 × 𝑌 s-

coc-extremely disconnected. 

 

Proof  

Let 𝑊 = 𝐴 × 𝐵 open in 𝑋 × 𝑌. Then 𝐴, 𝐵 open in 

𝑋, 𝑌.Since 𝑋, 𝑌 s-coc-extremely then 𝐴,𝐵 s-coc-open in 

𝑋, 𝑌   𝑡𝑕𝑒𝑛 𝑊 = 𝐴 × 𝐵 = 𝐴 ×  𝐵 s-coc-open set by 

proposition (1.3).Then 𝐴 ×  𝐵 s-coc-open setin 𝑋 × 𝑌. 

Then 𝑋 × 𝑌 s-coc-extremely disconnected. 

 

Remark (3.9) 

If 𝑋 s-coc-extremely disconnected then 𝑋 need not to be  

s-coc-connected for example . 

 

Example (3.11) 

Let 𝑋 = 𝑅 and 𝑈 usual Topology on 𝑅.Since 𝑅 =
(−∞, 0)⋃[0,∞) and −∞, 0 ⋃ 0,∞ = ∅  and  
 −∞, 0 , [0,∞) s-coc-open sets .Thus (𝑅, 𝑈) s-coc-

disconnected.But for every (𝑎, 𝑏) open set in 𝑅.Thus 

 𝑎, 𝑏        = [𝑎, 𝑏] is s-coc-open set in R. Therefore 𝑋 is s-coc-

extremely.  

 

Proposition (3.23) 

If 𝑋 is s-coc-connected then 𝑋 is not  s-coc-extremely 

disconnected. 

 

Proof  

Let 𝑋 s-coc-connected and 𝑋 is s-coc-extremely 

disconnected. To get contradiction.Then for all 𝐴 open   

set we get 𝐴 s-coc-open. Since 𝐴 closed set then 𝐴 s-coc-

closed.Then 𝑋 is not s-coc-connected by proposition (3.2) 

(if 𝑋 is s-coc-connected then the only s-coc-clopen sets 

are∅, 𝑋). Therefore 𝑋 is not s-coc-extremely disconnected  

 

Not that 

If 𝑋 is s-coc-extremely disconnected then 𝑋 need not to be 

s-coc-locally connected for the following example. 

 

Example (3.12) 

Let 𝑋 =  1, 2, 3, …  , 𝜏 =  𝛷, 𝑋,  1, 2  , s𝑖𝑛𝑐𝑒  1, 2  open 

set in 𝑋 and  1, 2 = 𝑋 s-coc-open set. Then 𝑋 is s-coc-

extremely disconnected.But 1 ∈  1, 2  open and there is no 

𝑉 s-coc-connected open set such that 1 ∈ 𝑉 ⊆  1, 2 . Then 

𝑋 is not s-coc-locally connected. 
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Definition (3.13) 

Let 𝑋 be a space, 𝐴 ⊆ 𝑋 is called s-coc-dense set in 𝑋 if 

and only if 𝐴
𝑠−𝑐𝑜𝑐

= 𝑋  
 

Definition (3.14) [8] 

Aspace  𝑋, 𝜏  is said to be hyper connected if every non-

empty open subset of 𝑋 is dense. 

 

Definition (3.15) 

Aspace  𝑋, 𝜏  is said to be s-coc-hyper connected if every 

non-empty s-coc-open subset of 𝑋 is s-coc-dense. 

 

Proposition (3.24) 

Every s-coc-hyper connected space is hyper connected. 

 

Proof  

Let 𝑋 s-coc-hyper connected space. Then for all s-coc-

open set of 𝑋 is s-coc-dense in𝑋.Then 𝐴
𝑠−𝑐𝑜𝑐

= 𝑋 . To 

prove 𝐴 = 𝑋 since 𝐴 ⊆ 𝑋 … (1), let 𝑥 ∈ 𝑋 then 𝑥 ∈

𝐴
𝑠−𝑐𝑜𝑐

.Since 𝐴
𝑠−𝑐𝑜𝑐

⊆ 𝐴 then 𝑥 ∈ 𝐴 then 𝑋 ⊆ 𝐴 … (2) . 

Therefore 𝐴 = 𝑋 then 𝑋 is hyper connected space. 

But the convers  is not true. 

 

Example (3.13) 

Let𝑋 =  𝑎, 𝑏, 𝑐  𝑎𝑛𝑑 𝜏 = {∅, 𝑋} then 

𝜏𝑠𝑘 =  ∅, 𝑋,  𝑎 ,  𝑏 ,  𝑐 ,  𝑎, 𝑏 ,  𝑎, 𝑐 ,  𝑏, 𝑐  .Since𝐴 = 𝑋 

for all 𝐴 ⊆ 𝑋 .But 𝐴
𝑠−𝑐𝑜𝑐

= 𝐴 ≠ 𝑋 .Then 𝑋 is not s-coc-

hyper connected but hyper connected  

 

Proposition (3.25) 

Every s-coc-hyper connected space is s-coc-connected. 

 

Proof  

Let 𝑋 s-coc-hyper connected space and 𝑋 is not s-coc-

connected. Then there exists 𝐴 s-coc-clopen set such that 

𝐴 ≠ ∅ and 𝐴 ≠ 𝑋  hence 𝐴 = 𝐴
𝑠−𝑐𝑜𝑐

.This contradiction 

(since𝐴
𝑠−𝑐𝑜𝑐

= 𝑋 ).Then 𝑋 is s-coc-connected space. 

 

Proposition (3.26) 

Every s-coc-hyper connected is s-coc-extremely 

disconnected. 

 

Proof  

Let 𝑋 s-coc-hyper connected space. Then for all 𝐴 s-coc-

open is s-coc-dense then𝐴
𝑠−𝑐𝑜𝑐

= 𝑋.  Then 𝑋 ⊆ 𝐴. 

Since𝐴 ⊆ 𝑋 then𝐴 = 𝑋. Since 𝑋 s-coc-open set. Then for 

all 𝐴 open set we get the closure is s-coc-open set. Then 𝑋 

s-coc- extremely disconnected. 

But the converse is not true for example 

 

Example(3.14) 

𝐿𝑒𝑡 𝑋 =  1, 2, 3  𝑎𝑛𝑑 𝜏 =  ∅, 𝑋,  1    𝑡𝑕𝑒𝑛 𝜏𝑠𝑘 =

{∅, 𝑋,  1 , {2}{3}, {1, 2}, {2, 3}, {1, 3}} . If 𝐴 = {2} then 

𝐴
𝑠−𝑐𝑜𝑐

= {2, 3}  ≠ 𝑋. Then 𝐴 not s-coc-dense we get 𝑋 is 

not s-coc-hyper connected.But 𝐵 is s-coc-open for all 𝐵 

open set in 𝑋.Then 𝑋 s-coc- extremely disconnected 

 

Not that  

The s-coc-continuous image of the s-coc-hyper connected 

need not to be s-coc-hyper connected. 

Example (3.15) 

LetX = Z, τ = {∅, Z, Z∘} topology on Z and Y =  a, b  ,

τ∗ =  ∅, Y,  a   topology on Y, f: (X, τ) ⟶ (Y, τ∗) function 

defined by f x =  
 a  if  x ∈ Z∘
  b  if  x ∈ Ze

 .Then f  s-coc-continuous 

and 

τsk =  ∅, Z, Z∘, Z∘⋃any set, Z∘ − finite set  

 Z∘
s−coc

= Z  , Z∘⋃any set 
s−coc

=

Z, Z∘ − finite set
s−coc

= Z . 

Then Z s-coc-hyper connected space.But {a}
s−coc

= {a} ≠
Y. Then Y is not s-coc-hyper connected space. 
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