
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Object Oriented Software Testability Survey at

Designing and Implementation Phase

Dr. Pushpa R. Suri
1
, Harsha Singhani

2

1Department of Computer Science and Applications, Kurukshetra University, Kurukshetra -136119, Haryana, India

2 Institute of Information Technology & Management (GGSIPU), Janak Puri, New Delhi -110058, India

Abstract: Software testability is coming out to be most frequent talked about subject then the underrated and unpopular quality factor

it used to be in past few years. The correct and timely assessment of testability can lead to improvisation of software testing process.

Though many researchers and quality controllers have proved its importance, but still the research has not gained much momentum in

emphasizing the need of making testability analysis necessary during all software development phases. In this paper we investigate and

review the factors, issues and methods of testability estimation of object oriented software systems during various phases of development

life cycle. The paper hopes to change some common prejudices about testability. Improving software testability is key objective of our

research by high lighting and relating the various factors individually affecting testability.

Keywords: Software Testability, Testability Factors, Testability Metrics

1. Introduction

The scenario of current software industry is changing from

structural to object oriented approach, which has actually

eased the software development process in making a clear

understanding of the requirements of the real world

problems, with modular software structure. But Testing of

object oriented software has presented numerous challenges

due to its features. A tester often needs to spend significant

time in developing a lengthy testing code to ensure that

system under test is tested as per given requirement. But

lack of time, efficient cost, less manpower, limited resources

and all other unavoidable constraints, leads to short term test

plan, leading to compromised quality software’s. Software

testability is introduced to measure the degree of difficulty

of software test or the possibility of the software defects that

can be found out. It is actually an external software attribute

that evaluates the complexity and the effort required for

software testing. Testable software is the one that can be

tested easily, systematically and without following any

adhoc measures.

The study on software testability primarily comes into view

in 1975. It is accepted in McCall and Boehm software

quality model, which build the foundation of ISO 9126

software quality model. Since 1990s, software engineering

society began to initiate quantitative research on software

testability. Formally, Software testability has been defined

and described in literature from different point of views. Out

of many definitions of Testability, [1] defines it as the

degree to which a system or component facilitates the

establishment of test criteria and performance of tests to

determine whether those criteria have been met. [2] defines

it as attributes of software that bear on the effort needed to

validate the software product. These two standard definitions

aim to different targets and both are qualitative without any

operational guidelines. The testability thus has become a

quality factor contributing to system maintainability as ISO

standards whose measurement and can be used to predict the

amount of effort required for testing and help managing the

required resources effectively.

So, the study of testability actually helps in finalizing

software design and coding changes for making it test

friendly, thus reducing system test cost along with improved

software quality. Through the test effort reduction using

these new researches, not only the software design and code

is improved but also the new levels of software reliability

and credibility can be reached. All this leads to desire of

designing and developing highly testable systems. But the

desire does not end here, there is a need to measure and

verify the testability, quality and reliability of the system

which is where the challenges are faced. Lot of testability

related issues such as software design complexity relation to

testability, class contribution to testability, object oriented

features of a class, object oriented metrics contribution in

testability estimation are being kept in focus in these

research works.

2. Software Testability Role in Object Oriented

Systems

As already known object oriented system development has

become leading approach within software industry. In

comparison to structural program designing and coding, the

testing and hence the testability of systems is quite complex

in object oriented systems. The main properties of object-

oriented technology such as Data abstraction and

Encapsulation, Inheritance, Polymorphism and Dynamic

binding are mainly responsible for the success of this

approach. But some of these factors such as Inheritance lead

to increased complexity and thus having a negative effect on

system testing and testability. Specifically with respect to

object oriented software the previous research shows that

multiple inheritance decrease the level of testability of

software [3]. The level of difficulty also increases with

multiple units of code , inherent dependencies and

interactions between the classes[4]. The failure within the

code is not easily traceable.

Software testability is an external software attribute that

evaluates the complexity and the effort required for software

testing. For any system which needs to be made test friendly,

Paper ID: SUB153858 3047

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the testability measures needs to be applied from the

beginning itself during design phase and later should be

applied further at coding and testing phase. As rightly

pointed out by [5] designing for testability becomes a way of

thinking, If we think of tests as a user of your system. So, it

is better to keep TDD (test driven development) approach

where the tests come first and largely determine the API

design of the system, forcing it to be something that the tests

can work with. The same is often stated as Design For

Testability (DFT) also, which means building a system

keeping testability measures in line at deigning as well as

coding phase so that tracing errors is easier along with

reduced testing effort[6]. It is basically a systematic way of

development which maximises the effective testing efforts.

With the course of time the lot of research has been done on

testability issues during design and coding phase. At design

phase generally an integrated approach is used at analysis

and designing phase of software development, to improvise

the object oriented software design in the beginning itself as

supported by many practitioners discussed below in section

3.

But testability analysis does not end at initial stage, to

develop a system more efficiently and test friendly, code

time testability is adopted. It works for systems which do not

give effective results with design time testability efforts. It is

a method to enhance runtime testability analysis of a system

prior to testing. It is the secure coding mechanism which

reduces chances of failure at maximum possible extent along

with generating test logs for any further improvisation. It

also leads to test case reduction as per researchers [7]. Hence

code time testability measures not only raise the testability

standards but reduce the testing effort along with making

system more reliable.

Another testability approach which has not been explored

much but yet needs to be looked upon is testability

improvisation during debugging and testing phase of

software development. The work done so far in this field is

very less and not that significant. Few researchers have only

proposed some software reliability growth models for

testability improvisation during this phase[8]. The proposed

testability measure can result in higher fault detection and

can also be used for the determination of modules that are

more vulnerable to hidden faults. However, the

quantification of testability measurement using reliability

growth models are still needs to be explored further. Then

there is IVF testability model which is used during software

test process mainly to estimate software test work load and

increase system reliability[9].

3. Literature Review

Testability is not an intrinsic property of a software artefact

and cannot be measured directly as other software attributes.

Instead testability is an extrinsic property which results from

interdependency of the software to be tested and the test

goals, test methods used, and test resources [6]. A lower

degree of testability results in increased test effort and high

development cost. In extreme cases a lack of testability may

hinder testing parts of the software or software requirements

at all. Measuring testability is a challenging and most crucial

task towards estimating testing efforts. Several approaches

like model based testability measurement, program based

testability and dependability testability assessment has been

proposed. Also a number of metrics on testability

measurement have been proposed, some at design and

analysis phase or some at source code level. The brief

overview of work done so far at two major stages of

software development life cycle i.e. System design and

analysis stage and system code and implementation phase is

listed below:

3.1. Relevant Work Done in System Design & Analysis

Phase

Design time testability analysis provides a direction and

guidance for testing at early stage in object oriented systems

which may yield the maximum outcome by reducing testing

effort later and hence improvising system testability. The

focus is on capturing the test reduction patterns and issues at

early stage in design diagrams specifically in UML class

diagrams etc. as discussed by many researchers mentioned

below.

The testability analysis thus at this stage help developers

implement changes in the system design before entering

implementation phase. The main purpose is to reduce the

system development cost, time and errors by avoiding these

design based discrepancies to be carried further, by locating

the faults using testability estimation techniques at design

time. Different models were proposed on the basis design

time testability issues. The design issues of object oriented

programming such as Inheritance, Polymorphism, Coupling,

Cohesion, Encapsulation, Information hiding , Class Size

and Complexity were the focus of interest for testability

improvisation. Some of these factors were quantified also

and thus resulted in Testability Metrics, which are easiest to

implement and analyse. Many of these proposed Testability

metrics were based on previously object oriented design

metrics suite of [10], [11]. The quantification at design

phase in object oriented systems was mainly done using

various UML diagrams.

The work done so far in this field has not been in any one

particular direction but rather has been exploratory in nature,

which is yet to found acceptance amongst practitioners. The

designing phase testability research has started taking shape

in past few years only. Previously source code testability

analysis was more highlighted. The important of all these

research in last few years in design and analysis phase are

hereby listed below in reverse chronological order in Table1.

Paper ID: SUB153858 3048

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 1: Testability Research at Analysis & Design Phase
S.

NO.

Pub.

Year

Author &

Citation
Research Summary Limitations and Gaps

1. 2010 -

2013

Nazir et.al.

[12]–[14]

Contribution is in the form quantification of Testability

Metrics, which has been calculated using two major

factors Understandability and Complexity using CK

Metrics suite.

Though suggestive testability metrics is

verified but its empirical study with very

large scale software systems is yet to be

done.

2. 2010 Khalid et.al.

[15]

Measured design phase complexity and testability with

quantifiable results using five design metrics.

Not applied on self descriptive and large

scale systems designs.

3. 2009 Khan and

Mustafa [16]

The Research basically proposed a model named

MTMOOD for the assessment of testability in object-

oriented design. This model had then been validated using

structural and functional information from object oriented

software. This quantitative measurement of testability is

useful and practical to determine on what module to focus

during testing.

The model takes very restrictive view of the

OO programming concept. So, less

sufficient for Self-Descriptive Systems.

4. 2007 E. Mulo [17] The main focus though was on designing software’s for

testability but the study stressed on testability estimation

though out SDLC cycle.

The suggestive measurement estimation

cost can go up very high along with

required added effort may be.

5. 2005 Mouchwrab

[3]

Research revolves around UML diagrams at design level

and measurement of their testability as per proposed

framework. Claims to reduce testing cost.

Research work only gives the starting point

of UML designs but not yet empirically

proved.

6. 2004 Shih [18] Basically the research presented a model that is based on

Gao’s pentagram model and analytical approach for

testability measurement of components. The testability

review process at design and analysis phase was

performed keeping five major characteristics of testability,

which were used in testability metrics calculation and

obtaining five testing points to draw the final pentagram.

The study was validated on large scale

industrial software’s. Though it was

validated well on few case studies but still

model did not gain much popularity due to

complex notations.

7. 2002 Jungmayr

[19], [20]

Suggestive Model relates testability to dependencies

between components (e.g. classes) and investigates

testability measurement based on static dependencies

within OO systems keeping integration testing point of

view.

More tests are required to exercise their

interfaces. Other important factors such as

observability and controllability except

from dependencies are overlooked in his

research.

8. 2001 Baudry et. al.

[21]

Identified Class diagrams and state charts of UML for

testability analysis. Focused mainly on complex

interactions within design which cause problems in testing

the software also called testability anti patterns, identified

by using a class dependency graph (CDG).

Assumes that multiple paths between

classes are redundant, from a semantic

viewpoint that is expensive to test

9. 1998 Lo & Shi [22] The researchers proposed OO design Testability Factors at

structural, communication and Inheritance levels. These

factors values contributed in testability estimation.

Yet to find the usefulness of individual

testability factor metrics and correctness of

proposed model. Moreover some metrics

still needs refinement w.r.t. industrial

standards.

10. 1994 Binder [6] Identifies Testability Fish bone Model and six high-level

factors affecting testability: built-in test, test suite, test

support environment, implementation characteristics, and

representation characteristics at initial phase. Also

suggests set of metrics to be used for design level

testability measurement.

All factors are related to higher level of

abstraction having not in depth relation with

object oriented design constructs. Also, all

suggested metrics are not empirically

proved.

11. 1991 Freedman

[23]

System is made observable and controllable with domain

testability at design level. Along with that it also defines

that a software artefacts that is easily testable has the

desirable quality attributes: test sets are non-redundant,

test sets are small, test outputs are easily interpreted and

software faults are easily findable.

Test Input-Output Inconsistency

demonstration missing.

3.2 Relevant Work Done in Coding & Implementation

Phase

The analysis at code level is more complex than at the

design level, but it gives more detailed measures about

testability. More- over, code testability analysis can help to

identify the low testable parts in software re-engineering. So

, it is important for those dynamic object oriented systems

where conventional design time testability analysis will not

be effective. So code time testability analysis often called

runtime testability is done at before final test cases are

executed. This is required, as to ensure that a good design

which may not have improved system testability due to poor

coding practices should not lead system towards failure

along with increasing effort of testing. So, some of the

testability improvisation techniques listed below in Table 2

are adapted during system coding and testing phase so as to

raise the testability performance of the system by reducing

the system testing effort along with development cost

reduction and making system more reliable.

Paper ID: SUB153858 3049

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Table 2: Testability Research at Coding & Implementation Phase

S.

NO.

Pub.

Year

Author &

Citation
Research Summary Observations, Limitations & Gaps

1. 2011 Badri et.

al. [7], [24]

The basic purpose their study was to establish a model around

source code metrics for testability assessment. The proposed

testability MTMOOP model was based on inheritance, coupling and

encapsulation metrics at source code level. The positive correlation

was established between the proposed metrics and five test class

metrics suing commercial Java software’s. They also established

strong correlation between various popular object oriented and test

class metrics, in terms of effort reduction, hence testability

improvisation.

The proposed metrics was based on

limited set of assertions and needs

further extension on other object

oriented characteristics too. The systems

used for study were limited to one

language only, so may need extension in

other commercial programming

languages.

2. 2011 Boyle &

Moghadan

[25]

The research was interesting & surrounded around refactoring of

source code for testability improvisation using LSCC cohesion

metrics.

The approach was suggestively new but

could not be carried further as it was

inconclusive, time consuming & needed

extra effort.

3. 2011 Harman et.

al. [26],

[27]

The main research was focussed on program transformation for

Testability Improvisation using Refactoring as one of the method,

hence adding input to new field of testability research called

Testability Transformation.

The study of course highlights a critical

test improvisation method based on test

case equivalence lays the field for future

study needs further exploration as the

proposed roadmap is yet to be argued

upon in context with advance testing

techniques.

4. 2011 Khatri [8] The research was based on approach for improving testability using

software reliability growth models for fault detection and

determination of modules that are more vulnerable to hidden faults.

The concept that prior knowledge of proportion of fault of different

complexity lying dormant in the software can ease the process of

revealing faults has been demonstrated in their work.

The proposed model is purely theoretical

and does not give any quantitative

measure of improvement of testability.

5. 2008,

2010

Singh &

Saha [28],

[29]

The basic study was focused on software contracts and testability.

The quality of software contracts to decrease the testing effort help

in testability improvisation. The flow graph of class under study,

with and without contract was used to demonstrate the test case

reduction.

The proposed method is studied at class

level which needs to be extended further

at higher level system testing.

6. 2010 Ding [9] They proposed an IVF (Iteration of Vector Factorization) software

testability model based on statistics and analysis of test data of the

Software Test and Evolution Centre and validates it with practice.

The work was based on Gao pentagon model. The proposed IVF

model was validated with 20 software system, by calculating

software's testability value and unit average testing effort.

The proposed model is compact and

practical and can e directly applied. In

spite of that the model has not gained

much popularity, as vector factorization

method is not easily understandable and

applicable in all object oriented systems.

7. 2009 González

[30]

They proposed a Run time testability measurement (RTM)

technique, which was based on the idea of the amount of runtime

testing limitation by the characteristics of the system, its

components, and the test cases themselves. This approach is well

suited for usage in an interactive tool, enabling system engineers to

receive real-time feedback about the system they are integrating and

testing at runtime.

The evaluation of accuracy of the

predicted values and of the effect of

runtime testability on the system’s

reliability is left for later study1. More

validation using industrial cases and

synthetic systems has not been done

using proposed model. The approach

may not be useful for basic object

oriented systems.

8. 2008 Zheng &

Bundell

[31]

Their research was based on contract-based testing having Contract

for Testability as the principal goal in line with the Design by

Contract (DbC) principle. The DbC concept was extended to the

software component testing (SCT) domain, in developing a new

TbC technique and applied it to UML-based component integration

testing (CIT) with a case study.

The main idea behind TbC technique

was to improve component testability

through improved traceability,

observability and controllability. The

technique needs further evaluation and

validation with industrial data

9. 2005 Nguyen et.

al. [32]

In this research code testability analysis was done using source code

data flow diagram. These graphs are converted to ITG (Information

transfer graphs) and further to ITN (Information transfer nets) to be

used with SATAN tool. The algorithm to automatically translate the

SSA form into a testability model is verified with a case study.

The analysis method used at code level

is very complex. The study uses complex

graphs, whereas there are simplest

measures available in accordance with

the axioms, except that they can’t take

into account information on the data by

the flows.

10. 2003,

2004 &

2006

Bruntink

et. al.

[33]–[35]

The study was basically to demonstrate correlation between Class

level metrics (FOUT, LOCC, RFC etc.) and test level metrics

(dLOCC, dNOTC) keeping the main focus on issue of testability

using open source commercial java systems cases.

The study needs to be further extended

with more empirical data. Further the

study was only from unit testing

perspective using CK metrics, which

may further be analysed from using other

Paper ID: SUB153858 3050

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

metrics and at functional or Integration

testing level.

11. 1997 Wang [36] Research was done to provide Testable OO software (TOOS), with

built-in testability. TOOP approach for software development was

proposed and the testability of OOS at BCS level (CBCS), object

level (OTA) and system level (STA) are quantitatively modelled.

This built-in testable mechanism in objects improves the testability

of OO software in terms of test controlability and observability,

which can be inherited and reused further.

The approach has not been empirically

tested and verified w.r.t. industrial data.

12. 1997 Lin [37] The purpose of their research was to analyse testability of software

by tracing the source code instead of testing it. The proposed model

was refined over Voas PIE model with respect to a particular input

distribution. The test data conducted using a program showed new

PIE values closer but accurate than that of Voas model.

The technique needs to be further

explored as it is found to be time

consuming though useful in testability

analysis without any formal testing. The

direct correspondence with object

oriented software development approach

was not empirically established.

13. 1996 McGregor

& Srinivas

[38]

The main focus of the research was to analyse testability in terms of

visibility component of method for, which actually measures the

accessibility of the information that must be inspected to evaluate

the correctness of the execution of a method. Testability metrics in

terms of visibility component was conceptualised here.

The study was quite useful for structural

programming software though not

sufficient for object oriented

programming systems.

14. 1992-

94

Voas &

Miller

[39], [40]

& [41],

[42]

Basic works surrounded around system code and hidden fault

location through testability implementation. A new technique called

PIE (Propagation, Infection and Execution) based on the software

failure model was proposed. This technique measures testability of

each statement in software by a dynamic analysis, i.e. while running

the software.

The technique was formulated and tested

on structural programs. But the

technique added to complexity of the

overall test procedure and hence not

adopted much in industry. Though lot of

variation in the basic PIE model has

been proposed in later years.

4. Important Observations

4.1 Testability Constructs & Factors

During the study of testability at different stages of software

development life cycle in object oriented stems, lot of

important factors affecting the testability were observed. It is

important to throw some light on these factors, antipatterns

and improvisation techniques as well. The major constructs

contributing to testability are:

 Key Object Oriented Features: Object oriented software

characteristics are mandatory to be recognized and after

that the set of testability factors suitable at the design

phase should be finalized. All these major object oriented

features such as Class Size, Coupling, Cohesion,

Encapsulation, Inheritance and Polymorphism contribute

to testability as shown by researchers especially at design

time. These features contribute to the key quality factors

affecting testability hence need to be looked in detail from

all perspectives.

 Object Oriented Metrics: Many of these features are

incorporated in the form of popular object oriented

metrics such as LOC, NOC, LCOM, CBO, RFC,

DIT,WMC etc. are found suitable [10], [11] in testability

estimation both at deigning & coding level [16], [24],

[43].The metrics have been empirically validated using

commercial java software’s and junit test classes for

establishing strong correlation with testability by many of

them[3], [14], [24], [44]. Thus directly or indirectly the

role of these metrics had been trivial in testability

quantification.

 Six Major Contributing Factors: It has been found after

rigorous study that overall testability is affected by these

six quality factors Controllability, Observability,

Complexity, Traceability, Understandability, and Built

In Test[6]. Many factors have been the focus of attention

by different researchers at different stages of software

development cycle[3], [12], [15], [17], [19], [22], [45],

[46], which has lead to various theories, models and

metrics for quantification of these factors, which later help

improving testability. But the study still does not show an

elaborative impact of all of them together for testability

improvisation or test effort reduction.

4.2 Testability Anti-patterns

The software characteristics or design patterns, which leads

to testability weakness and raise test effort have been termed

as testability anti-patterns [47].The few of these diagnosed

anti-patterns which affect the design and code of the

software in terms of testability reduction are Cyclic

dependencies, Dynamic Binding, Exception Handling,

Recursive Implementation, Unstructured Code, Self usage

relationships, Class interactions. Though the avoidance of

these factors is not the focus of discussion but how and at

what level these anti-patterns need to be handled needs to be

analysed. Some of these have already been analysed in

previous research but overall relation of all in context of

object oriented systems needs more elaboration.

4.3 Testability Improvisation Techniques

There are many suggestive ways to improvise the overall

testability of object oriented systems at design and code

time. Commercial systems should take these into

consideration at various phases during development so as to

bring design changes and code transformations at right stage

avoiding high testing effort and development cost. Lot of

improvisations is suggested in UML diagrams [15], [48]

along with various testability estimation techniques using

several metrics on object oriented design[14], [16], [22],

Paper ID: SUB153858 3051

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[49] applicable at design time to resolve testability issues.

The further continuity of anti-patterns and testability issues

exist in the systems due to unstructured coding and complex

testing techniques which can be avoided or improved using

coding testability analysis such as PIE [50] or by introducing

Dependency Injections [51], software contracts [29], [52]z,

checkpoints & wrappers [53], simulation function, built in

test code [54]–[57]. Also lot of efforts have been put on

investigating testability from unit test perspective [35], [43],

[44] using various metrics, which may also help in building

batter testable systems.

5. Conclusion

Software testability is becoming an important factor to

consider during the software development and assessment.

The overall review of testability at various stages in software

development life cycle and in various forms reveals lot of

gaps in the study of testability. The study needs constructive

and quantitative analysis of major quality factors at design

as well as coding phase. The individual impact few of these

factors may have been taken care of already but the

combined effect of all of them keeping key object oriented

features in focus has not yet been analysed. Also the shift in

testability study focus from coding to designing phase is

gaining popularity. Though the attention is provided at

designing phase but one cannot ignore the various hidden

programming faults, which gets added to more test effort,

hence one should not restrict the focus only on designing but

also attention should be paid at source code and testing

phase testability improvisation. This in turn will help the

software engineers to not only reduce testing effort and

development cost but also improving the quality of software

significantly along with producing highly reliable,

maintainable and easily testable software.

References

[1] IEEE, “IEEE Standard Glossary of Software

Engineering Terminology (IEEE Std 610.12-1990),”

1990.

[2] ISO, “ISO/IEC 9126: Software Engineering Product

Quality,” 2002.

[3] S. Mouchawrab, L. C. Briand, and Y. Labiche, “A

measurement framework for object-oriented software

testability,” Inf. Softw. Technol., vol. 47, no. April, pp.

979–997, 2005.

[4] D. Romano, P. Raila, M. Pinzger, and F. Khomh,

“Analyzing the impact of antipatterns on change-

proneness using fine-grained source code changes,”

Proc. - Work. Conf. Reverse Eng. WCRE, pp. 437–446,

2012.

[5] R. Osherove, The Art of Unit Testing: with .NET

Examples, vol. 0. 2010.

[6] R. V Binder, “Design For Testabity in Object-Oriented

Systems,” Commun. ACM, vol. 37, pp. 87–100, 1994.

[7] M. Badri, A. Kout, and F. Toure, “An empirical analysis

of a testability model for object-oriented programs,”

ACM SIGSOFT Softw. Eng. Notes, vol. 36, no. 4, p. 1,

2011.

[8] S. Khatri, “Improving the Testability of Object-oriented

Software during Testing and Debugging Processes,” Int.

J. Comput. Appl., vol. 35, no. 11, pp. 24–35, 2011.

[9] Z. G. Ding, “Research and practice of the IVF software

testability model,” Proc. - 2010 2nd WRI World Congr.

Softw. Eng. WCSE 2010, vol. 2, pp. 249–252, 2010.

[10] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite

for Object Oriented Design,” IEEE Trans. Softw. Eng.,

vol. 20, no. 6, pp. 476–493, 1994.

[11] B. Henderson-Sellers, Object-Oriented Metric. New

Jersey: Prentice Hall, 1996.

[12] M. Nazir, “An Empirical Validation of Complexity

Quatification Model,” Int. J. Adv. Res. Comput. Sci.

Softw. Eng., vol. 3, no. 1, pp. 444–446, 2013.

[13] M. Nazir, R. A. Khan, and K. Mustafa, “A Metrics

Based Model for Understandability Quantification,” vol.

2, no. 4, pp. 90–94, 2010.

[14] M. Nazir and K. Mustafa, “An Empirical Validation of

Testability Estimation Model,” Int. J. Adv. Res. Comput.

Sci. Softw. Eng., vol. 3, no. 9, pp. 1298–1301, 2013.

[15] S. Khalid, S. Zehra, and F. Arif, “Analysis of object

oriented complexity and testability using object oriented

design metrics,” in Proceedings of the 2010 National

Software Engineering Conference on - NSEC ’10, 2010,

pp. 1–8.

[16] R. A. Khan and K. Mustafa, “Metric based testability

model for object oriented design (MTMOOD),” ACM

SIGSOFT Softw. Eng. Notes, vol. 34, no. 2, p. 1, 2009.

[17] E. Mulo, “Design for testability in software systems,”

2007.

[18] M.-C. Shih, “Verification & Measurement of Software

Component Testabiliy,” 2004.

[19] S. Jungmayr, “Design for testability,” in Pacific

Northwest Software Quality Conference, 2002, pp. 57–

64.

[20] S. Jungmayr, “Reviewing Software Artifacts for

Testability,” 2002.

[21] B. Baudry, Y. Le Traon, G. Sunye, and J. M. Jézéquel,

“Towards a ’ Safe ’ Use of Design Patterns to Improve

OO Software Testability,” Softw. Reliab. Eng. 2001.

ISSRE 2001. Proceedings. 12th Int. Symp., pp. 324–329,

2001.

[22] B. W. N. Lo and H. Shi, “A preliminary testability

model for object-oriented software,” Proceedings. 1998

Int. Conf. Softw. Eng. Educ. Pract. (Cat. No.98EX220),

pp. 1–8, 1998.

[23] R. S. Freedman, “Testability of software components -

Rewritten,” IEEE Trans. Softw. Eng., vol. 17, no. 6, pp.

553–564, 1991.

[24] L. Badri, M. Badri, and F. Toure, “An empirical

analysis of lack of cohesion metrics for predicting

testability of classes,” Int. J. Softw. Eng. its Appl., vol.

5, no. 2, pp. 69–86, 2011.

[25] M. Ó. Cinnéide, D. Boyle, and I. H. Moghadam,

“Automated refactoring for testability,” Proc. - 4th

IEEE Int. Conf. Softw. Testing, Verif. Valid. Work.

ICSTW 2011, pp. 437–443, 2011.

[26] M. Harman, “Refactoring as testability transformation,”

in Proceedings - 4th IEEE International Conference on

Software Testing, Verification, and Validation

Workshops, ICSTW 2011, 2011, pp. 414–421.

[27] M. Harman, A. Baresel, D. Binkley, and R. Hierons,

“Testability Transformation: Program Transformation

to Improve Testability,” 2011.

[28] Y. Singh and A. Saha, “Enhancing data flow testing of

classes through design by contract,” Proc. - 7th

Paper ID: SUB153858 3052

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

IEEE/ACIS Int. Conf. Comput. Inf. Sci. IEEE/ACIS ICIS

2008, conjunction with 2nd IEEE/ACIS Int. Work. e-

Activity, IEEE/ACIS IWEA 2008, pp. 567–574, 2008.

[29] Y. Singh and A. Saha, “Improving the testability of

object oriented software through software contracts,”

ACM SIGSOFT Softw. Eng. Notes, vol. 35, no. 1, p. 1,

2010.

[30] A. González, É. Piel, and H.-G. Gross, “A model for the

measurement of the runtime testability of component-

based systems,” in IEEE International Conference on

Software Testing, Verification, and Validation

Workshops, ICSTW 2009, 2009, pp. 19–28.

[31] W. Zheng and G. Bundell, “Test by contract for UML-

based software component testing,” in Proceedings -

International Symposium on Computer Science and Its

Applications, CSA 2008, 2008, no. 4, pp. 377–382.

[32] T. B. Nguyen, M. Delaunay, and C. Robach,

“Testability Analysis of Data-Flow Software,” Electron.

Notes Theor. Comput. Sci., vol. 116, pp. 213–225, 2005.

[33] M. Bruntink and A. Vandeursen, “Predicting class

testability using object-oriented metrics,” in

Proceedings - Fourth IEEE International Workshop on

Source Code Analysis and Manipulation, 2004, pp.

136–145.

[34] M. Bruntink, “Testability of Object-Oriented Systems :

a Metrics-based Approach,” 2003.

[35] M. Bruntink and A. Van Deursen, “An empirical study

into class testability,” J. Syst. Softw., vol. 79, no. 9, pp.

1219–1232, 2006.

[36] Y. Wang, G. King, I. Court, M. Ross, and G. Staples,

“On testable object-oriented programming,” ACM

SIGSOFT Softw. Eng. Notes, vol. 22, no. 4, pp. 84–90,

1997.

[37] J.-C. Lin, S. Lin, and L. Huang, “An approach to

software testability measurement,” in Proceedings of

Joint 4th International Computer Science Conference

and 4th Asia Pacific Software Engineering Conference,

1997, pp. 515–516.

[38] J. McGregor and S. Srinivas, “A measure of testing

effort,” in Proceedings of the Conference on Object-

Oriented Technologies, USENIX Association, 1996, vol.

9, pp. 129–142.

[39] J. M. Voas and K. W. Miller, “Improving the software

development process using testability research,” Softw.

Reliab. Eng. 1992. …, 1992.

[40] J. M. Voas, K. W. Miller, and J. E. Payne, “PISCES: a

tool for predicting software testability,” [1992] Proc.

Second Symp. Assess. Qual. Softw. Dev. Tools, 1992.

[41] J. M. Voas and K. W. Miller, “Software Testability :

The New Verification,” pp. 187–196, 1993.

[42] J. M. Voas, “Testability, testing, and critical software

assessment,” Proc. COMPASS’94 - 1994 IEEE 9th

Annu. Conf. Comput. Assur., no. 2, pp. 165–167, 1994.

[43] M. Badri, “Empirical Analysis of Object-Oriented

Design Metrics for Predicting Unit Testing Effort of

Classes,” J. Softw. Eng. Appl., vol. 05, no. July, pp.

513–526, 2012.

[44] Y. Singh and A. Saha, “Predicting Testability of

Eclipse: Case Study,” J. Softw. Eng., vol. 4, no. 2, pp.

122–136, 2010.

[45] G. Jimenez, S. Taj, and J. Weaver, “Design For

Testability,” in The NCIIA 9th Annual Meeting, 2005,

pp. 75–84.

[46] J. Gao, “Componenet Testability and Component

Testing Challenges.”

[47] B. Baudry, Y. Le Traon, G. Sunye, and J. M. Jezequel,

“Measuring and improving design patterns testability,”

9th Int. Symp. Softw. Metrics, METRICS 2003, pp. 50–

59, 2003.

[48] B. Baudry and Y. Le Traon, “Measuring design

testability of a UML class diagram,” Inf. Softw.

Technol., vol. 47, no. 13, pp. 859–879, 2005.

[49] T. J. McCabe and C. W. Butler, “Design complexity

measurement and testing,” Commun. ACM, vol. 32, no.

12, pp. 1415–1425, 1989.

[50] J. M. Voas, “PIE : A Dynamic Failure-Based

Technique,” IEEE Trans. Softw. Eng., vol. 18, no. 8, pp.

717–727, 1992.

[51] R. Lindooren, “Testability of Dependency Injection,”

2007.

[52] L. L. Liu, B. Meyer, and B. Schoeller, “Using Contracts

and Boolean Queries to Improve the Quality of

Automatic Test Generation,” Lect. Notes Comput. Sci.,

pp. 114–130, 2007.

[53] J.-C. Lin, S. Lin, and Ian-Ho, “An estimated method for

software testability measurement,” in Proceedings

Eighth IEEE International Workshop on Software

Technology and Engineering Practice incorporating

Computer Aided Software Engineering, 1997, pp. 116–

123.

[54] J. Vincent and G. King, “Principles of Built-In-Test for

Run-Time-Testability in Component-Based Software

Systems,” pp. 115–133, 2002.

[55] T. Jeon, “Increasing the Testability of Object-Oriented

Frameworks with Built-in Tests,” Building, pp. 169–

182, 2002.

[56] B. Pettichord, “Design for Testability,” Pettichord.com,

pp. 1–28, 2002.

[57] J. Gao, “Short Course Topic : Advances in Component-

Based Software Testing,” 2006.

Authors Profile

Dr. Pushpa R. Suri received her Ph.D. Degree from Kurukshetra

University, Kurukshetra. She is working as Associate Professor in

the Department of Computer Science and Applications at

Kurukshetra University, Kurukshetra, Haryana, India. She has

many publications in International and National Journals and

Conferences. Her teaching and research activities include Discrete

Mathematical Structure, Data Structure, Information Computing

and Database Systems.

Harsha Singhani received her Master of Computer Application

degree from Maharishi Dayanand University, Rohtak, Haryana,

India. She has got experience of over 12 years of teaching in field

of I.T. At present, she is pursuing Ph.D. (Computer Science) from

Kurukshetra University, Kurukshetra, Haryana. Her teaching and

research areas include database systems, automata theory, object

oriented programming and software testing.

Paper ID: SUB153858 3053

