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Abstract: This paper deals with the combined harvesting of an inshore-offshore fishery with taxation as a control instrument. Here 

fishing is permitted in both the inshore and offshore areas though the inshore area is the breeding place for the species. But in order to 

control the overexploitation of the species the regulatory agencies impose a higher tax for fishing in the inshore area compared to the 

tax for fishing in the offshore area. The fish subpopulation in inshore area obeys the logistic law of growth [1]. Only the non-trivial 

steady state is determined. The local and global stability  of the non-trivial steady state are discussed. Taking the taxes as control 

variables, the optimal harvest policy is formulated and solved as a control problem. The results are illustrated with the help of a 

numerical example. 
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1. Introduction 

 
Before the twentieth century, nobody was involved in 

studying the problems related to the commercial marine 

fisheries. At that time there were no agencies or authorities to 

control exploitation of marine fisheries and as a result many 

marine fish species gradually declined due to 

overexploitation. For example, Antartic fin whales, Japanese 

sardines, California Sardines, North Sea herrings, etc., are 

very few in numbers in this century mainly due to 

overfishing. Scientists have been engaged in the study of 

such problems relating to exploitation of marine fisheries 

from the beginning of the twentieth century. Now-a-days 

many countries have their own agencies to monitor and 

regulate the overexploitation of the species. 

 

Problems of law enforcement are intricately associated with 

the management of renewable resources. Various aspects of 

law enforcement in regulating fisheries have been discussed 

by Anderson and Lee [2], Sutinen and Anderson [3] and 

others. Taxation, license fees, lease of property rights, 

seasonal harvesting etc. are usually considered as possible 

governing instruments in fishery regulation. Among these, 

taxation is superior than the other control policies because of 

its flexibility. As described by Clark ([4], Art.4.6, p.116), 

“Economists are particularly attracted to taxation, partly 

because of its flexibility and partly because many of the 

advantages of a competitive economic system can be better 

maintained under taxation than under other regulatory 

methods.” 

 

A single species fishery model using taxation as a control 

measure was first discussed by Clark [4]. Chaudhuri and 

Johnson [5] extended that model using a catch-rate function 

which was more realistic than that in [4]. Ganguly and 

Chaudhuri [6] made a capital theoretic study of a single 

species fishery with taxation as control policy. Pradhan and 

Chaudhuri [7] developed a mathematical model for growth 

and exploitation of a schooling fish species, using a realistic 

catch-rate function and imposing a tax per unit biomass of 

landed fish to control harvesting. Pradhan and Chaudhuri [8] 

also studied a fully dynamic reaction model of fishery 

consisting two competing fish species with taxation as a 

control instrument. Pradhan and Chaudhuri [9] proposed a 

model to study the selective harvesting in an inshore-offshore 

fishery on the basis of CPUE (catch per unit effort) 

hypothesis [4]. Srinivas et. al [10] developed a prey-predator 

model with stage structure in two patchy marine aquatic 

environment. They studied the dynamic of a fishery resource 

system with stage structure in an aquatic environment that 

consists of two zones – unreserved zone where fishing is 

permitted and the reserved zone where fishing is prohibited. 

 

This paper is an extension of the work of Ray and Pradhan 

[11]. They developed a dynamic reaction model of an 

inshore-offshore fishery with taxation as a control 

instrument. In their work, inshore area was considered as 

breeding place having a fixed carrying capacity where 

fishing was strictly prohibited. Fishing was permitted only in 

the offshore area after imposing a tax per unit harvested 

biomass by the regulatory agencies. But in reality it is very 

difficult to prevent the fishing in inshore area totally, 

because the low cost of fishing in inshore area attracted all 

the fishermen to fish in that area. Moreover, if the inshore 

fishing is totally stopped, then the revenue earned by the 

Government from fishery will decrease. Again, since inshore 

area is the breeding place of the species, so excess harvest 

from that area may cause overexploitation of the species. In 

such circumstances the regulatory agencies will have to 

impose a higher tax for fishing in inshore area than the tax 

for fishing in offshore area, in order to control 

overexploitation. 

 

In this paper inshore area is considered as the breeding place, 

but fishing in inshore area is allowed by the regulatory 

agencies only after imposing a higher tax per unit harvested 

biomass from inshore area compared to the tax per unit 

harvested biomass from offshore area. The inshore area has a 

fixed carrying capacity where the fish sub population obeys 

the logistic law of growth [1]. Only the existence of non-

trivial steady state is discussed. The local and global stability 

of the non-trivial steady state are also discussed. The optimal 

harvest policy is studied using Pontragin’s maximum 

principle [12]. A numerical example is given as an 

illustration. 
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2. The Mathematical Model 

 
Let at any time t, 𝑥𝑖(𝑡) (𝑖 = 1, 2) be the population density 

of a fish species in inshore area and offshore area 

respectively. Let the fish subpopulation of the inshore area 

migrate into offshore area at a rate 𝜎1 (0 < 𝜎1 < 1) and the 

fish subpopulation of the offshore area migrate into inshore 

area at a rate 𝜎2 (0 < 𝜎2 < 1). Also we assume that the fish 

subpopulation of the inshore area obeys the logistic law of 

growth [1]. Here we consider that fishing is allowed in both 

the areas after imposing different taxes for fishing in 

different areas by the regulatory agencies. Let 𝐸𝑖 𝑡  (𝑖 =
1, 2) be the efforts for harvesting in inshore and offshore 

areas respectively and the regulatory agencies impose the 

taxes 𝜏𝑖(> 0) (𝑖 = 1, 2) per unit biomass of the harvested 

fish from the inshore and offshore area respectively. 

 

Since the harvest cost in inshore area is lower than that of 

offshore area, so all the fishermen would like to harvest in 

inshore area. Moreover, the inshore area being the breeding 

area for the species, the regulatory agencies always want to 

restrict the harvesting in inshore area in order to control the 

over exploitation. So the regulatory agencies impose a higher 

tax for harvesting in inshore area than the tax for harvesting 

in offshore area. So throughout the paper it is consider that 

𝜏1 > 𝜏2. 

 

The net economic revenue to the fishermen (perceived rent) 

is  𝑞𝑖 𝑝 − 𝜏𝑖 𝑥𝑖 − 𝑐𝑖 𝐸𝑖  (𝑖 = 1, 2) for harvesting in inshore 

and offshore area respectively, where p is the market price 

per unit biomass of the harvested fish, 𝑞𝑖  (𝑖 = 1, 2) are the 

catchability coefficients of inshore and offshore 

subpopulation respectively, 𝑐𝑖  (𝑖 = 1, 2) are the cost per unit 

effort for harvesting in inshore and offshore area 

respectively (𝑐1 < 𝑐2) and 𝜏𝑖(> 0) (𝑖 = 1, 2) are the taxes 

per unit biomass of the harvested fish from inshore and 

offshore area respectively, imposed by the regulatory 

agencies. 

 

Here we consider 𝐸𝑖 𝑡  (𝑖 = 1, 2) as the dynamic (time 

dependent) variables governed by the differential 

equations  
𝑑𝐸𝑖

𝑑𝑡
= 𝜆𝑖 𝑞𝑖 𝑝 − 𝜏𝑖 𝑥𝑖 − 𝑐𝑖 𝐸𝑖 , 𝑖 = 1, 2, where 

𝜆𝑖(𝑖 = 1,2) are the stiffness parameters measuring the effort 

and the perceived rent for the inshore and offshore fishery 

respectively. 

 

Thus we have the following system of differential equations: 

 

 

   
𝑑𝑥1

𝑑𝑡
= 𝑟𝑥1  1 −

𝑥1

𝑘
 − 𝜎1𝑥1 + 𝜎2𝑥2 − 𝑞1𝐸1𝑥1

𝑑𝑥2

𝑑𝑡
= −𝑠𝑥2 + 𝜎1𝑥1 − 𝜎2𝑥2 − 𝑞2𝐸2𝑥2         

𝑑𝐸1

𝑑𝑡
= 𝜆1 𝑞1 𝑝 − 𝜏1 𝑥1 − 𝑐1 𝐸1                    

𝑑𝐸2

𝑑𝑡
= 𝜆2 𝑞2 𝑝 − 𝜏2 𝑥2 − 𝑐2 𝐸2                   

  
 

  
 

          (1)                                                         

where 𝑟, 𝑘,𝜎1 ,𝜎2, 𝑞1, 𝑠, 𝑞2 , 𝜏1, 𝜏2 , 𝜆1, 𝜆2,𝑐1, 𝑐2 are all positive 

constants. 

 

Here 𝑟 = intrinsic growth rate of the inshore subpopulation, 

      𝑘 = carrying capacity of the inshore area, 

     𝜎1 = diffusion coefficient of inshore subpopulation, 

     𝜎2 = diffusion coefficient of offshore subpopulation, 

     𝑞1 = catchability coefficient of inshore subpopulation, 

     𝑞2 = catchability coefficient of offshore subpopulation, 

      𝑠 = natural mortality rate of the offshore subpopulation, 

     𝜆1 = stiffness parameter for inshore fishery, 

     𝜆2 = stiffness parameter for offshore fishery, 

      𝜏1 = tax per unit biomass of harvested fish from inshore 

              area, 

     𝜏2 = tax per unit biomass of harvested fish from offshore 

              area, 

       𝑐1 = cost per unit effort of harvesting in inshore area, 

       𝑐2 = cost per unit effort of harvesting in offshore area. 

 

3. The Steady States 

 
Since the regulatory agencies are only interested in the 

nontrivial steady states, so we now find out only the 

nontrivial steady states. Here 𝑃 𝑥1
∗, 𝑥2

∗,𝐸1
∗,𝐸2

∗  is the only 

nontrivial steady state of the system of equations (1) where 

𝑥1
∗ =

𝑐1

𝑞1 𝑝−𝜏1 
,                                                                   (2) 

𝑥2
∗ =

𝑐2

𝑞2 𝑝−𝜏2 
,                                                                   (3) 

𝐸1
∗ =

1

𝑞1
 𝑟  1 −

𝑐1

𝑘𝑞1(𝑝−𝜏1)
 − 𝜎1 +

𝜎2𝑐2𝑞1 𝑝−𝜏1 

𝑐1𝑞2(𝑝−𝜏2)
                (4) 

and 𝐸2
∗ =

1

𝑞2
 
𝜎1𝑐1𝑞2 𝑝−𝜏2 

𝑐2𝑞1(𝑝−𝜏1)
−  𝑠 + 𝜎2   .                            (5)                                                                                      

Now, 𝜏1 > 𝜏2 implies 0 <
𝑝−𝜏1

𝑝−𝜏2
< 1,  

since  𝑝 > 𝑚𝑎𝑥   𝜏1 , 𝜏2 = 𝜏1 .                                  

 

We assume that 𝑟 > 𝜎1 i.e. the growth rate is greater than the 

diffusion rate of inshore species. Otherwise, the inshore 

subpopulation gradually declines, which is discussed by Ray 

and Pradhan [11]. One of the sufficient condition for 

existence of 𝐸1
∗(> 0) is  𝑟 − 𝜎1 >

𝑟𝑐1

𝑘𝑞1 𝑝−𝜏1 
 , by (4). 

i.e. 0 < 𝜏1 < 𝑝 −
𝑟𝑐1

𝑘𝑞1 𝑟−𝜎1 
                                               (6)                                                                                               

Again, 𝐸2
∗ > 0 iff  

𝑝−𝜏1

𝑝−𝜏2
<

𝜎1𝑐1𝑞2

𝑐2𝑞1 𝑠+𝜎2 
  by (5). 

 

Therefore, the necessary and sufficient condition for 

existence of 𝐸2
∗(> 0) is 

0 <
𝑝−𝜏1

𝑝−𝜏2
< 𝑚𝑖 𝑛  1,

𝜎1𝑐1𝑞2

𝑐2𝑞1 𝑠+𝜎2 
 .  

Let  𝑚 =  𝑚𝑖𝑛(1,
𝜎1𝑐1𝑞2

𝑐2𝑞1 𝑠+𝜎2 
)                                            (7)                                                                                                   

Therefore, 0 < 𝑚 ≤ 1. 
 

Here m is defined as the tax determination parameter for the 

regulatory agencies. 

If 𝑚 = 1, then 0 < 𝜏2 < 𝜏1 <  𝑝 −
𝑟𝑐1

𝑘𝑞1 𝑟−𝜎1 
                   (8)                                                                       

If 0 < 𝑚 < 1, then 
𝑝−𝜏1

𝑝−𝜏2
< 𝑚,  

i.e. 𝜏1 −𝑚𝜏2 >  1 −𝑚 𝑝  or,  
𝜏1

 1−𝑚 𝑝
+

𝜏2

 1−
1

𝑚
 𝑝

> 1      (9)                                                                

If 𝜏1 <  1 −𝑚 𝑝, then 𝜏2 < 0. 

i.e. if the regulatory agencies impose the tax 𝜏1 for inshore 

fishing below a certain level which is  1 −𝑚 𝑝, then the 

agencies have to pay the subsidy (negative tax) to the 

fishermen for offshore fishing in order to maintain the 

equilibrium level of the inshore and offshore species. But in 

the real situation no agencies want to pay the subsidy to the 

fishermen for fishing. So the agencies determine the tax 𝜏1 is 

such a way that 𝜏2 > 0. 

Therefore,  1 −𝑚 𝑝  is the minimum value of 𝜏1 for 𝜏2 > 0. 
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i.e.  1 −𝑚 𝑝 < 𝜏1 <  𝑝 −
𝑟𝑐1

𝑘𝑞1 𝑟−𝜎1 
                  (10) 

Again, if 0 < 𝑚 < 1, then  
𝑝−𝜏1

𝑝−𝜏2
< 𝑚 implies 

𝜏2 <
𝜏1

𝑚
+  1 −

1

𝑚
 𝑝 = 𝑛 (say)                                           

(11) 

But 𝜏2 < 𝜏1 implies  0 < 𝜏2 < 𝑚𝑖𝑛(𝜏1 ,𝑛)                      (12)                                                                          

Therefore, for existence of the interior equilibrium 

𝑃 𝑥1
∗, 𝑥2

∗,𝐸1
∗,𝐸2

∗  the regulatory agencies will have to 

determine the taxes 𝜏1and 𝜏2 as follows: 

 

If 𝑚 = 1, then the agencies will have to determine the taxes 

𝜏1and 𝜏2 satisfying the condition (8). But if 0 < 𝑚 < 1, then 

the agencies have to determine the tax 𝜏1 satisfying the 

condition (6) and after fixing the tax 𝜏1 then the agencies 

will have to determine the tax 𝜏2 satisfying the condition 

(12). 

 
 

Figure 1: Feasible region (R) of the taxes 𝜏1  𝑎𝑛𝑑  𝜏2 

 
Here 𝑅 = { 𝜏1, 𝜏2 : 𝜏1 > 0, 𝜏2 > 0,  together with the 

conditions (10), (11) and (12) } is the bounded feasible 

region of the taxes. 

 

4. Local Stability 
 
The variation matrix of the system of equations (1) is  

 𝑉 =  𝑀𝑖𝑗  4×4
 , where 

𝑀11 =
𝜕

𝜕𝑥1
 
𝑑𝑥1

𝑑𝑡
 = 𝑟 −

2𝑟𝑥1

𝑘
− 𝜎1 − 𝑞1𝐸1 , 

𝑀12 =
𝜕

𝜕𝑥2
 
𝑑𝑥1

𝑑𝑡
 = 𝜎2 ,  𝑀13 =

𝜕

𝜕𝐸1
 
𝑑𝑥1

𝑑𝑡
 = −𝑞1𝑥1 , 

𝑀14 =
𝜕

𝜕𝐸2
 
𝑑𝑥1

𝑑𝑡
 = 0,  

𝑀21 =
𝜕

𝜕𝑥1
 
𝑑𝑥2

𝑑𝑡
 = 𝜎1 , 𝑀22 =

𝜕

𝜕𝑥2
 
𝑑𝑥2

𝑑𝑡
 = −(𝑠 + 𝜎2 +

𝑞2𝐸2), 𝑀23 =
𝜕

𝜕𝐸1
 
𝑑𝑥2

𝑑𝑡
 = 0,  𝑀24 =

𝜕

𝜕𝐸2
 
𝑑𝑥2

𝑑𝑡
 = −𝑞2𝑥2 , 

𝑀31 =
𝜕

𝜕𝑥1
 
𝑑𝐸1

𝑑𝑡
 = 𝜆1𝑞1(𝑝 − 𝜏1)𝐸1 , 𝑀32 =

𝜕

𝜕𝑥2
 
𝑑𝐸1

𝑑𝑡
 = 0,  

𝑀33 =
𝜕

𝜕𝐸1
 
𝑑𝐸1

𝑑𝑡
 = 𝜆1 𝑞1 𝑝 − 𝜏1 𝑥1 − 𝑐1 , 

𝑀34 =
𝜕

𝜕𝐸2
 
𝑑𝐸1

𝑑𝑡
 = 0,     

𝑀41 =
𝜕

𝜕𝑥1
 
𝑑𝐸2

𝑑𝑡
 = 0, 𝑀42 =

𝜕

𝜕𝑥2
 
𝑑𝐸2

𝑑𝑡
 = 𝜆2𝑞2𝐸2(𝑝 − 𝜏2)  

𝑀43 =
𝜕

𝜕𝐸1
 
𝑑𝐸2

𝑑𝑡
 = 0 and 

𝑀44 =
𝜕

𝜕𝐸2
 
𝑑𝐸2

𝑑𝑡
 = 𝜆2 𝑞2 𝑝 − 𝜏2 𝑥2 − 𝑐2 . 

The variation matrix at the nontrivial steady state 

𝑃 𝑥1
∗, 𝑥2

∗,𝐸1
∗,𝐸2

∗  is  

𝑉 𝑥1
∗, 𝑥2

∗,𝐸1
∗,𝐸2

∗ =  

−𝐴 𝜎2

𝜎1 −𝐵
−𝑞1𝑥1

∗ 0
0 −𝑞2𝑥2

∗

𝐶    0
0    𝐷

0         0
0         0

    

Where 𝐴 = 𝑞1𝐸1
∗ + 𝜎1 +

2𝑟𝑥1
∗

𝑘
− 𝑟 =

𝑟𝑥1
∗

𝑘
+

𝜎2𝑥2
∗

𝑥1
∗ > 0, by (2) 

and (4), 𝐵 = 𝑠 + 𝜎2 + 𝑞2𝐸2
∗ =

𝜎1𝑥1
∗

𝑥2
∗ > 0 by (2) and (3),  

𝐶 = 𝜆1𝑞1 𝑝 − 𝜏1 𝐸1
∗ > 0 and 

𝐷 = 𝜆2𝑞2 𝑝 − 𝜏2 𝐸2
∗ > 0.  

The characteristic equation of the matrix 𝑉 𝑥1
∗, 𝑥2

∗,𝐸1
∗,𝐸2

∗  is 

det 𝑉 𝑥1
∗, 𝑥2

∗,𝐸1
∗,𝐸2

∗ − 𝜇𝐼4 = 0 which implies  

𝜇4 +  𝐴 + 𝐵 𝜇3 +  𝐷𝑞2𝑥2
∗ + 𝐶𝑞1𝑥1

∗ + 𝐴𝐵 − 𝜎1𝜎2 𝜇
2 +

 𝐵𝐶𝑞1𝑥1
∗ + 𝐴𝐷𝑞2𝑥2

∗ 𝜇 + 𝐶𝐷𝑞1𝑞2𝑥1
∗𝑥2

∗ = 0.    
or, 𝜇4 + 𝑎3𝜇

3 + 𝑎2𝜇
2 + 𝑎1𝜇 + 𝑎0 = 0  

where 𝑎3 = 𝐴 + 𝐵 > 0, since 𝐴 > 0,𝐵 > 0, 
𝑎2 =  𝐷𝑞2𝑥2

∗ + 𝐶𝑞1𝑥1
∗ + 𝐴𝐵 − 𝜎1𝜎2  

     =  𝐷𝑞2𝑥2
∗ + 𝐶𝑞1𝑥1

∗ +  
𝑟𝑥1

∗

𝑘
+

𝜎2𝑥2
∗

𝑥1
∗  

𝜎1𝑥1
∗

𝑥2
∗ − 𝜎1𝜎2 

     = 𝐷𝑞2𝑥2
∗ + 𝐶𝑞1𝑥1

∗ +
𝑟𝜎1 𝑥1

∗ 2

𝑘𝑥2
∗ > 0, 

𝑎1 =  𝐵𝐶𝑞1𝑥1
∗ + 𝐴𝐷𝑞2𝑥2

∗ > 0 and 𝑎0 =  𝐶𝐷𝑞1𝑞2𝑥1
∗𝑥2

∗ > 0. 

Now, 𝑎3𝑎2 − 𝑎1 =  𝐴 + 𝐵  𝐷𝑞2𝑥2
∗ + 𝐶𝑞1𝑥1

∗ +
𝑟𝜎1 𝑥1

∗ 2

𝑘𝑥2
∗   

  −  𝐵𝐶𝑞1𝑥1
∗ + 𝐴𝐷𝑞2𝑥2

∗  

                           =  𝐴 + 𝐵 
𝑟𝜎1 𝑥1

∗ 2

𝑘𝑥2
∗ +  𝐴𝐶𝑞1𝑥1

∗ + 𝐵𝐷𝑞2𝑥2
∗ >

0 

and 𝑎3𝑎2𝑎1 − 𝑎1
2 − 𝑎3

2𝑎0 

      =  𝐴 + 𝐵 ( 𝐷𝑞2𝑥2
∗ + 𝐶𝑞1𝑥1

∗ + 𝑅)(𝐵𝐶𝑞1𝑥1
∗ + 𝐴𝐷𝑞2𝑥2

∗)   

   − 𝐵𝐶𝑞1𝑥1
∗ + 𝐴𝐷𝑞2𝑥2

∗ 2 −  𝐴 + 𝐵 2𝐶𝐷𝑞1𝑞2𝑥1
∗𝑥2

∗  

                where 𝑅 =
𝑟𝜎1 𝑥1

∗ 2

𝑘𝑥2
∗ > 0 

     = 𝐴𝐵𝐶2𝑞1
2 𝑥1

∗ 2 + 𝐴𝑅𝐵𝐶𝑞1𝑥1
∗ + 𝐴2𝐷𝑅𝑞2𝑥2

∗ +
         𝑅𝐵2𝐶𝑞1𝑥1

∗ + 𝐴𝐵𝐷2𝑞2
2 𝑥2

∗ 2 + 𝐴𝐵𝐷𝑅𝑞2𝑥2
∗ −

           2𝐴𝐵𝐶𝐷𝑞1𝑞2𝑥1
∗𝑥2

∗  

     = 𝐴𝐵 𝐶𝑞1𝑥1
∗ − 𝐷𝑞2𝑥2

∗ 2 + 𝑅𝐵𝐶 𝐴 + 𝐵 𝑞1𝑥1
∗ +

           𝐴𝐷𝑅 𝐴 + 𝐵 𝑞2𝑥2
∗ > 0, since all the parameters are 

real and positive. 

Therefore, the characteristic equation of the variational 

matrix 𝑉 𝑥1
∗, 𝑥2

∗,𝐸1
∗,𝐸2

∗  is 𝜇4 + 𝑎3𝜇
3 + 𝑎2𝜇

2 + 𝑎1𝜇 + 𝑎0 =
0 such that    𝑎𝑛 > 0    ∀ 𝑛 =  0,1,2,3, 𝑎3𝑎2 − 𝑎1 > 0  and  

𝑎3𝑎2𝑎1 − 𝑎1
2 − 𝑎3

2𝑎0 > 0.  
Therefore, by Routh-Hurwitz criterion [13], the nontrivial 

steady state 𝑃 𝑥1
∗, 𝑥2

∗,𝐸1
∗,𝐸2

∗  is locally asymptotically stable. 

So, whenever the nontrivial steady state exists for the 

exploited system (1), it is always locally asymptotically 

stable steady state. 

 

5. Global stability 
 
Now, we prove whether the nontrivial steady state 

𝑃 𝑥1
∗, 𝑥2

∗,𝐸1
∗,𝐸2

∗  is globally asymptotically stable or not. For 

this let us consider the following Lypunov function [14]: 

𝐿 𝑥1 ,𝑥2 ,𝐸1 ,𝐸2 =  𝑥1 − 𝑥1
∗ − 𝑥1

∗𝑙𝑛  
𝑥1

𝑥1
∗    
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   +𝐿1  𝑥2 − 𝑥2
∗ − 𝑥2

∗𝑙𝑛  
𝑥2

𝑥2
∗  + 𝐿2  𝐸1 − 𝐸1

∗ − 𝐸1
∗𝑙𝑛  

𝐸1

𝐸1
∗   

     +𝐿3  𝐸2 − 𝐸2
∗ − 𝐸2

∗𝑙𝑛  
𝐸2

𝐸2
∗   , 

where 𝐿1 , 𝐿2 , 𝐿3 are positive constants to be determined. 

Therefore,  

 
𝑑𝐿

𝑑𝑡
=

𝑥1−𝑥1
∗

𝑥1

𝑑𝑥1

𝑑𝑡
+ 𝐿1

𝑥2−𝑥2
∗

𝑥2

𝑑𝑥2

𝑑𝑡
+ 𝐿2

𝐸1−𝐸1
∗

𝐸1

𝑑𝐸1

𝑑𝑡
 +𝐿3

𝐸2−𝐸2
∗

𝐸2

𝑑𝑥1

𝑑𝑡
 

     =  𝑥1 − 𝑥1
∗  𝑟 −

𝑟𝑥1

𝑘
− 𝜎1 +

𝜎2𝑥2

𝑥1
− 𝑞1𝐸1  

       +𝐿1 𝑥2 − 𝑥2
∗  −𝑠 +

𝜎1𝑥1

𝑥2
− 𝜎2 − 𝑞2𝐸2   

       + 𝐿2 𝐸1 − 𝐸1
∗ 𝜆1 𝑞1 𝑝 − 𝜏1 𝑥1 − 𝑐1  

        +𝐿3 𝐸2 − 𝐸2
∗ 𝜆2 𝑞2 𝑝 − 𝜏2 𝑥2 − 𝑐2  by (1) 

      =  𝑥1 − 𝑥1
∗  −

𝑟

𝑘
 𝑥1 − 𝑥1

∗ + 𝜎2  
𝑥2

𝑥1
−

𝑥2
∗

𝑥1
∗ −

𝑞1𝐸1−𝐸1∗ 

          +𝐿1 𝑥2 − 𝑥2
∗  𝜎1  

𝑥1

𝑥2
−

𝑥1
∗

𝑥2
∗ − 𝑞2 𝐸2 − 𝐸2

∗    

          +𝐿2 𝐸1 − 𝐸1
∗ 𝜆1𝑞1 𝑝 − 𝜏1  𝑥1 − 𝑥1

∗   
          +𝐿3 𝐸2 − 𝐸2

∗ 𝜆2𝑞2 𝑝 − 𝜏2  𝑥2 − 𝑥2
∗   

     = −
𝑟

𝑘
 𝑥1 − 𝑥1

∗ 2 +
𝜎2

𝑥1𝑥1
∗  𝑥1 − 𝑥1

∗  𝑥2𝑥1
∗ − 𝑥1𝑥2

∗  

        −𝑞1 𝑥1 − 𝑥1
∗  𝐸1 − 𝐸1

∗  +
𝐿1𝜎1

𝑥2𝑥2
∗  𝑥2 − 𝑥2

∗  𝑥1𝑥2
∗ − 𝑥2𝑥1

∗  

        −𝐿1𝑞2 𝑥2 − 𝑥2
∗  𝐸2 − 𝐸2

∗  
         +𝐿2𝜆1𝑞1 𝑝 − 𝜏1  𝑥1 − 𝑥1

∗  𝐸1 − 𝐸1
∗   

          +𝐿3𝜆2𝑞2 𝑝 − 𝜏2  𝑥2 − 𝑥2
∗  𝐸2 − 𝐸2

∗ . 

Let 𝐿1 =
𝜎2𝑥2

∗

𝜎1𝑥1
∗ > 0, 𝐿2 =

1

𝜆1 𝑝−𝜏1 
> 0 and 

 𝐿3 =
𝜎2𝑥2

∗

(𝑝−𝜏2)𝜆2𝜎1𝑥1
∗ > 0. 

Therefore,  
𝑑𝐿

𝑑𝑡
= −

𝑟

𝑘
 𝑥1 − 𝑥1

∗ 2 +
𝜎2

𝑥1𝑥1
∗  𝑥1 − 𝑥1

∗  𝑥2𝑥1
∗ − 𝑥1𝑥2

∗ 

+
𝜎2

𝑥2𝑥1
∗  𝑥2 − 𝑥2

∗  𝑥1𝑥2
∗ − 𝑥2𝑥1

∗  

          = −
𝑟

𝑘
 𝑥1 − 𝑥1

∗ 2 +
𝜎2

𝑥1
∗   𝑥2𝑥1

∗ − 𝑥1𝑥2
∗  

𝑥1−𝑥1
∗

𝑥1
−

𝑥2−𝑥2∗𝑥2 

          = −
𝑟

𝑘
 𝑥1 − 𝑥1

∗ 2 −
𝜎2

𝑥1𝑥2𝑥1
∗  𝑥2𝑥1

∗ − 𝑥1𝑥2
∗ 2 < 0. 

Therefore, 
𝑑𝐿

𝑑𝑡
< 0 ∀ 𝑥1 , 𝑥2 ,𝐸1 ,𝐸2 ∈ 𝐸4 where  

𝐸4 = 𝑅4
+\  𝑥1

∗, 𝑥2
∗,𝐸1

∗,𝐸2
∗   and 

𝑑𝐿

𝑑𝑡
= 0 at 𝑃 𝑥1

∗, 𝑥2
∗,𝐸1

∗,𝐸2
∗ . 

This shows that 
𝑑𝐿

𝑑𝑡
 is negative definite in the region 𝐸4 and 

hence the nontrivial steady state 𝑃 𝑥1
∗, 𝑥2

∗,𝐸1
∗,𝐸2

∗  is globally 

asymptotically stable in the Lyapunov sense [14]. 

 

6. Optimal Harvest Policy 
 
In this section an optimal harvesting policy is determined to 

maximize the total discounted net revenue from the 

harvesting biomass using taxes as a control parameters. 

The objective of the regulatory agencies is to maximize 

𝐽 =  𝜋 𝑥1 , 𝑥2 ,𝐸1 ,𝐸2 , 𝑡 𝑒−𝛿𝑡
∞

0
𝑑𝑡 where 𝛿 denotes the 

instantaneous annual rate of discount and 𝜋 𝑥1, 𝑥2 ,𝐸1 ,𝐸2 , 𝑡  
is the net revenue i.e. 𝜋 𝑥1 , 𝑥2,𝐸1 ,𝐸2 , 𝑡 = net revenue of the 

fishermen + net revenue of the regulatory agencies 

     =  𝑝 − 𝜏1 𝑞1𝐸1𝑥1 − 𝑐1𝐸1 +  𝑝 − 𝜏2 𝑞2𝐸2𝑥2 − 𝑐2𝐸2 

         +𝜏1𝑞1𝐸1𝑥1 + 𝜏2𝑞2𝐸2𝑥2  

     =  𝑝𝑞1𝑥1 − 𝑐1 𝐸1 +  𝑝𝑞2𝑥2 − 𝑐2 𝐸2. 

Here the objective of the regulatory agencies is to determine 

the optimal values of the taxes 𝜏1 and 𝜏2 in order to 

maximize 𝐽 subject to the state equations  

  
𝑑𝑥1

𝑑𝑡
=

𝑑𝑥2

𝑑𝑡
=

𝑑𝐸1

𝑑𝑡
=

𝑑𝐸2

𝑑𝑡
= 0                                    (13)                                                                                             

and the constrains are  𝜏1(𝑚𝑖𝑛 ) < 𝜏1 < 𝜏1(𝑚𝑎𝑥 ) and 

  𝜏2(𝑚𝑖𝑛 ) < 𝜏2 < 𝜏2(𝑚𝑎𝑥 ). 

Negative taxes mean that the subsidy is given by the 

regulatory agencies to the loser fishermen. But in reality, it is 

assume that the agencies are not in position to give such 

subsidy. So we assume that 0< 𝜏1 < 𝜏1(𝑚𝑎𝑥 )  

and  0< 𝜏2 < 𝜏2(𝑚𝑎𝑥 )                                               (14)                                                                               

Here Pontryagin Maximum Principle [12] is applied to 

obtain the optimal equilibrium solution.  

The Hamiltonian of this control problem is 

 𝐻 = 𝑒−𝛿𝑡   𝑝𝑞1𝑥1 − 𝑐1 𝐸1 +  𝑝𝑞2𝑥2 − 𝑐2 𝐸2 +

          𝜇1(𝑡)  𝑟𝑥1  1 −
𝑥1

𝑘
 − 𝜎1𝑥1 + 𝜎2𝑥2 − 𝑞1𝐸1𝑥1     

        + 𝜇2 𝑡  −𝑠𝑥2 + 𝜎1𝑥1 − 𝜎2𝑥2 − 𝑞2𝐸2𝑥2    
        + 𝜇3 𝑡  𝜆1 𝑞1 𝑝 − 𝜏1 𝑥1 − 𝑐1 𝐸1   
       + 𝜇4(𝑡) 𝜆2 𝑞2 𝑝 − 𝜏2 𝑥2 − 𝑐2 𝐸2                   (15)                                                                                       

where 𝜇𝑖 𝑡 (𝑖 = 1, 2, 3, 4)are adjoint variables. 

Since H is the linear function of 𝜏1 and 𝜏2, the conditions 

that the Hamiltonian H be maximum for 𝜏1 and 𝜏2 satisfying 

the conditions (13) are  
𝜕𝐻

𝜕𝜏1
=

𝜕𝐻

𝜕𝜏2
= 0.                                                 

This implies  𝜇3 𝑡 = 𝜇4 𝑡 = 0                           (16)                                                                     

The adjoint equations are   
𝑑𝜇1

𝑑𝑡
= −

𝜕𝐻

𝜕𝑥1
,  

𝑑𝜇2

𝑑𝑡
= −

𝜕𝐻

𝜕𝑥2
,  
𝑑𝜇3

𝑑𝑡
= −

𝜕𝐻

𝜕𝐸1
,   

𝑑𝜇4

𝑑𝑡
= −

𝜕𝐻

𝜕𝐸2
 

Therefore,  
𝑑𝜇1

𝑑𝑡
= − 𝑒−𝛿𝑡𝑝𝑞1𝐸1 + 𝜇1  𝑟 −

2𝑟𝑥1

𝑘
− 𝜎1 − 𝑞1𝐸1 + 𝜇2𝜎1

+ 𝜇3𝜆1𝑞1 𝑝 − 𝜏1   

    = −𝑒−𝛿𝑡𝑝𝑞1𝐸1 − 𝜇1  𝑟 −
2𝑟𝑥1

𝑘
− 𝜎1 − 𝑞1𝐸1 − 𝜇2𝜎1    

(17)                           

Similarly, 

 
𝑑𝜇2

𝑑𝑡
= −𝑒−𝛿𝑡𝑝𝑞2𝐸2 − 𝜇1𝜎2 + 𝜇2 𝑠 + 𝜎2 + 𝑞2𝐸2      (18)                                                

 
𝑑𝜇3

𝑑𝑡
= −𝑒−𝛿𝑡  𝑝𝑞1𝑥1 − 𝑐1 + 𝜇1𝑞1𝑥1                         (19)                                                                     

 
𝑑𝜇4

𝑑𝑡
= −𝑒−𝛿𝑡  𝑝𝑞2𝑥2 − 𝑐2 + 𝜇2𝑞2𝑥2                        (20)                                      

Now, from (16), (19) and (20), we have  

 𝜇1(𝑡) = 𝑒−𝛿𝑡  𝑝 −
𝑐1

𝑞1𝑥1
                                             (21) 

and  𝜇2(𝑡) = 𝑒−𝛿𝑡  𝑝 −
𝑐2

𝑞2𝑥2
                                      (22)                                                                 

From (21) and (22), using the state equations  
𝑑𝑥1

𝑑𝑡
=

𝑑𝑥2

𝑑𝑡
= 0, 

we have 

         
𝑑𝜇1

𝑑𝑡
= −𝛿𝑒−𝛿𝑡  𝑝 −

𝑐1

𝑞1𝑥1
                                           

(23)                                                              

and   
𝑑𝜇2

𝑑𝑡
= −𝛿𝑒−𝛿𝑡  𝑝 −

𝑐2

𝑞2𝑥2
                                           

(24)                                                              

Now, from (17) and (23), we have 

−𝛿𝑒−𝛿𝑡  𝑝 −
𝑐1

𝑞1𝑥1
 = −𝑒−𝛿𝑡𝑝𝑞1𝐸1 −  

                                     𝑒−𝛿𝑡  𝑝 −
𝑐1

𝑞1𝑥1
  𝑟 −

2𝑟𝑥1

𝑘
− 𝜎1 − 𝑞1𝐸1   

                                        −𝑒−𝛿𝑡  𝑝 −
𝑐2

𝑞2𝑥2
 𝜎1  by (21) and (22) 

or,𝛿  𝑝 −
𝑐1

𝑞1𝑥1
 = 𝑝𝑞1𝐸1 +  𝑝 −

𝑐1

𝑞1𝑥1
  𝑟 −

2𝑟𝑥1

𝑘
− 𝜎1 −

𝑞1𝐸1 
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                                     +  𝑝 −
𝑐2

𝑞2𝑥2
 𝜎1   

                          = 𝑝  𝑟  1 −
𝑥1

𝑘
 − 𝜎1 +

𝜎2𝑥2

𝑥1
 + 

                               𝑝 −
𝑐1

𝑞1𝑥1
  −

𝜎2𝑥2

𝑥1
−

𝑟𝑥1

𝑘
 +  𝑝 −

𝑐2

𝑞2𝑥2
 𝜎1  

                          = 𝑝𝑟 −
2𝑝𝑟𝑥1

𝑘
+

𝑐1𝜎2𝑥2

𝑞1𝑥1
2 +

𝑐1𝑟

𝑞1𝑘
−

𝑐2𝜎1

𝑞2𝑥2
  

or,  
𝑐1𝜎2𝑥2

𝑞1𝑥1
2 −

2𝑝𝑟𝑥1

𝑘
−

𝑐2𝜎1

𝑞2𝑥2
+

𝛿𝑐1

𝑞1𝑥1
+

𝑐1𝑟

𝑞1𝑘
+ 𝑝 𝑟 − 𝛿 = 0      

(25)                                                                                                                

Again, from (18) and (24), we have 

 −𝛿𝑒−𝛿𝑡  𝑝 −
𝑐2

𝑞2𝑥2
 = −𝑒−𝛿𝑡𝑝𝑞2𝐸2 − 𝑒−𝛿𝑡  𝑝 −

𝑐1

𝑞1𝑥1
 𝜎2 

+𝑒−𝛿𝑡  𝑝 −
𝑐2

𝑞2𝑥2

  𝑠 + 𝜎2 + 𝑞2𝐸2  

or, 𝛿  𝑝 −
𝑐2

𝑞2𝑥2
 = 𝑝  −𝑠 − 𝜎2 +

𝜎1𝑥1

𝑥2
 +  𝑝 −

𝑐1

𝑞1𝑥1
 𝜎2 

−
𝜎1𝑥1

𝑥2

 𝑝 −
𝑐2

𝑞2𝑥2

  

                          = −𝑝 𝑠 + 𝜎2 +  𝑝 −
𝑐1

𝑞1𝑥1
 𝜎2 +

𝑐2𝜎1𝑥1

𝑞2𝑥2
2      

or,  
𝑐2𝜎1𝑥1

𝑞2𝑥2
2 + 

𝛿𝑐2

𝑞2𝑥2
−

𝑐1

𝑞1𝑥1
− 𝑝 𝛿 + 𝑠 = 0                             

(26)                                                

Solving the above non linear equations (25) and (26), we 

have the optimal equilibrium level of two subpopulations,  

𝑥1𝛿  and  𝑥2𝛿   in inshore and offshore area respectively. 

Using these values in the state equations we have  

𝐸1𝛿 =
1

𝑞1
 𝑟  1 −

𝑥1𝛿

𝑘
 − 𝜎1 +

𝜎2𝑥2𝜎

𝑥1𝛿
                       (27)  

𝐸2𝛿 =
1

𝑞2
 −𝑠 − 𝜎2 +

𝜎2𝑥2𝜎

𝑥1𝛿
                                                 

(28)                                                  

𝜏1𝛿 = 𝑝 −
𝑐1

𝑞1𝑥1𝛿
                                                                    

(29)                                                               

𝜏2𝛿 = 𝑝 −
𝑐2

𝑞2𝑥2𝛿
                                                                    

(30)                                                           

 

7. Numerical Example 

 
Let 𝑟 = 5, 𝑘 = 1000,𝜎1 = 0.7,𝜎2 = 0.3, 𝑠 = 0.2, 𝑞1 = 0.02, 
  𝑞2 = 0.01, 𝜆1  = 1, 𝜆2 = 1, 𝑝 = 10, 𝑐1 = 50, 𝑐2 = 60  and  

  𝛿 = 0.4.   

Therefore, 𝑝 −
𝑟𝑐1

𝑘𝑞1 𝑟−𝜎1 
= 7.093,  

            𝑚 = 𝑚𝑖 𝑛  1,
𝜎1𝑐1𝑞2

𝑐2𝑞1 𝑠+𝜎2 
 = 0.583  

and  1 −𝑚 𝑝 = 4.17. 
Since 𝑚 ∈  0,1 , for existence of the non-trivial steady state 

𝑃 𝑥1
∗, 𝑥2

∗,𝐸1
∗,𝐸2

∗  the regulatory agencies have to determine 

the tax 𝜏1 per unit harvested biomass from the inshore 

fishery such that 4.17 < 𝜏1 < 7.093, by (8). 

Suppose the agencies choose 𝜏1 = 7.  

Then 𝑛 =
𝜏1

𝑚
+  1 −

1

𝑚
 𝑝 = 4.86 and 𝑚𝑖𝑛 𝑛, 𝜏1 = 4.86. 

So the regulatory agencies choose the tax 𝜏2 such that 

𝜏2 < 4.86, by (12), for existence of the non-trivial steady 

state 𝑃 𝑥1
∗, 𝑥2

∗,𝐸1
∗,𝐸2

∗ . 
But the agencies are always interested for sufficient 

harvesting in the offshore area whereas the fishermen are 

interested in fishing in inshore area. In such a situation the 

agencies would like to impose the tax 𝜏2 moderately low 

compared to its applicable maximum level. Keeping in mind 

for such a situation to arise,  suppose  the agencies choose 

the tax 𝜏2 = 3. 

Considering the above parameter values together with 

𝜏1 = 7 and 𝜏2 = 3, the non-trivial steady state becomes 

𝑃(833.33, 857.14, 22.10, 18.06) and this steady state is 

locally as well as globally asymptotically stable. 

 

 
Figure 2:  Feasible region ( R) of the taxes 𝜏1 𝑎𝑛𝑑  𝜏2 for 

𝑚𝑖𝑛 𝜏1 = 4.17,    𝑚𝑎𝑥 𝜏1 = 7.093 and   𝑚𝑎𝑥 𝜏2 = 4.86 

 

Figure 2 shows the feasible region of the taxes 𝜏1 and 𝜏2 for 

existence of the non-trivial steady state which is always 

locally and globally asymptotically stable. 

Using these parameter values equations (25) and (26) 

become 

750𝑥1
−2𝑥2 − 0.1𝑥1 − 4200𝑥2

−1 + 1000𝑥1
−1 + 58.5 = 0  

and 4200𝑥1𝑥2
−1 + 2400𝑥2

−1 − 750𝑥1
−1 − 6 = 0, 

respectively.  

Solving the above non-linear equations (using Mathematica 

software), we have the optimal equilibrium level of inshore 

and offshore subpopulations as 𝑥1𝛿 = 564.90 and 𝑥2𝛿 =
755.88 respectively. For these optimal values of 

populations, the optimal level of efforts and taxes are 

𝐸1𝛿 = 93.85,𝐸2𝛿 = 2.31, 𝜏1𝛿 = 5.57 and 𝜏2𝛿 = 2.06, 

obtained from (27), (28), (29) and (30) respectively.  

Thus 𝑃𝛿(564.90, 755.88, 93.85, 2.31) is the optimal 

equilibrium solution of the system (1) corresponding to the 

above parameter values and the optimal taxes are 𝜏1𝛿 = 5.57 

and 𝜏2𝛿 = 2.06. 

 

Comparing this optimal equilibrium solution with the 

biological equilibrium solution, we see that in view of 

economic consideration, the inshore fishing is more 

attractive than the offshore fishing and so the equilibrium 

level of inshore subpopulation decreases. Whenever the 

inshore subpopulation decreases then the offshore 

subpopulation automatically decreases, since the inshore 

area is the breeding area of the species. 

 

8. Conclusion 
 

In this paper, it has been studied that although the inshore 

area is the breeding place of the species, it is possible to 

allow the fishermen to harvest in that area also. But a higher 

tax is to be imposed for harvesting in inshore area compared 

to the tax for harvesting in the offshore area in order to 

control the over exploitation.  Ray and Pradhan [11] 

considered the inshore area (being the breeding area) as the 
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restricted area where fishing is strictly prohibited. This paper 

is an extension of the work of Ray and Pradhan [11] without 

any restriction in inshore fishing. Only the non-trivial steady 

state is determined and its stability criterion is discussed here 

since the controlling agencies are uninterested in the 

existence of trivial or axial equilibrium points. Though the 

optimal equilibrium levels of two subpopulations could not 

be found out analytically, but their values can be found 

numerically. 
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