
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Web Filtering with SQL Injection

Yogesh Ghuse
1
, Chetan Harshe

2
, Pratibha S. Ghode

3

1, 2Computer Engineering Department, Suryodaya College of Engineering & Technology, Nagpur, India

3Assistant Professor, Computer Engineering Department, Suryodaya College of Engineering & Technology, Nagpur, India

Abstract: As more businesses and organizations provide online services, the number of web sites or applications which are linked to a

database has increased greatly. Often the data held in such databases is confidential or private – and possibly of great interest to a

hacker, disgruntled employee, or criminal group. While the database and the server holding it may have been secured, the design of the

web interface is often overlooked and could allow unauthorized users access to the database. SQL injection, the use of database

commands in the SQL language where user input is expected, remains a top threat. It was the 3rd listed error in the January 2009

“CWE/SANS Top 25 Most Dangerous Programming Errors”[a] and has been the mechanism for a number of prevalent attacks. For

example, through most of 2008 there were ongoing, indiscriminate and widespread attacks on vulnerable web sites, which added a link

to a malicious file (usually JavaScript) that most web site visitors would unintentionally run on loading the page. This then caused the

visitor’s computer to be infected with malware. Even well-known and widely trusted web sites were affected by this problem. This

document will illustrate some of the main techniques used in SQL injection, then describe methods that can reduce the effectiveness of

such attacks. In addition to usual standard IT best practice, such as logging and regular and prompt patching, the majority of SQL

injection vulnerabilities can be moderated through careful and robust programming. It is hoped that the information provided here will

highlight the seriousness of leaving this type of flaw unaddressed and promote the improved design of database-linked Internet

resources.

Keywords: Web Application, SQLIA, Detection, Prevention, Vulnerabilities.

1. Introduction

Structured Query Language (SQL)[b] is used to interrogate

and manage relational databases such as Microsoft SQL

Server, MySQL, Oracle, PostgreSQL and Sybase. While

there is an ANSI/ISO standard for SQL defining elements

such as keywords and grammar, most of the major

implementations do not employ the full SQL standard and

add implementation-specific procedural extensions. For this

reason much SQL code is written for a certain target

platform and is unlikely to transfer easily to another SQL

injection occurs when an SQL instruction is entered in a

field of an application or web page that a user can change in

an attempt for it to be passed to and executed by the back-

end database.

There are a number of forms of SQL injection, which can be

broadly separated into input validation circumvention and

blind SQL injection. While some attacks are directed at a

weakness in the database software, the majority of attacks

seen use a flaw in the interface to the database to (without

permission) access, add, or modify data, or to execute a

command on the server itself. Clearly there can be serious

consequences when a malicious SQL injection attack

succeeds, affecting the confidentiality, integrity and

availability of the data and services it supports. The purpose

of this document is to demonstrate why it is necessary to

code web pages and applications securely, giving examples

of SQL injection attacks and to summaries some ways that

these systems can be secured.

The examples discussed relate to web pages or web

applications as these are a frequent target of SQL injection

attacks and the majority of weaknesses are straightforward

to resolve. These are non-invasive illustrations to

demonstrate the hazards and principles of SQL injection: a

real attacker would have few hesitations in applying

techniques that may cause considerable damage. The

OWASP Foundation has produced two tools that can be

used to learn about and analyze attacks. The application has

been developed to demonstrate web application security

errors, including SQL injection, and educate developers in

how to avoid them. A web proxy, such as OWASP‟s Web

Scarab, is needed to complete some of the activities.

2. Literature Survey

Boyd, Keromytis-2004 proposed SQLr and which uses

instruction set randomization of SQL statement to check

SQL injection attack. It uses a proxy to a append key to SQL

keyword. A de-randomizing proxy then converts the

randomized query to proper SQL queries for the database.

The key is not known to the attacker, so the code injected by

attacker is treated as undefined keywords and expressions

which cause runtime exceptions and the query is not sent to

database. The disadvantage of this system is its complex

configuration and the security of the key. If the key is

exposed, attacker can formulate queries for successful

attack.

Russell A. McClure and Ingolf H. Kruger-2005 proposed

SQL DOM (SQL Domain Object Model): a set of classes

that are strongly-typed to a database schema. It is based on

compile time checking of dynamic SQL statements. Instead

of string manipulation, these classes are used to generate

SQL statements. We show how to extract the SQL DOM

automatically from an existing database schema,

demonstrate its applicability to solve the problems, and

evaluate its performance.

Ke Wei et al.-2006 proposed A novel technique to defend

against the attacks targeted at stored procedures. This

technique combines static application code analysis with

runtime validation to eliminate the occurrence of such

Paper ID: SUB152936 347

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

attacks. In the static part, we design a stored procedure

parser, and for any SQL statement which depends on user

inputs, we use this parser to instrument the necessary

statements in order to compare the original SQL statement

structure to that including user inputs. The deployment of

this technique can be automated and used on a need-only

basis. We also provide a preliminary evaluation of the

results of the technique proposed, as performed on several

stored procedures in the SQL Server 2005 database.

3. Exsiting System

Most of existing techniques, such as filtering, information-

flow analysis, penetration testing, and defensive coding, can

detect and prevent a subset of the vulnerabilities that lead to

SQLIAs.

4. Proposed System

SQL injection is one of the main issues in database security.

It easily affects the database without the knowledge of the

database administrator and the user. It is a technique that

may corrupt the information in the database i.e. deletes or

changes the full database or records or tables. To exploit the

database system, some vulnerable web applications are used

by the attackers. These attacks not only make the attacker to

breach the security and steal the entire content of the

database but also, to make arbitrary changes to both the

database schema and the contents. SQL injection attack

could not be realized about information compromization

until long after the attack has passed in many scenarios, the

victims are unaware that their confidential data has been

stolen or compromised. SQL Injection attacks can be

performed by attackers just with the help of simple web

browser. The following section describes the attacks with an

example.

Generally the Authenticated users have username and

password such as,

Username: Rahul

Password: 123

The SQL Query format will be as follows,

Select * from table where username='rahul' and pwd='123';

The above query then retrieves the needed records from the

database where username and pwd is available in the

database or it shows some error messages to the browsers.

The unauthorized users or the attackers inject the following

SQL Injection in this field:

Username: r hul

Password: 123

Then the dynamic SQL query constructed from the above

information is,

Select * from table where username=' r hul ' and pwd=123;

In this SQL statement, the actual username is „rahul‟ which

is modified as ' r hul‟ by the attackers while generating the

Query. This includes the image of „a‟ in place of the

character „a‟. The attacker will now have the capability of

attacking the database by writing the injection code at the

inside location of the image (just as-image processing). Here

the username is visible as the set of characters so that even

by using the character level tainting, it will consider this

query as the character and performs the operation. When the

image is taken to compare with the string in the Meta Strings

library, due to the unavailability of information about the

images, the Meta strings library doesn‟t consider it as a

malicious code and accepts the string. Hence the Query was

sent to the database. The result of this query performs SQL

Injection attacks.

5. Plan of Action

Table 1: Plan of Action

Month Plan Of Action

Dec. 2014 Study Of Literature Survey.

Jan. 2015 Module1 Creating a bookseller website, in which

registered user can enter into system and purchase book.

Feb. 2015 Module2 In which unauthorized user with the help of

SQL code and enter into system and hack the system.

Mar. 2015 Module3 Ceating filters for sql code.
April.2015 Deployment of all modules and Final testing.

6. Problem Definition

A new approach for protecting Web applications-An Image

level Tainting, involves comparing the SQL statements that

includes the images viewed as characters in the user input

with the Meta strings library, to prevent them if found any

and protecting the web applications against SQL injection is

discussed in this paper. This project includes the strange idea

of combining the Indication based method and the

Inspection Method. The main problem that occurs with web

application security is the SQL Injection, which gives the

attackers unauthorized access to the database that contains

the Web applications. This leads to the cause of calamities in

the Web applications and this is very serious. In Indication

based method point of view, it exhibits detection mode for

SQL injection using coupled way routing arrangement of

amino acid code formulated from web application form

parameter sent via the web server. On the other hand from

the Inspection based method point of view, it analyzes the

transaction to find out the malicious access. In Indication

based method it uses an approach called Beschermen

algorithm, not only to prevent the SQL Injection attacks, but

also reduces the time and space complexity. This system was

able to stop all of the successful attacks.

7. Architecture

Our approach against SQLIAs is based on signature based

approach that easily addresses the security problems related

to input validation. This approach describes two modules

which are used to detect the security issues. Comparative

module has got the statement from the web application

which includes both the Hirschberg Algorithm to analyze the

Statement into the set of characters, and Beschermen

algorithm to compare the each character with respect to the

Reciting module. After the each character in the statement is

scrutinized, if it finds any suspicious activity like finding the

images in place of characters, it acts as an active agent to

stop the transaction and audit the attacks.

Reciting module includes the Meta strings library which

comprises the predefined keywords and is updated with new

type of information in terms of coordinates of the images,

Paper ID: SUB152936 348

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

their pixels information, color resolution and the details on

type of images (extension files like .jpg etc). If both

comparative module and inspection module has satisfied, it

provides the complete transaction. The following figure 1

clearly portrays the architecture of the system to prevent the

SQL Injection attacks using this new approach. The

following section outlines each module's work in detail.

 This architecture can be understood from the following

figure:

Figure 1: Architectural Design

A. Reciting Module

 Reciting module includes the Meta strings library which

comprises the predefined keywords and is updated with new

type of information in terms of coordinates of the images,

their pixels information, color resolution and the details on

type of images (extension files like .jpg etc).

B. Comparative Module

In Comparative module, it gets an input from the web

application and it compares the statement with the Meta

strings library included in the Reciting Module, if founds

any error message it attempts to block the query. It uses the

Hirschberg algorithm to analyze the statement into set of

characters. It uses Beschermen algorithm for comparison of

each character with Meta Strings library and prevent SQL

Injection attacks if found. The time complexity of this

algorithm is O(nm) and space complexity is O(min(nm)).

8. Beschemen Algorithm

Beschermen algorithm is generally applicable algorithm for

finding an optimal sequence alignment. Let, The Statement

generated from the Web application is =Q The Character of

the Statement is =C, The Meta String Library = M The Pixel

Size of the statement= X The Original Statement included in

the Meta String library= S.

Hence,

The Pixel size of the generated Statement = Q(X),

The Pixel size of the original String in Meta Strings Library

= M(S(X)).

SQL INJECTION CODE

Select * from table where username=' r hul ' and pwd=123;

The algorithm describes the way how we follow the

procedure for preventing the SQL Injection Attacks. Here,

we had considered the generated query as Q, The Meta

Strings Library is M, The Character of the Statement is C,

The Pixel size of the statement as X and the Original

statement to which the generated statement of web

application is to be compared is represented as S. Let i & j

be the position values of both the generated and actual

statement. First, we consider the Statement Q from the Web

application, and we choose Ci of Q. now the first character

of the generated statement is compared with that of the

actual statement included in the Meta Strings Library, in

terms of their pixel information. If they are matched, i.e.

Q(C(X)) = M(S(C(X))), then the character is considered and

sent to the database server for the further transactions. This

process repeats till the total statement is accepted.

If at any position, when Q(C(X))! = M(S(C(X))), then the

character is considered as an image and the total statement

should be blocked. Further the Details of the Prevention is to

be reported. Comparing to Hirschberg algorithm, this

approach is very advanced as it considers the images along

with the strings for checking; where as Hirschberg principle

is unable to check the images.

9. Result

Figure 1: Home Page

Figure 2: Registration Page

Paper ID: SUB152936 349

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3: User Loging Page

Figure 4: Admin Loging Page

Figure 5: Loging Page Used by Unauthorised User without

SQL Code

Figure 6: Loging Page Used by Unauthorised User with

SQL

Code

Figure 7: Unauthorised User Acess Admin Page

10. Conclusion and Features

This project presented a highly automated approach for

protecting Web applications from SQLIAs. Our approach

consists of 1) Updating of Meta Strings library,2)using

Beschermen algorithm to compare the given statement with

updated meta strings library, find out the SQL Injection

attacks. 3) Using DBMS Inspection methods to find out the

transactions and reports the generation in case of SQL

injection attacks. Beschermen algorithm is used to detect the

SQL Injection attacks in order to reduce the time and space

complexity and it provides the complete execution after

analyzing the DBMS Inspection. Our approach also provides

advantages over the many existing techniques environments,

reduces the Time and Space complexities. Moreover, it

requires no modification of the runtime system as it is

defined at the application level, and hence imposes a low

execution overhead.

Features

 For protecting Web applications (banking application).

 It also used in e-commerce application.

 Social networking sites to provide security on account

related.

References

[1] R. Ezumalai, G.Aghila‟s “Combinatorial approach for

preventing SQL Injection attacks”, 2009 IEEE

International Advance Computing Conference (IACC

2009 PanagiotisManolios, "WASP: Protecting Web

Applications Using Positive Tainting and Syntax-Aware

Evaluation", IEEE Transaction of Software Engineering

Vol 34, Nol, January/February 2008.

[2] Konstantinos Kemalis and Theodora‟s Tzouramanis,

"Specification based approach on SQL Injection

detection", ACM, 2008.

[3] Stephen Thomas Patiala, India, 6-7, March 2009.

[4] William G.J. Hal fond, Alessandro Or so, and Laurie

Williams "Using Automated Fix Generation to Secure

SQL Statements", International workshop on Software

Engineering and secure system ", IEEE, 2006.

[5] V. Benjamin Livshits and Monica S. Lam, "Finding

Security Vulnerabilities in Java Applications with Static

Analysis", ACM, 2005.

[6] Z. Su and G. Wassermann, "The Essence of Command

Injection Attacks in Web Applications", 33rd ACM

Paper ID: SUB152936 350

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

SIGPLAN, SIGACT Symposium on Principles of

Programming Languages, Charleston, South Carolina,

USA, 2006, pp. 372-382.

Paper ID: SUB152936 351

