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Abstract: Malaria is a vector borne disease that occurs in areas where the climatic and environmental conditions are suitable for 

survival of Anopheles mosquitoes. The environmental and climatic factors that affect malaria transmission are, rainfall, temperature, 

humidity and vegetation. Deforestation, agricultural activities and population movements are an anthropogenic factor that affects 

malaria transmission. Despite implementation of several strategies in controlling and management of malaria in western parts of 

Kenya, high numbers of malaria cases are still being recorded due to changing environmental and climatic factors. The aim of this 

study was to apply the geostatistical modelling to estimate and map the spatial and temporal changes in malaria risk by using the 

available time series climatic and environmental data and to estimate the population at risk at different time epochs. The data was 

prepared using python scripts and different ArcGIS tools. A spatial temporal model based on Bayesian approach was used to estimate 

malaria risk and was implemented in R using Integrated Nested Laplace Approximation (INLA) package to estimate the malaria risk. 

INLA was preferred to Monte Carlo Markov Chain (MCMC) due to its efficient computation advantage. 
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1. Introduction 
 

Malaria is a leading cause of mortality and morbidity in the 

world. The disease which is caused by malaria parasite 

(Plasmodium falciparum) is the leading cause of deaths in 

most developing countries especially in Sub-Saharan Africa 

where rate of transmission is highest in the world [1]. This is 

a major inhibition to economic development due to large 

amount of resources mobilized in prevention and control of 

the disease [1]. 

 

The World Health Organization estimates that 3.4 billion 

people live in areas at risk of malaria transmission in 106 

countries and territories [2]. In 2012 alone, Malaria caused 

approximately 207 million clinical episodes which resulted in 

655,000 deaths [3]. 86% of the total deaths were children 

under the age of 5 years because their bodies have not 

developed partial immunity to malaria parasite [3].  

 

In Kenya 70% of the population live in malaria prone areas 

[4]. Depending on intensity of malaria transmission, four 

malaria zones can be delineated s namely; endemic lake and 

coastal regions, epidemic-prone highland, seasonal 

transmission risk district and low risk districts [4]. The 

malaria prevalence rates vary within zones with endemic 

areas having a rate of 20% to 40%, 5% to 20% in highland 

epidemic prone areas. Seasonal malaria transmission areas 

comprise mainly the arid and semi-arid regions of Kenya is 

characterized by low prevalence of less than 5%. 

 

Malaria is an environmental disease transmitted by vectors 

which require optimum climatic and environmental 

conditions for survival. The climatic and environmental 

factors vary from one region to another which in turn leads to 

varying malaria transmissions. 

 

Environmental factors that affect the development and 

survival of malaria vectors and parasites include; rainfall, 

temperature, humidity, surface water and vegetation. Any 

change in these factors has a major impact on malaria 

transmission [5]. 

 

Anthropogenic factors that affect malaria prevalence include 

deforestation, urbanization, irrigation, population movements 

among other human induced changes [6]. The vectorial 

capacity of deforested areas are 77.7% higher than forested 

areas, therefore deforestation and human caused 

environmental changes exposes the population with low 

functional immunity to malaria parasite carrying vectors 

leading to spread in transmission [7]. 

 

2. Problem statement 
 

The government of Kenya and Non-Governmental 

Organizations (NGOs) have intensified malaria control 

strategies in malaria prone areas especially in Western 

Kenya. However, with increased interventions and control 

strategies being implemented, high number of malaria cases 

have continued being recorded in Homabay, Siaya, Vihiga 

and Kisumu counties which border Lake Victoria and also in 

adjacent counties of Kericho, Nandi and Bomet located in 

Kenya highlands which were initially had low risk or malaria 

free transmission [8] [9]. This increase in malaria 

transmissions may be due to changes in anthropogenic and 
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environmental factors that have occurred over time and 

space. Therefore it is imperative to develop methods of 

estimating their effect on malaria risk as well as provide 

information on the factors that drive the increase and 

redistribution. 

 

Most studies have not considered the effect of how changing 

environmental and climatic factors affect spatial and 

temporal variation in malaria which may have led to 

formulation of non-effective control strategies.  

 

In this study geostatistical model was adopted. This approach 

enables a continuous and accurate modelling and prediction 

of malaria risk taking into consideration environmental, 

climatic and other factors that directly influence malaria 

transmission [10].  

 

The objective of this study was to accurately and precisely 

estimate the malaria prevalence in western Kenya while 

taking into account environmental and climatic factors. The 

resulting population at risk maps will help in understanding 

the malaria changes over time which will aid in optimization 

of control strategies.  

 

3. Study Area 
 

The study area in the research covered 9 counties in western 

Kenya with an area of 17,227.6 km
2
. They include Kisumu, 

Siaya, Homabay, Kisii, Nyamira, Vihiga, Nandi, Bomet and 

Kericho Counties. The study area lies between longitudes33° 

56' 23"Eto 35° 40' 12"E and latitudes between 1° 1' 48S to 0° 

34' 11"N. 

 

The area is inhabited by a population of approximately 6.8 

million [11]. The main economic activities in lake counties 

include subsistence farming, fishing, rice farming, sugarcane 

farming, livestock keeping among others while the highland 

counties of Kericho, Bomet and Nandi include tea growing 

and processing, dairy Farming, horticulture and floriculture, 

wheat, fish farming, commercial businesses. 

 
Figure 1: Map of study area 

 

4. Methodology  
 

The data used for this study was identified based on previous 

literature on the various climatic and ecological determinants 

which directly affect the development and survival of the 

plasmodium falciparum parasite as well as the malaria 

transmitting vectors. The data used for this study were 

population density, temperature suitability Index (TSI), 

rainfall, deforestation and enhanced vegetation Index. Figure 

2 shows the study workflow consisting of several processes. 

Time series data were downloaded from different data 

sources and processed using python scripts. Table 1 shows 

the data used their sources and projection.  

 

Table 1: Data sources and projection 
Data Source Projection 

Temperature Global (Land) Precipitation 

and Temperature 

(https://climatedataguide.ucar.

edu) 

WGS84 

Rainfall Fews Net 

http://earlywarning.usgs.gov/fe

ws/ 

Africa Albers Equal 

Area Conic 

Projected coordinate 

system  

EVI Land Processes Distributed 

Active Archive Center (LP 

DAAC) 

WGS 84 

Vegetation 

Cover 

Land Processes Distributed 

Active Archive Center (LP 

DAAC) 

WGS 84 

Population Afripop Project 

http://www.worldpop.org.uk/ 

WGS 84 

TSI Malaria Atlas Project 

(http://www.map.ox.ac.uk/) 

WGS 84 

 

 The data manipulation processes included projection 

definition, raster data combination and extraction of values, 

vector data clipping and masking of raster data. Batch 

resampling was done to make sure all covariates were 500 

meters in pixel resolution  

 

 
Figure 2: Study methodology 

  

5. Spatial-Temporal Analysis 
 

The plasmodium falciparum surveys had different age ranges 

for sampled populations, to ensure similarity between 
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different surveys data they were age corrected to 

standardized range of 2-10 years (PfPR2-10). Since the 

survey prevalence data was unevenly distributed in both time 

(years) and space (longitudes and latitudes) a Bayesian 

geostatistical generalized linear mixed model (BGGLM) with 

spatial and temporal random effects was used to predict 

PfPR2-10 in the study region. The model assumes that the 

number of children from 2 years to below 10 years of age 

that are positive in the study region at any time is a binomial 

random variable. The logistic model incorporates the 

covariates effects, spatial autocorrelations and time as a 

second order autoregressive effects. Bayesian inference was 

achieved using intergrated nested laplace approximation 

(INLA) in R [12]. Model posterior outputs included the 

predicted mean and standard deviation of PfPR2-10.  

 

6. Results and Discussion  
 

Deforestation 

 

Figure 3 Shows areas in which deforestation occurred 

between 2000 and 2009.  

 
Figure 3: Map of deforested areas 

 

Rainfall 

The rainfall patterns in the area as shown in figure 4 depicts 

increased rainfall amounts between 1998 and 1999 when the 

El nino rains were experienced in western Kenya. However, 

the total rainfall remained relatively low from 2001 to 2008 

followed by an increase in 2009 

 

 
Figure 4: Long Term Rainfall Trend 

 

 

 

 

Temperature  

 

Figure 5 shows the temporal changes of the mean annual 

temperature in each of the counties under study. Siaya 

County had the highest average temperature while Kericho 

and Nandi had low temperatures throughout the study period. 

However uniform increase in temperature of up to 1°C is 

experienced between1996-2000, 2002-2005 and 2007-2009. 

Year 2001 was the coldest in all the counties under study 

 

 
Figure 5 long term rainfall trend 

 

Average EVI. 

High average EVI values were recorded in all counties in 

2001 with a gradual decline until 2005 when they started to 

rise achieving peak values in 2005 followed by continous 

decline upto 2009. There was increase in EVI values from 

2009 to 2010. 

 

 
Figure 6: Average EVI change over time 

 
Malaria Risk 

 

Figure 7 shows maps of changing Plasmodium falciparum 

(PfPR2-10) risk in the study area. The malaria risk ranges 

between 0% (light yellow) the lowest to 100% (dark red) the 

highest. 
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Figure 7: Maps of changing Malaria risk 

 

In 1995 there was high malaria risk around the lake region 

and reduces as one moves away towards highland areas. The 

border between Kisumu and Nandi counties had a high risk 

malaria hotspot. Bomet County had low risk in most of the 

areas, however, there is increased risk towards the north 

where there was a hotspot at the border with Kericho County 

In the year 2000, Siaya, Kisumu and Homabay counties had 

mid to high malaria risk. The highest risk was in the eastern 

part of Kisumu counties as well as the border between Siaya 

and Kisumu counties. High malaria risk hotspots were also 

experienced at the border between Kericho and Kisumu 

counties as well as northern part of Nandi County.  

 

In 2005 high malaria risk hotspots occurred on the northern 

part of Kisumu County and at the border with Siaya County. 

The western region of Homabay County was characterized by 

medium to high risk in malaria transmission. Vihiga County 

experienced high malaria risk at the north eastern parts 

towards Nandi County. Kisii, Nandi and Kericho Counties 

experienced moderately low risk in malaria transmission with 

Bomet County experiencing the lowest malaria risk. 

 

In 2009, high malaria risk hotspots were observed in Siaya, 

Homabay and Kisii counties with the highest risk 

experienced in Kisumu County. Larger extents of Nandi, 

Vihiga and Kericho counties had moderate malaria risk. 

Bomet County had lower malaria risk throughout the county 

except in the hotspot that occurred at the border with 

Nyamira County. 

 

In 2013 malaria risk distribution is high around Lake 

Victoria. Siaya, Vihiga, Kisumu and Homabay all had high 

risk of malaria infection, but less compared to other years. 

Nandi and Kericho counties had higher risk in areas 

bordering lake counties. A similar scenario is observed in 

Kisii County where the risk northwards to the border with 

Homabay County. 

 

Population at Risk 

 

Figure 8 shows the percentage of the population at risk over 

the years in the counties under study. The graph shows that 

malaria risk increased between 1995 and 2000 in Homabay, 

Kisii, Kisumu and Nyamira counties followed by decrease in 

2005 and 2009 with an increase in 2013. Population at risk of 

malaria decreased between 1995 and 2000 in Siaya, Vihiga, 

Kericho, Bomet and Nandi. All counties under study except 

Nandi, Bomet and Kisii had increase in population at risk of 

malaria between 2009 and 2013. Homabay, Siaya, Kisumu 

and Vihiga had the highest population at risk with Bomet 

County having low malaria population at risk. 

 

 
Figure 8: Graph of percentage of population at risk 

 

Figure 9 represents the maps of population at risk of malaria 

infection. The map shows a general increase in population at 

risk of malaria from 1995 to 2000, followed by a decrease 

between 2000 and 2009 with an increase in 2013. 

 

 
Figure 9: Maps of population at risk 
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Table 2: Percentage change in population at risk 

 
 

Table 2 shows that population at risk of malaria increased 

from 1995 to 2000 in Homabay, Kisii, Kisumu and Siaya 

counties. Other counties experienced a decrease in malaria of 

ranging 0.7% to 2.1%. For the period from 2000 to 2005, all 

counties except Bomet experienced decrease in population at 

risk with the greatest decrease in Siaya County at 21.6%.  

 

In the period 2005 to 2009, most counties experienced slight 

changes in population at risk with the highest decrease of 

2.9% experienced in Nandi County. The highest increase 

during this period was in Kericho which experienced an 

increase of 1.8%. 

For the period 2009 to 2013 there was a sharp increase in 

population at malaria risk in Vihiga and Siaya Counties 

which experienced an increase of 11.4% and 13.1% 

respectively. Homabay, Kisumu, Nyamira and Kericho 

experienced a slight increase at 1.2% to 2.4%. However a 

decrease in population at malaria risk was experienced in 

Kisii, Bomet and Nandi Counties at 3.1%, 0.3% and 1.2% 

respectively. 

 

Table3 shows the total population and the estimated 

population at risk in each county per year of prediction.  

 

 

Table 3: Population and population at risk per county 

 
 

7. Model Validation 
 

In order to assess the validity of the estimated model a 

residual analysis was performed for the 10% of data which 

was used as validation data. The resulting correlation 

coefficient was 0.96 which shows the model ability to predict 

values at unobserved locations was very strong. The root 

mean square error was 0.07 indicating the model accuracy 

was good for assessing the average accuracy of the individual 

observations. 

 

Conclusion 
 

The results for this study provided a model based malaria 

risk maps for western Kenya at high resolution (0.5 X 0.5 

km). Moreover, the study explored the underlying spatial and 

temporal processes that are the key causes of redistribution of 

malaria risk in the region. Additionally the study was able to 

determine the areas with high incidence of malaria risk and 

the number of people at risk. 

 

From the results, warm and humid areas are experiencing 

high malaria transmission relative to colder and humid areas. 

Moreover areas with increased rainfall, temperature and high 

vegetation indices show increased malaria risk. This is in 

contrast with areas with moderately low average temperature 

of less than 20˚C which throughout the years experienced 

low malaria risk with low changes in population at risk over 

the period of study.  

 

The results shows that counties which had increase in 

temperature resulted in increased risks of malaria as observed 

in Kericho County. 

 

One of the limitations of this study was the uneven 

distribution of case based survey data which could have 

resulted in under prediction or over prediction in some areas. 

This is was mainly because many of the case based survey 

were concentrated in areas which have shown to experience 

high number of reported malaria cases over the years. Future 

studies should develop ways of accounting for uneven 

distribution of malaria survey data.  

 

The malaria control and management strategies can be 

effectively formulated using the findings from this study. 

This will ensure that limited resources are utilized effectively 

and efficiently by focusing on the malaria redistribution areas 

as well as high risk areas instead of blanket application in 

entire region.  
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