
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Refactoring and Detection of Bad Smells of Coding

Using Larger Scale and Critical Incident Technique

Dr. P. Suresh
1
, S. MuthuKumaran

2

1HOD, Computer Science, Salem Sowdeshwari College, Salem

2Assistant Professor, Department of Computer Science, St. Joseph’s College of Arts and Science (Autonomous), Cuddalore-1,

Abstract: The presence of code and design smells can have a severe impact on the quality of a program. Con- sequently, their detection

and correction have drawn the attention of both researchers and practitioners who have proposed various approaches to detect code and

design smells in programs. However, none of these approaches handle the inherent uncertainty of the Detection process. First, we

present a system-matic process to convert existing state-of-the-art detection rules into a probabilistic model. We illustrate this process by

generating a model to detect occurrences of the Blob antipattern. Second, we present results of the validation of the model. Testing is

more than just debugging. The purpose of testing can be quality assurance, verification and validation, or reliability estimation. Testing

can be used as a generic metric as well. Correctness testing and reliability testing are two major areas of testing. Software testing is a

trade-off between budget, time and quality. Code smells are a metaphor to describe patterns that are generally associated with bad design

and bad programming practices. Originally, code smells are used to find the places in software that could benefit from refactoring. .

Refactoring is a technique to make a computer program more readable and maintainable. A bad smell is an indication of some setback

in the code, which requires refactoring to deal with. Many tools are available for detection and removal of these code smells. These tools

vary greatly in detection methodologies and acquire different competencies. In this paper, how the quality of code can be automatically

assessed by checking for the presence of code smells is and how this approach can contribute to automatic code inspection is

investigated

Keywords: Software inspection, quality assurance, refactoring, code smell, JDeodorant, inCode

1. Introduction

Refactoring has become a well known technique for the

software engineering community. Martin Fowler has defined

it as a process to improve the internal structure of a program

without altering its external behavior [1]. Frequent

refactoring of the code helps programmer to make the code

more understandable, find bugs and make it suitable for the

addition of new features and to program faster. Above all

that, it improves the design of the software and therefore the

overall quality of the software [1]. Refactoring can be done

manually as well as automatically. Extensive literature is

available on refactoring of the object oriented-programs and

a number of tools are available for the automatic refactoring

of the code.

Refactoring has a special relationship with the concepts of

reverse engineering and agile software development. One of

agile software development models, eXtreme Programming

(XP), proposed by beck [3], considers refactoring as one of

its essential features. Refactoring continuously improves the

design of the software and helps the evolution and

incremental development of the software Bad smells are

design flaws or structural problem of software that can be

handled through refactoring. The term refactoring was first

proposed by Kent Beck while helping martin Fowler [1].

Later Fowler did much work in this context and this work is

still in progress A variety of software tools have been

developed for the automated detection of bad smells and

they differ in their capabilities and approaches. Determining

whether some piece of code contains bad smell(s) is

somewhat subjective and still there is a lack of standards.

In this work, a comparative study is carried out regarding

two bad smell detection tools namely JDeodorant and

inCode. Their detection methodology is discussed in greater

detail and variations in results are noted. We selected

Feature Envy and God class code smells to do work with.

Both tools are evaluated on these two smells. Programming

is an exercise in problem solving. As with any problem-

solving activ-ity, determination of the validity of the

solution is part of the process. This survey discusses testing

and analysis techniques that can be used to validate software

and to instill confidence in the quality of the programming

product. It presents a collec-tion of verification techniques

that can be used throughout the development process to

facilitate software quality assurance

2. Proposed Work

Detecting method of Large Class bad smell is proposed

based on scale distribution. The length of all the classes in

one program is extracted, and then distribution model of

class scale is built using the length of these classes. In

distribution model the groups which are farthest the

distribution curve is considered to be candidate groups of

Large Class bad smell. Furthermore, the cohesion metrics of

the classes in these groups are measured to confirm Large

Class.

How the smells are identified?

Visualization techniques are used in some approaches for

complex software analysis. These semi automatic

approaches are interesting compromises between fully

automatic detection techniques that can be efficient but loose

in track of context and manual inspection that is slow and

inaccurate [8, 9]. However, they require human expertise

and are thus still time consuming. Other approaches perform

fully automatic detection of smells and use visualization

techniques to present the detection results [10, 11].

Paper ID: SUB153945 94

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

But visual detecting results need manual intervention. Some

bad smells relevant to cohesion can be detected using

distance theory. Simon et al. [12] defined a distance based

metric to measure the cohesion between attributes and

methods. The inspiration about the approach in this paper is

drawn from the work [12] in the sense that it also employs

the Jacquard distance. However, the approach has proposed

several new definitions and processes to get improvements.

The conception of distance metrics is defined not only

among entities (attributes and methods) but also between

classes. In [13], the distances between entities and classes

are defined to measure the cohesion among them.

There is less research about bad smell detection of Large

Class. Liu et al [14] proposed a detection and resolution

sequence for different kinds of bad smells to simplify their

detection and resolution, including Large Class bad smell.

But Liu paid more attention to the schedule of detection

rather than Large Class detection itself, and the specific

detecting process was not provided in the paper. In Large

Class bad smell detection, class size measures have been

introduced

When class size is large, it is seen as Large Class. In bad

smell detection tools, the main way [15] of measuring class

size is to measure the number of lines of code i.e. NLOC, or

the number of attributes and methods. PMD[16] and Check

style[17] both use NLOC as detection strategy . The former

uses athreshold of 1000 and the second a threshold of 2000.

The fixed threshold value is not fastidious for Large Class

bad smell detection, and easy to cause false detection. And

in these tools, there is no function about refactoring of Large

Class bad smell.These researches above show that, the

detection of Large Class bad smell is based on fixed

threshold comparison. Since the fixed threshold is selected

manually, the objectivity is low. Moreover, the refactoring

method is decided manually, and there is no suggestion or

scheme about that.

How to determine the smells?

The change in the number of smells found usually reflects

some significant change in the source code that hinders its

degradation. We therefore ask ourselves whether,assuming

that the tools may be imprecise, or may have a poor recall,

they still can be used by managers to observe, on a broader

scale, the evolution of software and assess the general trend

of its internal quality. Our experiment will be based on the

information on the density ratio of the smells reported by the

tools for each version of the project, and on the overall

history of the project as deduced from a manual differential

analysis of the source code across versions. We will attempt

to informally correlate changes, by manual review, in smell

density across versions, and the prevalent position of smells

in the code, with some basic facts on project development

that can be deduced from source code analysis (introduction

of new functionalities, refactoring,etc.).

Figure 1: Assumption of code smells

Paper ID: SUB153945 95

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The quarantine programs are open source programs which

contain a large number of classes. In the detection method,

the inputs are the codes, and the outputs are the bad smell

classes. As the bad smell group location above, the bad

smell groups may not be the largest groups. Similarly, the

identifying method is not to simply select the x largest

classes. So it is the key of Large Class bad smell detection:

the detecting basis is not from the metrics of destination

class itself (length or others), but from metrics of all the

classes. In this paper, [24] the bad smell location in class is

identified with the inner cohesion of classes. The cohesion

metric is defined with the entity distance theory. In entity

distance theory, these concepts should be

defined.Enity,Proper set, Cohesion Metric and Distance.

How are we going to present the results?

Code Bad Smells are structures which cause detrimental

effects on software. However, little empirical evidence has

been provided. Most existing Code Bad Smell detection

tools are Metric-based. We argue about their accuracy.

Programmers that use detected smells during development

or maintenance of a system to improve the code. Code

inspectors (or reviewers) that use detected smells to assess

the quality of the code.

The classes which are sure to have Large Class bad smell is

refactored. And the refactoring process is Extract Class,

which means the destination class should be divided into

two or more new classes. In practice, the destination class

would be divided into two parts, and the bad smell detection

would be executed again. The basic idea of refactoring

scheme is to divide the entities in the destination class based

on the cohesion degree among them. So the key ideas are

how to represent cohesion degree between entities in classes

and how to cluster entities in classes.

Sometimes you will see a class with four subclasses, each of

which only implements three simple methods. Often you

will get a vague feeling that the class doesn't deserve

subclasses, but you won't immediately be able to see how to

eliminate them. This feeling can last for months or even

years. Don't worry. If you keep nibbling away at the

problems you can see how to solve, eventually you will find

yourself looking at the subclasses again, and all the difficult

issues to resolve have disappeared. Once you've done this,

look for new opportunities to use inheritance now that you

are no longer wasting it.

Primitives, which include integers, Strings, doubles, arrays

and other low-level language elements, are generic because

many people use them. Classes, on the other hand, may be as

specific as you need them to be, since you create them for

specific purposes. In many cases, classes provide a simpler

and more natural way to model things than primitives. In

addition, once you create a class, you’ll often discover how

other code in a system belongs in that class. Fowler and

Beck explain how primitive obsession manifests itself when

code relies too much on primitives. This typically occurs

when you haven’t yet seen how a higher-level abstraction

can clarify or simplify your code

3. Implementation of Proposed Algorithm

The critical incident technique (CIT) consists of two major

phases: data collection and data analysis. The rest of this

section describes how we adapted each of these phases for

identifying the usability problems of IPT tools for each and

every subject Evaluators can collect the critical incidents

through surveys, interviews, observing the participants, or

asking the participants to report the incidents during the task.

These data collection techniques are not scalable to many

users, are based on arti_cial tasks, or interfere with users'

work. So, we made our data collection automatic to collect a

large set of data that covers many usage scenarios of the

refactoring tool in a form that is amenable to automatic data

analysis. We made the data collection unobtrusive to avoid

altering pro-grammars' behavior. Finally, instead of

collecting the data from preened tasks performed at the lab,

we decided to collect the data from real tasks that are more

representative of how the refactoring tool is used in practice.

3.1 Entities Algorithm

Algorithm: Agglomerative Clustering Algorithm

Input: ench entities and their distance

Output：two new clusters

Begin

each entity is assigned to be a single cluster;

While(clustering number is more than 2)

merge two clusters A, B with the lowest distance value as

cluster C;

Foreach（any other cluster X in the class）

Dist（C，X）=Avg（Dist（A，X），Dist（B，X））;

EndFor

 EndWhile

A refactoring precondition is a property that the refactoring

tool checks at various stages, e.g., selection, invocation,

conjuration, and commit, to guarantee that the change will

preserve the behavior of the program. If a precondition fails,

the refactoring reports a message whose type depends on the

severity of the problem and the stage of refactoring. We

refer to such a message as a refactoring message or just a

message in this paper. The Eclipse refactoring tool may

report any of about 640 messages of four types to its user

[16]:We made Coding Spectator capture this information be-

cause the selection onsets captured by Eclipse do not always

reect exactly the ones used by the programmer due to some

normalization that Eclipse applies on the selections.

We developed Coding Spectator [12], an unobtrusive tool

for collecting the usage data of the Eclipse refactoring tool.

The only interaction that the participants had with Coding

Spectator was to install it like any Eclipse plug-in, and enter

their username and password when prompted to submit their

data to our central repository. We chose to make the data

collection process unobtrusive to study software evolution

practices in the wild Coding Spectator captures more data

about the usage of the refactoring tool than what Eclipse

already does.

Paper ID: SUB153945 96

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3.3 Class Number Algorithm

Algorithm：Class number statistics

Input： i G

Output： i P ,

Begin

Foreach（ i G ）

Foreach（ j =1,2,… N)

If（ min min [(1) ,] i A Î A + j - ×m A + j ×m ）

i P

++;

EndIf

EndFor

EndFor

 End

The classes with bad smell should be refactored by Extract

Class according to the entities distance and agglomerative

clustering algorithm. After refactoring the programs should

be test again.

Figure 1: Graph curve for using CIT

The first step is to identify the source page u and destination

pages each v € V’ where V’€V.

Table 1: Cohesion metrics of group 8 class members of

Tyrant0.80 program
Class name

Number of lines Cohesion metric

Creature 898 5.763

GameScreen 625 3.125

Map 788 12.061

4. Conclusion

In this paper the approach of Large Class bad smell

detection and refactoring scheme has been proposed. Fixed-

threshold-based detection method is analyzed to be rigid and

error-prone. In this model, the class groups that are far away

from the distribution curve are treated as containing bad

smells potentially. And combining with cohesion metric

computing, the bad smell classes are confirmed in the class

groups. After using Agglomerative Clustering Technique,

the scheme of Extract Class is proposed for refactoring An

alternate refactoring path contains events such as

cancellations, repeated invocations, and error messages. We

mined alternate refactoring paths in a large, real-world

refactoring usage data set and analyzed a subset of it to

identify usability problems. As a result, we found 15 usable-

ity problems, all of which have been acknowledged by the

Eclipse developers and four have already been _xed. This

result shows that alternative factoring paths reveal usability

problems.

References

[1] M. Fowler, (1999) “Refactoring: Improving the design

of existing code”, Addison-Wesley, pp89-92.

[2] B.F. Webster, (1995) “Pitfalls of Object Oriented

Development”, first M&T Books, Feb.

[3] A.J. Riel, (1996) “Object-Oriented Design Heuristics”,

Addison-Wesley.

[4] G. Travassos, F. Shull, M. Fredericks, & V.R. Basili.,

(1999) “Detecting Defects in Object-Oriented Designs:

Using Reading Techniques to Increase Software

Quality”, Proceeding of 14th Conference in Object-

Oriented Programming, Systems, Languages, and

Applications, pp47-56.

[5] R. Marinescu, (2004) “Detection Strategies: Metrics-

Based Rules for Detecting Design Flaws”, Proceeding

of 20th International Conference in Software

Maintenance, pp350-359.

[6] Ladan Tahvildari & Kostas Kontogiannis, (2003) “A

Metric-Based Approach to Enhance Design Quality

through Meta-Pattern Transformations”, 7th European

Conference Software Maintenance and Reengineering,

pp183-192.

[7] M. O'Keeffe & M. O'Cinneide, (2008) “Search-based

refactoring: an empirical study”, Journal of software

maintenance and evolution: research and

practice,pp345-364.

[8] K. Dhambri, H. Sahraoui & P. Poulin, (2008) “Visual

Detection of Design Anomalies”, Proceeding of 12th

European Conference in Software Maintenance and

Reeng, pp279-283.

[9] G. Langelier, H.A. Sahraoui & P. Poulin, (2005)

“Visualization-Based Analysis of Quality for Large-

Scale Software Systems”, Proceeding of 20th

International Conference in Automated Software

Engineering , pp214-223.

[10] M. Lanza & R. Marinescu, (2006) “Object-Oriented

Metrics in Practice”, Springer-Verlag. pp125- 128.

[11] E. van Emden & L. Moonen, (2002) “Java Quality

Assurance by Detecting Code Smells”, Proceeding of

9th Working Conference in Reverse Engineering,

pp120-128

[12] E. M. del Galdo, R. C. Williges, B. H. Williges, and D.

R. Wixon. An Evaluation of Critical Incidents for

Documentation Design. In Proc. Human Factors and

Ergonomics Society, pages 19{23, 1986.}

[13] J.W. Han & M. Kamber, (2005) “Data Mining Concepts

and Techniques”, Morgan Kaufmann Publishers

[14] S. Demeyer, S. Ducasse, and M. Lanza. A hybrid

reverseengineering approach combining metrics and

program visualization. In Proc. 6th Working Conference

on Reverse Engineering (WCRE’99), pages 175 186,

1999.

[15] A. van Deursen, L. Moonen, A. van den Bergh, and G.

Kok. efactoring test code. In Proc. 2nd International

Conference on Extreme Programming and Flexible

Processes in Software Engineering (XP2001), pages 92

95, May 2001.

[16] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and

A. Mockus. Does code decay? assessing the evidence

Paper ID: SUB153945 97

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 5, May 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

fromchange management data.IEEE Transactions on

Software Engineering, 27(1):1 12, 2001.

[17] M. E. Fagan. Design and code inspections to reduce

errors in program development. IBM Systems Journal,

15(3):182 211, 1976.

[18] G. Florijn. RevJava Design critiques and architectural

conformance checking for Java software. White Paper.

SERC, the Netherlands, 2002. See

alsohttp://www.serc.nl/people/florijn/work/designchecki

ng/RevJaa.htm.

[19] M. Fowler. Refactoring: Improving the Design of

Existing Code. Addison-Wesley, 1999.

[20] T. Gilb and D. Graham. Software Inspection.

AddisonWesley, 1993..

[21] http://home.engineering.iastate.edu/~hungnv/Personal/p

apers/PhpSync.pdf

[22] http://www.cs.uiuc.edu/~hanj/pdf/cikm10_tweninger.pd

f

[23] International Journal of Software Engineering &

Applications (IJSEA), Vol.4, No.5, September 2013

Paper ID: SUB153945 98

