
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Exploit Development Research on x86 Windows

Application: Buffer Overflow

Geogen George
1
, Sivasundaram R

2

1Cyber Security Research Center, SRM University, Chennai, India

2M.Tech, Information Security and Cyber Forensics, SRM University, Chennai, India

Abstract: The Best way to find vulnerability present with an application is to presume you as Hacker and act accordingly. Hackers

always find one or other way to bypass all the security measures taken by the developers. So before releasing a developed software

application, it’s always advised to do Vulnerability Testing. In this paper, I’m briefly discussing Advanced Testing Methodology by how

hacker may bypass all exploit mitigation techniques and developing an exploit for it, as the proof of concept code.

Keywords: Vulnerability Testing; Exploit Development; Bypass DEP, ASLR, SEH, Egg Hunting.

1. Introduction

Buffer overflows are vulnerabilities. They continue to be a

problem for software security. Proper securing of software

should seek to ensure goals of confidentiality, integrity,

authentication, availability, and non- repudiation. Buffer

overflow vulnerabilities affect the assurance of several of

these goals. Buffer overflows are not always easy to

discover and even when an overflow is discovered, it can be

difficult to reverse its effects. In various locations and

settings, buffer overflow attacks have been launched and

have caused problems. Buffer overflow attacks are mostly

targeted towards popular sites and software. From Microsoft

software to social networking sites, there have been several

attacks which have been found to be caused by a buffer

overflow exploit.

Therefore, Finding the Vulnerability and patching them

before releasing, is more important. Though Organization

follows software testing for bugs, there is no much attention

paid towards vulnerability finding. A Vulnerable application

may cause the attacker to exploit it in many ways. Exploit

may be Denial of Service, Remote Shell, and User Privilege

Escalation, which gives complete control to Hackers and

ends in Security breach.

Objective of this project work is to design Testing

Mechanism and Application for to find vulnerability and

develop an exploit against Windows x86 Application.

Microsoft has its own Exploit Mitigations techniques which

help to prevent buffer overflowing in memory. Ultimately,

I’ll be explaining how hacker may bypass all these

mitigation, finding the Vulnerability of an Application, with

Proof-of-Concept (POC) Exploit. So, it helps developers to

release their software product, buffer overflow vulnerability-

free.

2. Literature Review

A Research has stated in multiple circumstances that

software and application-layer vulnerabilities, intrusions,

and intrusion attempts are on the rise. Software-based

vulnerabilities, especially those that occur over the Web are

extremely difficult to identify and detect.

―Today, over 70 percent of attacks against a company’s

network come at the Application layer not the Network or

System layer‖.—The Gartner Group

A. Buffer Overflow

A buffer overflow is vulnerability, a weakness which may

allow a threat to exploit the software program. A simple

analogy that may describe what a buffer overflow is may be

overfilling a glass with water. In this case, the glass is

compared to a buffer and the water is compared to the

various values that may be put into a buffer. If there is too

much water put into the glass, the water in turn overflows

onto the surface holding the glass causing a mess. In this

analogy, the surface holding the glass can be compared to a

computer’s memory space. When the contents of a buffer are

overflowed, the overflow can overwrite a portion of a

computer’s memory. The information stored at this memory

location could possibly be lost forever. Included in this

information that is lost is the list of instructions that tell the

program, which has placed information in the buffer, where

to go and what to do next. The program will not be able to

pick up where it left off or finish its tasks as it is lost.[1]

Figure 1: Buffer Overflow Illustration

B. Data Execution Prevention

Data Execution Prevention (DEP) is a set of hardware and

software technologies that perform additional checks on

Paper ID: SUB151984 636

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

memory to help prevent malicious code from running on a

system. The primary benefit of DEP is to help prevent code

execution from data pages. Typically, code is not executed

from the default heap and the stack. Hardware-enforced

DEP detects code that is running from these locations and

raises an exception when execution occurs. Software-

enforced DEP can help prevent malicious code from taking

advantage of exception-handling mechanisms in Windows.

Hardware-enforced DEP relies on processor hardware to

mark memory with an attribute that indicates that code

should not be executed from that memory. DEP functions on

a per-virtual memory page basis, and DEP typically changes

a bit in the page table entry (PTE) to mark the memory page.

Software-enforced DEP runs on any processor that can run

Windows XP SP2. By default, software-enforced DEP helps

protect only limited system binaries, regardless of the

hardware-enforced DEP capabilities of the processor.[3]

C. Address Space Layout Randomization

Address space layout randomization (ASLR) is a computer

security technique involved in protection from buffer

overflow attacks. In order to prevent an attacker from

reliably jumping to a particular exploited function in

memory, ASLR involves randomly arranging the positions

of key data areas of a program, including the base of the

executable and the positions of the stack, heap, and libraries,

in a process's address space.

Microsoft's Windows have ASLR enabled for only those

executable and dynamic link libraries specifically linked to

be ASLR-enabled. For compatibility, it is not enabled by

default for other applications. The locations of the heap,

stack, Process Environment Block, and Thread Environment

Block are also randomized. A security whitepaper from

Symantec noted that ASLR in 32-bit Windows may not be

as robust as expected, and Microsoft has acknowledged a

weakness in its implementation.[4]

D. Structured Exception Handling Overwrite Protection

An exception is an event that occurs during the execution of

a program, and requires the execution of code outside the

normal flow of control. There are two kinds of exceptions:

hardware exceptions and software exceptions. Hardware

exceptions are initiated by the CPU. They can result from

the execution of certain instruction sequences, such as

division by zero or an attempt to access an invalid memory

address. Software exceptions are initiated explicitly by

applications or the operating system. For example, the

system can detect when an invalid parameter value is

specified.[5]

Structured exception handling is a mechanism for handling

both hardware and software exceptions. Therefore, your

code will handle hardware and software exceptions

identically. Structured exception handling enables you to

have complete control over the handling of exceptions,

provides support for debuggers, and is usable across all

programming languages and machines. Vectored exception

handling is an extension to structured exception handling.

For example, a termination handler can guarantee that clean-

up tasks are performed even if an exception or some other

error occurs while the guarded body of code is being

executed.

SafeSEH is only a linker that can be used at the compilation

process of a program/software in Windows system. When

the SafeSEH is used, the application will generate a table

that contain all memory address that will be used by itself

and also save the addresses of the SEH on the modules used.

This means, when an exploitation that utilize the POP POP

RETN command happen, the address that used to bring the

SEH to the POP POP RETN address won’t work because the

address is not recorded in the table generated by the

SafeSEH and the exploitation will failed.[5]

3. Design

We Proposing a Testing Mechanism for Windows x86

Application, Considering how an attacker may discover any

vulnerability present with the software. If so, Vulnerability

Research engineer can exploit it with Proof-of-Concept

code. This Mechanism includes how attacker may bypass all

the Windows Exploit Mitigation techniques such as DEP,

ASLR, SEHOP, SafeSEH. This will help an Organization to

do self-uditing before releasing the Software for

commercial/public use.

For developing an exploit, there are six modules that we

need to follow. They are Fuzzing, Controlling EIP, Locating

space for our shellcode, Identifying Bad characters,

Redirecting the execution flow, Generating Payload using

Metasploit Framework.

Figure 2: Solution Architecture for Stack based Buffer

Overflow

Fuzzing involves sending malformed data into application

input and watching for unexpected crashes. An unexpected

crash indicates that the application might not filter certain

input correctly. This could lead to discovering an exploitable

vulnerability.

Controlling EIP register is a crucial step of exploit

development. Generally, There are two techniques used for

mapping EIP. One is Binary tree analysis and another is

Sending a Unique string. In this paper, we are implementing

Paper ID: SUB151984 637

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Sending Unique string. Using Pattern Create and Pattern

Offset, We can map the EIP values.

Locating Space for our shellcode, A standard reverse shell

payload requires about 350-‐‑ 400 bytes of space. We must

check the availability of memory space after we map EIP

register. Based on the payload we use, Memory space can be

determined.

Bad Characters, Depending on the application, vulnerability

type, and protocols in use, there may be certain characters

that are considered ―bad‖ and should not be used in your

buffer, return address, or shellcode.

Redirecting the Flow of control, The value of ESP changes,

from crash to crash. If we can find an accessible, reliable

address in memory that contains an instruction such as JMP

ESP, we could jump to it, and in turn end up at the address

pointed to, by the ESP register, at the time of the jump.

Msfpayload, Metasploit Frameworks provides us with tools

and utilities which make generating complex payload a

simple task.

The msfpayload command can auto generate over 320 shell

code payload options. We also need to provide the

msfencode script to specify the bad characters we wish to

avoid, in the resulting shell code.

While implementing each of the above modules, Applicaion

tester crafts the python exploit shellcode for the final

execution.

Along with this, Immunity Debugger plug-in named

Mona.py aid us in several ways. This script will help us

identify modules in memory that we can search for such a

―return address‖, which in our case is a JMP ESP command.

We will need to make sure to choose a module with the

following criteria:

i)No memory protections such as DEP and ASLR present.

ii)Has a memory range that does not contain bad characters.

Syntax:!mona modules

A. Bypassing SEH

An exception handler is a piece of code that is written inside

an application, with the purpose of dealing with the fact that

the application throws an exception. Windows has a default

SEH (Structured Exception Handler) which will catch

exceptions. If Windows catches an exception, you’ll see a

―xxx has encountered a problem and needs to close‖ popup.

This is often the result of the default handler kicking in. It is

obvious that, in order to write stable software, one should try

to use development language specific exception handlers,

and only rely on the windows default SEH as a last resort.

When using language EH’s, the necessary links and calls to

the exception handling code are generate in accordance with

the underlying OS. (and when no exception handlers are

used, or when the available exception handlers cannot

process the exception, the Windows SEH will be used.

(Unhandled Exception Filter)). So in the event an error or

illegal instruction occurs, the application will get a chance to

catch the exception and do something with it. If no

exception handler is defined in the application, the OS takes

over, catches the exception, shows the popup (asking you to

Send Error Report to MS).

This structure (also called a SEH record) is 8 bytes and has 2

(4 byte) elements :

 A pointer to the next exception_registration structure (in

essence, to the next SEH record, in case the current

handler is unable the handle the exception)

 A pointer, the address of the actual code of the exception

handler. (SE Handler)

Figure 3: SEH bypassing

If we can overwrite the pointer to the SE handler that will be

used to deal with a given exception, and we can cause the

application to throw another exception (a forced exception),

we should be able to get control by forcing the application to

jump to your shellcode (instead of to the real exception

handler function). The series of instructions that will trigger

isPOP,POP,RET.[6]

B. Bypassing ASLR

Windows Vista, 2008 server, and Windows 7 offer yet

another built-int security technique (not new, but new for the

Windows OS), which randomizes the base addresses of

executables, dll’s, stack and heap in a process’s address

space (in fact, it will load the system images into 1 out of

256 random slots, it will randomize the stack for each

thread, and it will randomize the heap as well). This

technique is called ASLR (Address Space Layout

Randomization).

The addresses change on each boot. ASLR is enabled by

default for system images (excluding IE7), and for non-

system images if they were linked with the

/DYNAMICBASE link option (available in Visual Studio

2005 SP1 and up, and available in VS2008).

You can choose other system module which aren’t with

ASLR protection for developing an exploit. This can be

done by using mona.py in immunity debugger. This plug-in

will help us to identify which are all modules present with

the system without ASLR protection.

C. Win32 Egg Hunting

Egg hunting is a technique that can be categorized as ―staged

shellcode‖, and it basically allows you to use a small amount

Paper ID: SUB151984 638

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

of custom shellcode to find your actual (bigger) shellcode

(the ―egg‖) by searching for the final shellcode in memory.

In other words, first a small amount of code is executed,

which then tries to find the real shellcode and executes it.

The decision to use a particular egg hunter is based on

 Available buffer size to run the egg hunter

 Whether a certain technique for searching through

memory works on your machine or for a given exploit or

not. You just need to test.

Figure 4: Egg Hunting

 The tag used in this example is the string w00t. This 32 byte

shellcode will search memory for ―w00tw00t‖ and execute

the code just behind it. This is the code that needs to be

placed at esp.

When we write our shellcode in the payload, we need to

prepend it with w00tw00t (= 2 times the tag – after all, just

looking for a single instance of the egg would probably

result in finding the second part of egg hunter itself, and not

the shellcode).

First, locate jump esp. I’ll use 0x7E47BCAF (jmpesp) from

user32.dll (XP SP3).

Change the exploit script so the payload does this:

 Overwrite EIP after 710 bytes with jmpesp

 Put the egghunter at ESP. The egghunter will look for

―w00tw00t‖

 Add some padding (could be anything.nops, A’s.)

 Prepend ―w00tw00t‖ before the real shellcode.

 Write the real shellcode[6]

D. Bypassing DEP

 Since we cannot execute our own code on the stack, the

only thing we can do is execute existing instructions/call

existing functions from loaded modules and use data on the

stack as parameters to those functions/instructions.

These existing functions will provide us with the following

options :

 Execute commands (WinExec for example)

 Mark the page (stack for example) that contains your

shellcode as executable (if that is allowed by the active

DEP policy) and jump to it

 Copy data into executable regions and jump to it. (We

may have to allocate memory and mark the region as

executable first)

 Change the DEP settings for the current process before

running shellcode.

When we have to bypass DEP, we’ll have to call a Windows

API. The parameters to that API need to be in a register

and/or on the stack. In order to put those parameters where

they should be, we’ll most likely have to write some custom

code.

If one of the parameters to a given API function is for

example the address of the shellcode, then you have to

dynamically generate/calculate this address and put it in the

right place on the stack. You cannot hardcode it, because

that would be very unreliable

These are the most important functions that can help you to

bypass/disable DEP

1) VirtualAlloc(MEM_COMMIT+PAGE_READWRITE_E

XECUTE) + copy memory. This will allow you to create a

new executable memory region, copy your shellcode to it,

and execute it. This technique may require you to chain 2

API’s into each other.

2) HeapCreate(HEAP_CREATE_ENABLE_EXECUTE) +

HeapAlloc() + copy memory. In essence, this function

will provide a very similar technique as VirtualAlloc(),

but may require 3 API’s to be chained together.

3) SetProcessDEPPolicy(). This allows you to change the

DEP policy for the current process (so you can execute the

shellcode from the stack) (Vista SP1, XP SP3, Server

2008, and only when DEP Policy is set to OptIn or

OptOut)

4) NtSetInformationProcess(). This function will change the

DEP policy for the current process so you can execute

your shellcode from the stack.

5) Virtual Protect(PAGE_READ_WRITE_EXECUTE). This

function will change the access protection level of a given

memory page, allowing you to mark the location where

your shellcode resides as executable.

6) Write Process Memory(). This will allow you to copy your

shellcode to another (executable) location, so you can

jump to it and execute the shellcode. The target location

must be writable and executable.[6]

4. Conclusion

This research paper deals with in-depth analysis about how

vulnerability can be exploited in the hacker’s point of view.

It may even lead anyone possibly to end up with zero day

vulnerability. Further research will focus upon how to

bypass Microsoft’s Enhanced Mitigation Exploit Toolkit

(EMET), which corporate security widely uses it to avoid

bypassing the above mentioned mitigations.

References

[1] ―Buffer Overflow Attacks‖ by Ashley Hall and Huiming

Yu, A&T University

[2] ―The Concept of Dynamic Analysis‖, Thomas Ball, Bell

Laboratories.

Paper ID: SUB151984 639

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[3] ―Data Execution Prevention‖, System and Network

Analysis Center, IAD.

[4] ―DEP/ASLR Implementation Progress in Popular Third

Party Windows Application‖ by Alin Rad Pop, Secunia

Research.

[5] ―Proposal for Improvement of Implementation of

SEHOP‖ by EMET

[6] ―Corelan Exploit Developing‖, Corelan Team, USA.

Paper ID: SUB151984 640

