
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

An Efficient Failover Enabling Mechanism in

OpenStack

S. Ramakrishnan

M.Tech Cloud Computing

Department of Information Technology

SRM University, SRM Nagar, Kattankulathur, Tamil Nadu, India, 603203

Abstract: This Paper actually focuses on an efficient approach to enable failover in OpenStack an Open Source Cloud operating

system that plays an important role in business continuity and Disaster Recovery. We have setup a simulated environment wherein

Single node OpenStack Deployment has been installed on two different hypervisors and Efficient Scripting has been done in the

Compute node i.e. Nova as it takes control of the Hypervisors Controlling the OpenStack installed on top of the Host machines. We have

demonstrated the Failover in the OpenStack.The goal of this work is to create a framework that will enable protecting applications and

services (VMs, images, volumes, etc) from disaster. Determining and selecting what application and services to protect is the

responsibility of the user, while handling the logistics of protecting is up to the cloud (and its operator).

Keywords: OpenStack, Disaster Recovery, Failover, Hypervisors

1. Introduction

OpenStack Compute (Nova) is a cloud computing fabric

controller, which is the main part of an IaaS system. It is

designed to manage and automate pools of computer

resources and can work with widely available virtualization

technologies, as well as bare metal and high-performance

computing (HPC) configurations. KVM, VMware, and Xen

are available choices for hypervisor technology, together

with Hyper-V and Linux container technology such as

LXC.It is written in Python and uses many external libraries

such as Eventlet (for concurrent programming), Kombu (for

AMQP communication), and SQL Alchemy (for database

access).Compute's architecture is designed to scale

horizontally on standard hardware with no proprietary

hardware or software requirements and provide the ability to

integrate with legacy systems and third-party

technologies.[1]

The proposed system is developed using OpenStack.

OpenStack is open source software which the project

developers and cloud computing technologist can use to

setup and run the cloud. Its services can be accessed via

APIs. The important components of OpenStack are Nova,

Swift, Keystone and Glance, Keystone and Horizon.

Disaster Recovery (DR) for OpenStack is an umbrella topic

that describes what needs to be done for applications and

services (generally referred to as workload) running in an

OpenStack cloud to survive a large scale disaster. Providing

DR for a workload is a complex task involving

infrastructure, software and an understanding of the

workload. To enable recovery following a disaster, the

administrator needs to execute a complex set of provisioning

operations that will mimic the day-to-day setup in a different

environment. Enabling DR for OpenStack hosted workloads

requires enablement (APIs) in OpenStack components (e.g.,

Cinder) and tools which may be outside of OpenStack (e.g.,

scripts) to invoke, orchestrate and leverage the component

specific APIs.

2. Design Procedure

Disaster Recovery should include support for:

 Capturing the metadata of the cloud management stack,

relevant for the protected workloads/resources: either as

point-in-time snapshots of the metadata, or as continuous

replication of the metadata.

 Making available the VM images needed to run the hosted

workload on the target cloud.

 Replication of the workload data using storage replication,

application level replication, or backup/restore.

We note that metadata changes are less frequent than

application data changes, and different mechanisms can

handle replication of different portions of the metadata and

data (volumes, images, etc.)[2]

The approach is built around:

1. Identify required enablement and missing features in

OpenStack projects

2. Create enablement in specific OpenStack projects

3. Create orchestration scripts to demonstrate DR

When resources to be protected are logically associated with

a workload (or a set of inter-related workloads), both the

replication and the recovery processes should be able to

incorporate hooks to ensure consistency of the replicated

data & metadata, as well as to enable customization

(automated or manual) of the individual workload

components at recovery site. Heat can be used to represent

such workloads, as well as to automate the above processes.

3. Implementation

Paper ID: SUB152031 707

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: A Basic Implementation of the Concept

1. Design Tenets [4]

1.1 The DR is between a primary cloud and a target cloud -

independently managed.

1.2 The approach should enable a hybrid deployment

between private and public cloud.

1.3 Note that some of the work related to DR may be

relevant to enabling high-availability between regions,

availability zones or cells which do share some of the

OpenStack services.

1.4 Ideally (but not as an immediate step) one of the clouds

(primary or target) could be non-OpenStack or even non-

cloud bare-metal environments.

1.5 The primary and target cloud interact through a

“mediator” - a DR Middleware or gateway to make sure the

clouds are decoupled.

1.6 The DR scheme will protect a set of VMs and related

resources (VM images, persistent storage, network

definitions, metadata, etc). The resources would be typically

associated with a workload or a set of workloads owned by a

tenant.

1.7 Allow flexibility in choice of Recovery Point Objective

(RPO) and Recovery Time Objective (RTO).

The thing we concentrate upon here is to control the Nova

component as controlling and Mastering Nova commands

and deep understanding of the same will lead to efficient

failover Enabling mechanism which will lead to better

disaster Recovery Techniques and Better business continuity

processes.

A. OpenStack Architecture

Figure 2: OpenStack Architecture (Single Node)

OpenStack version used here for the Design of the project is

Juno Update on top of Ubuntu 14.04(Trusty Tahr).[3]

OpenStack is a collection of open source software projects

that enterprises/service providers can use to setup and run

their cloud compute and storage infrastructure. Rackspace

and NASA are the key initial contributors to the stack.

Rackspace contributed their "Cloud Files" platform (code) to

power the Object Storage part of the OpenStack, while

NASA contributed their "Nebula" platform (code) to power

the Compute part. OpenStack consortium has managed to

have more than 150 members including Canonical, Dell, and

Citrix etc.

Figure 3: Data Flow in OpenStack

There are 7 main service families in OpenStack Juno:

• Nova - Compute Service

• Swift - Storage Service

• Glance - Imaging Service

• Keystone - Identity Service

• Neutron - Networking service

• Cinder - Volume Service

• Horizon - Web UI Service

We will see Nova that is intended for this paper.

B. Open Stack Compute Infrastructure (Nova)

Nova is the Computing Fabric controller for the OpenStack

Cloud. All activities needed to support the life cycle of

instances within the OpenStack cloud are handled by Nova.

Paper ID: SUB152031 708

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

This makes Nova a Management Platform that manages

compute resources, networking, authorization, and scalability

needs of the OpenStack cloud. But, Nova does not provide

any virtualization capabilities by itself; instead, it uses libvirt

[5] APIs to interact with the supported hypervisors. Nova

exposes all its capabilities through a web services API that is

compatible with the EC2 API of Amazon Web Services.

Functions and Features:

•Instance life cycle management

• Management of compute resources

• Networking and Authorization

• REST-based API

• Asynchronous eventually consistent communication

• Hypervisor agnostic: support for Xen, XenServer/XCP,

KVM, UML, VMware vSphere and Hyper-V

Components of OpenStack Compute

Nova Cloud Fabric is composed of the following major

components:

1. API Server (nova-api)

2. Compute Workers (nova-compute)

3. Scheduler (nova-scheduler)

1. API Server (nova-api)

The API Server provides an interface to the outside world to

interact with the cloud infrastructure. API server is the only

component that the outside world uses to manage the

infrastructure. The management is done through web

services calls using EC2 API. The API Server then, in turn,

communicates with the relevant components of the cloud

infrastructure through theMessage Queue. As an alternative

to EC2 API, OpenStack also provides a native API called

"OpenStack API".

2. Compute Worker (nova-compute)

Compute workers deal with instance management life cycle.

They receive the requests for life cycle management via the

Message Queue and carry out operations. There are several

Compute Workers in a typical production cloud deployment.

An instance is deployed on any of the available compute

worker based on the scheduling algorithm used.

3. Scheduler (nova-scheduler)

The scheduler maps the nova-API calls to the appropriate

OpenStack components. It runs as a daemon named nova-

schedule and picks up a compute server from a pool of

available resources depending upon the scheduling algorithm

in place. A scheduler can base its decisions on various

factors such as load, memory, physical distance of the

availability zone, CPU architecture, etc. The nova scheduler

implements a pluggable architecture. Currently the nova-

scheduler implements a few basic scheduling algorithms:

3.1. Chance: In this method, a compute host is chosen

randomly across availability zones. [6]

3.2. Availability zone: Similar to chance, but the compute

host is chosen randomly from within a specified availability

zone.

3.3. Simple: In this method, hosts whose load is least are

chosen to run the instance. The load information may be

fetched from a load balancer.

Figure 4. A modified Efficient Conceptualization of Nova

API for efficient failover.

High Availability Solution Components

3.1. Pacemaker

Pacemaker is a cluster resource manager. It achieves

maximum availability for your cluster services (aka.

resources) by detecting and recovering from node and

resource-level failures by making use of the messaging and

membership capabilities provided by your preferred cluster

infrastructure (either Coro sync or Heartbeat).

Pacemaker’s key features include:

 Detection and recovery of node and service-level failures.

 Storage agnostic, no requirement for shared storage

 Resource agnostic, anything that can be scripted can be

clustered.

 Supports STONITH for ensuring data integrity.

 Supports large and small clusters.

 Supports both quorate and resource driven clusters.

 Supports practically any redundancy configuration.

 Automatically replicated configuration that can be updated

from any node.

 Ability to specify cluster-wide service ordering, colocation

and anti-colocation.

 Support for advanced service types

Paper ID: SUB152031 709

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Clones: for services which need to be active on multiple

nodes

 Multi-state: for services with multiple modes (eg.

master/slave, primary/secondary)

 Unified, scriptable, cluster management tools.

1.1 Pacemaker - Internal components [7]

Pacemaker itself is composed of four key components

(illustrated below in the same color scheme as the previous

diagram):

1. CIB (aka. Cluster Information Base)

2. CRMd (aka. Cluster Resource Management daemon)

3. PEngine (aka. PE or Policy Engine)

4. STONITHd

The CIB uses XML to represent both the cluster’s

configuration and current state of all resources in the cluster.

The contents of the CIB are automatically kept in sync across

the entire cluster and are used by the PEngine to compute the

ideal state of the cluster and how it should be achieved. This

list of instructions is then fed to the DC (Designated

Cocoordinator). Pacemaker centralizes all cluster decision

making by electing one of the CRMd instances to act as a

master. Should the elected CRMd process, or the node it is

on, fail a new one is quickly established.[8]The DC carries

out the PEngine’s instructions in the required order by

passing them to either the LRMd (Local Resource

Management daemon) or CRMd peers on other nodes via the

cluster messaging infrastructure (which in turn passes them

on to their LRMd process).

4. Design Coding

 Adding Nova resources to pacemaker

Pcs resource create p_nova_api

ocf:openstack:nova-api \

params

config="/etc/nova/nova.conf" \

op monitor interval="5s"

timeout="5s"

pcs resource create p_scheduler

ocf:openstack:nova-scheduler \

params

config="/etc/nova/nova.conf" \

op monitor interval="30s"

timeout="30s"

pcs resource create p_novnc

ocf:openstack:nova-vnc \

params

config="/etc/nova/nova.conf" \

op monitor interval="30s"

timeout="30s"

pcs resource create p_nova-cert

ocf:openstack:nova-cert \

params

config="/etc/nova/nova.conf" \

op monitor interval="30s"

timeout="30s"

pcs resource create p_novaconsoleauth

ocf:openstack:novaconsoleauth params

config="/etc/nova/nova.conf" \

op monitor interval="30s"

timeout="30s"

pcs resource create p_novnconductor

ocf:openstack:novaconductor \

params

config="/etc/nova/nova.conf" \

op monitor interval="30s"

timeout="30s"

pcs resource create p_novanetwork ocf:openstack:nova-

network \params

config="/etc/nova/nova.conf" \

op monitor interval="30s"

timeout="30s"

5. Conclusion

The above implemented setup is tested and on simulation

with existing Benchmarks sets true and more efficient as this

is a pure technical concept and open source and more of

scripting and mastering the nova and exploring to the depth

of the OpenStack and its compute node rather than

concentrating upon the theoretical benchmarks and the

Above formulised solution is a far more efficient solution for

efficient Failover enabling mechanism and is a great solution

compared to other hard coded solutions like VMware fusion

and other solutions as the solution proposed by us is a pure

Open Source solution.

6. Future Work

Improving reliability for OpenStack clouds is critical to

facilitating broader enterprise adoption. To meet this

challenge, Stratus has developed an industry exclusive set of

Linux and KVM extensions to provide Unparalleled

availability services for OpenStack workloads. This includes

support for fully redundant, fault tolerant instances, as well

as other more common high availability approaches from a

single, simple set of cloud management tools. In future I will

explore more of Nova and Storage (Cinder & Swift)

Components and will try to make them more efficient.

References

[1] SonaliYadav, “Comparative Study on Open Source

Software for Cloud Computing Platform: Eucalyptus,

Paper ID: SUB152031 710

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Openstack and Opennebula”, International Journal Of

Engineering And Science, Vol.3, Issue 10 (October

2013), pp 51-54, ISSN (e): 2278-4721, ISSN (p):2319-

6483.

[2] Johnson B,YanzhenQu,“A Holistic Model for Making

Cloud Migration Decision”, 10th IEEE International

Symposium on Parallel and Distributed Processing with

Applications, Leganes, 10-13 July 2012, pp 435-441,

Print ISBN: 978-1-4673-1631-6,DOI:

10.1109/ISPA.2012.63.

[3] HHarjit Singh, “Technology Transfer Model To Migrate

E-Governance To Cloud Computing”, International

Journal of Advanced Technology and Engineering

Research (IJATER), July 2012, ISSN No: 2250-3536.

[4] Hsu, F., Malik ,S., Ghorbani S, "Open Flow as a

Service". April 21, 2014

Available:https://wiki.engr.illinois.edu/download/attach

ments/197298167/CloudFlow-3rd.pdf?version=6

[5] Tan, D, "Introduction to OpenStack with Dell

Compellent Storage

Center"April152014Available:http://commwebps3.us.de

ll.com/techcenter/extras/m/white_papers/20439057.aspx

[6] ITILV3- Service Asset and Configuration Management

http://www.itil.org/en/vomkennen/itil/servicetransition/

servicetransitionprozesse/serviceassetconfigurationmgm

t.php

[7] A. Avetisyan, R. Campbell, I. Gupta, M. Heath, S.

Ko,G. Ganger, M. Kozuch, D. O’Hallaron, M. Kunze, T.

Kwan, K. Lai, M. Lyons, D. Milojicic, H. Y. Lee, Y. C.

Soh, N. K. Ming, J.-Y. Luke, and H. Namgoong, “Open

Cirrus: A GlobalCloud Computing Testbed,”Computer,

vol. 43, no. 4, pp. 35–43, 2010.

[8] R. K. L. Ko, A. Y. S. Tan, and G. P. Y. Ng, “’Time’for

Cloud? Design and Implementation of a Time-Based

Cloud Resource Management System,” inProceedings of

the 7th IEEE International Conference on Cloud

Computing (CLOUD’14), 2014.

[9] OpenStack, “Openstack - Open-source software for

buildingprivate and public clouds,”

http://www.openstack.org/ [Accessed: 17/12/12014].

[10] C. K. Leong, “Capacity Planning for Your Virtual Data

Center and Cloud –Part 3 March

2013,”https://infocus.emc.com/choong\kengleong/capaci

ty-planning-for-your-virtual-data-center-and-cloud-part-

3/ [Accessed: 18/02/2014]

Paper ID: SUB152031 711

