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Abstract: Recently, secondary batteries have attracted a lot of attention. They have been used as an energy source in electric vehicles 

(EVs), hybrid electric vehicles (HEVs) and smart grids. This attention increases by emerging more demand for decreasing CO2 gas in 

the air and having more renewable source. For those applications for rechargeable batteries and specifically Li-ion chemistry based 

ones, the battery management system (BMS) needs to have a very close to the truth guess of state of charge (SOC) of each individual cell 

in the battery pack. This research paper presents an extended Kalman filter based method to estimate SOC of Li-ion batteries. The 

validity of the procedure is demonstrated experimentally for an APR18650m1 LiFePO4 battery. 
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1. Introduction 
 

For electrical energy storage, secondary batteries are one of 

the most first choices. This potential have gained due to those 

batteries ability to respond fast to energy demand, energy 

efficiency, and their availability. the worldwide demand for 

reduction in CO2 pollution, emerging renewable energy 

sources like solar panels and wind farms and finally 

increasing number of Electrical Vehicles (EVs) in streets, 

advanced battery systems have been proposed for a wide 

range of applications varying from EVS, hybrid electric 

vehicles (HEVs) to smart grids [1]. 

 

Among different possible chemistries for secondary batteries 

in the market, Li-ion batteries have several advantages over 

NiMH and lead acid ones and gain more popularity. These 

advantages include higher energy density, less weight, longer 

cycle life than those of systems based on NiMH or lead acid. 

An appropriate battery model is necessary for proper design; 

engineering and operation of these battery systems require 

[2]. A lot of models have been proposed in the research 

worlds that are sufficiently accurate to show electrical 

behavior of Li-ion batteries [3-6]. These models need to rely 

on parameters of the battery such as SOC, which is an inner 

state of the battery [7], to allow them working properly. In 

recent years, different methods are proposed by many 

researchers to improve the estimation of the SOC [8]. 

 

Lots of efforts have been used to improve accuracy of SOC 

estimation. Coulomb counting method is the most common 

method used to estimate SOC [9-10]. However, this method 

has several disadvantages like sensitivity to the initial SOC 

value that could be inaccurately estimated and the 

accumulated error due to its integration nature [1, 10]. In 

addition to this method , a number of intelligent approaches 

has been developed in an attempt to achieve a more accurate 

SOC estimation, such as sliding mode observer [11]- [12], 

and the neural network method [13]- [14], and others methods 

have been investigated. 

 

For control and vehicle power management, accurate 

estimation of SOC is important [15], [16]. However, in most 

of the estimation methods described above, the effect of 

current flow direction, SOC and temperature on the battery 

model parameters are not considered. Meaning that, the 

robustness of these SOC estimation algorithms has not been 

sufficiently assessed. More than that, a more strong method is 

needed to guess the SOC of a lithium ion cell. 

 

EKF is known to be optimal for handling recursive 

mathematical equations in nonlinear systems such as those 

encountered in Li-ion batteries. In this paper, first the 

electrical models to estimate Li-ion battery have been 

presented. Later on, EKF haven explained and is used to 

estimate SOC for Li-ion batteries used in EVs. Last section, 

concludes the paper. 

 

2. Electrical Model of the Battery 
 

SOC, as one of the most important information in BMS used 

in EVs , smart grids and robots [17]- [19] that cannot be 

measured directly during battery operation. As a result, 

estimating SOC is the only way to derive its value. To 

estimate this value, a battery model must be chose. 

 

To capture Li-ion battery performance for different 

applications, a variety of battery models have been 

developed. Among those models, the electrochemical models 

and the equivalent circuit models are widely used in electrical 

engineering goals. The electrical circuit models to predict I-V 

characteristics of batteries, use voltage and current sources, 

capacitors and resistors. For this work we have used the 

electrical model presented in [4] as the battery model. This 

model is shown in Fig. 1. In this model, energy balance 

circuit is a part of model which delivers SOC to the voltage 

response circuit. In this model, the ohmic resistance  

consists of the bulk resistance and surface layer impedance, 

accounting for the electric conductivity of the electrolyte, 

separator and electrodes, the activation polarization is 

modeled by  and , and the concentration polarization is 

presented by  and . 

 

To increase the model’s complexity, in this work the model’s 

components are assumed to be function of SOC. It is assumed 

that for charging and discharging, this model follows the 

same equations. 
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Figure 1: Electrical model for the Li-ion battery 

 

The following equations, express the electrical behavior of 

the practical model: 

 

                      (1) 

 

                               (2) 

 

                           (3) 

 

                            (4) 

 

In these equations,  is the battery terminal voltage,  is 

the battery open circuit voltage (OCV),  is 

charging/discharging current.  and  are respectively the 

short and long time transient voltage responses for 

charging/discharging. 

 

3. Extended Kalman Filter 
 

Kalman filter (KF) is a well-known estimation theory 

introduced in 1960 is [16]. KF provides a recursive solution 

through a linear optimal filtering to guess systems’ state 

variables. However, in case of nonlinear systems, a 

linearization process will be used to approximate the 

nonlinear system with a linear time changing system at each 

step. Using this system in KF, would result in an extended 

Kalman filter (EKF) on a real nonlinear system [20]. 

Following equations is shown in equations (5) and (6) are for 

nonlinear systems: 

 

                        (5) 

 

            (6) 

 

where (5) is all of the system dynamics represented in state 

equations, (6) the output equation of the system with a static 

relationship. Function f( ) and  are nonlinear 

transition function and nonlinear measurement function, 

respectively. Vectors  and  denote process and 

measurement noise, respectivly. For each time step, matrices 

of f( ), and  are linearized close to the 

operation point by the first order in Tyler-series and the rest 

of series are truncated. Assuming that f( ), and  

are differentiable at all operating points and , 

. Later on, as shown in equation (7), EKF starts 

filtering with the available information on the initial state 

( ) and error ( ) covariance. 

 

=E               (7) 

The Kalman filter, as shown in Figure 2, includes two steps, 

i.e., a prediction step and a correction step. During the 

prediction step, the filter predicts the value of the present 

state, system output, and covariance using the process model. 

During the correction step, the filter improves the 

estimated/predicted state and the error covariance using an 

actual output measurement from the output model. Since the 

predicted estimate is calculated before the present 

measurement is taken, it is called a priori estimate. The 

corrected estimate is called a posteriori estimate because it is 

calculated after the present measurement. In terms of 

notation, a superscript ―-‖denotes a priori estimate while a 

superscript ―+‖ denotes a posteriori estimate, and x ̂ denotes a 

state estimate. 

 

In figure 2,  is the priori state estimate at step time k and 

 is its corresponding priori covariance.  is the Kalman 

 

 
Figure 2: Complete picture of the operation of the extended 

Kalman filter [4] 

 

gain matrix,  is the posteriori state estimate at step time k, 

and  is its corresponding posteriori covariance matrix. In 

summary, the Kalman filter uses the entire observed input 

data  and measured output data  

to find the minimum squared error estimate  of the true 

state  [4].  

 

4. SOC Estimation using EKF 
 

As mentioned in section 3, EKF is an optimum state estimator 

for nonlinear systems. Basickly, EKF filters work with noisy 

measurement data and are not sensitive to the initial value’s 

of states due to its feedback control. Moreover, it can be used 

for accurate battery SOC estimation [21]. As EKF is formed 

in discrete space, equations (5) and (6) are transformed to 

their discrete counterparts to estimate SOC in discrete space. 

Following the form of EKF, the state equations for the 

nonlinear system of the battery are obtained as x1=Vs, x2=Vl 

and x3=SOC. 

 

As mentioned in introduction section, SOC as one of these 

states cannot be measured directly. However, the 

charging/discharging current  and battery’s terminal 

voltage  can be measured. Discrete time state space form 

for practical model after linearization of equations (5) and (6) 

are shown in (7) and (8). 

 

                    (7) 

 

                 (8) 

 

the state vector of practical model consists of three state 

variables as shown in (9). 
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                                         (9) 

 

where  equals to sampling time,  is the usable capacity of 

the battery’s available capacity. The matrixes A, B, C and D 

in equations (7) and (8) are defined as below: 

 

where  equals to sampling time,  is the usable capacity of 

the battery’s available capacity. The matrixes A, B, C and D 

in equations (7) and (8) are defined as below: 

 

                             (10)  

 

                               (11) 

  

=                    (12) 

 

                                       (13) 

 

and state space equations output equals to: 

                      (15)  

 

5. Simulation Results 
 

To confirm the validity of the proposed method for SOC 

estimation of Li-ion batteries and to compare the EKF 

method with the conventional coulomb counting method, a 

set of charge/discharge experiments are conducted on a Li-ion 

battery. This Li-ion battery is an APR18650m1 LiFePO4 

battery with 1.1Ah nominal capacity. It is assumed that tests 

are done at room temperature. 

 

Figure 3 presents the estimated terminal voltage using the 

proposed EKF method along with the SOC estimation error. 

 

This test has been done at room temperature, cell was fully 

charged and discharging current is 1C (1.1A). In the EKF 

filter the initial parameters for P and Q as follows: 

 

                              (16) 

 

 

                           (17) 

 

 
Figure 3: EKF estimation for a new cell’s (a) terminal 

voltage and (b) SOC estimation error discharged with 1.1A 

 

 
Figure 4: The EKF performance-SOC estimation error 

 

 
Figure 5: Current profile for the last experiment 

 

 
Figure 6: SOC estimation for a fully charged cell discharge 

with current profile presented in Figure 5 

 

The actual performance observed for the EKF is consistent 

with the behavior of its associated covariance matrix, 

computed from the algorithm in the Figure 2. SOC estimation 

error by EKF along with second root of P33 is given in 

Figure 4. 

 

Next test has been done with current profile presented in 

Figure 5 on a fully charged cell. The EKF starts estimation 

from 50% and converges to real SOC very fast. According to 

experiment results the EKF is able to estimate SOC and cell’s 

terminal voltage with mean error less than 1.1% and 44mV, 

respectively. Reference SOC and estimated SOC by EKF is 

presented in Figure 6. 
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6. Conclusion 
 

This paper proposed a more universal form of battery 

modeling and SOC estimation method called EKF. This 

approach could also be applied to other kinds of batteries and 

components. Using this approach SOC estimation error for 

the tested Li-ion cell is less than 4%. For future, to cover 

more practical conditions, temperature effect will consider on 

the model to estimate the SOC by EKF. 
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