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Abstract: Time series deals with data that has been recorded or observed over time.  These data may need to be analyzed to come up 

with conclusions and meet the objectives intended by the researcher.  A time series may be expressed as an additive model of its 

components which includes the seasonal, the cyclic, the trend and irregular components. When time series data is analyzed it becomes 

very key in forecasting or prediction of future time series values, in control of machines among others. In this study it has been noted 

that though most researchers may be in a position to collect time series data, it is a challenge in analyzing it since some of the steps they 

are aware of may be complex and not straight forward.  This then implies that analysis of time series data needs a great understanding 

and knowledge of the procedure and the models that can be useful in meeting the researcher’s objectives. This writing discusses the 

application of ARIMA model in analyzing time series data in a sophisticated and interactive package known as R. The procedure is 

vividly stated and explained with aid of some R commands and illustrations. It is expected that the researchers or students who take 

statistical projects in this area will greatly benefit from this work. 
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1. Introduction 
 

There are several methods of forecasting. Among them is the 

exponential smoothing method which does not take the 

correlations between successive time series values into 

consideration. ARIMA model can make a better prediction 

since it takes into account the correlation between data. This 

aspect therefore assumes that the irregular component of 

time series can take non-zero autocorrelation. The ARIMA 

model is usually defined FOR STATIONARY time series. A 

stationary time series is the one whose statistical properties 

such as mean, variance, autocorrelation etc are all constant 

over time. If the time series is not stationary, then it has to be 

transformed to a stationary time series using any appropriate 

transformation technique, for instance, differencing, that is 

determine the differencing order d which makes it stationary. 

Differencing removes the trend component of a time series 

leaving the irregular component. 

 

2. Background Work 
 

Related work has been noted as discussed by several other 

researchers. Their work touches on time series data analysis 

in general with use of several models. It is really a 

recommendable work but its complexity in outlining the 

steps followed in analysis from the grass root level can be 

said to be a discriminating factor on fresh and young 

researchers who might be in search of relevant know how on 

modeling their time series problems. Avril Coghlan in her 

work “A little book of R for time series”[1], discusses about 

the installation of  R and time series analysis using the same 

package. Although it is discussed on how to go about this 

analysis, the steps are not clearly stated and the work is too 

much detailed implying that incase one is interested in the 

procedure only, he has then to go through all the writing to 

really identify and extract the steps.  

 

The engineering statistics handbook discusses the techniques 

used in time series modeling and analysis. Supposing one has 

a prior knowledge of these modeling techniques (may 

include: Box-Jenkin ARIMA models, Box-Jenkins 

multivariate models, Holt-winters exponential smoothing) 

and is interested in applying a specific model to analyze his 

data, there is indeed a need to know how to get his data ready 

for using such a model to accomplish his objectives which 

may include prediction purpose among others. Dr.Gavin 

Shaddick, in his discussion on using R[2] reiterates the 

fundamental knowledge needed in using this package though 

in broad terms but lacks specific procedure required for time 

series data analysis. 

 

Oleg Nedadic and Walter Zucchin in their work  “Statistical 

analysis with R”[3] ,[4] outlined on linear model fitting using 

R, time series analysis at some considerable length. They 

explained the decomposition of a time series, employment of 

exponential smoothing technique in time series data 

transformation and ARIMA-MODEL fitting. However, this 

can be said to be a small portion of what one expects when 

the interest is to quickly get an hint of time series data 

analysis. 

 

The focus therefore is to fill these gaps and give a straight 

forward procedure which is brief without loss of the 

important points to note in time series analysis. This would 

therefore outline how to fit ARIMA model to time series data 

with the aim of forecasting, in a simple, self-explaining and 

sufficient approach, with the assumption that the researcher 

has some knowledge of R statistical package. It is also 

important to note that ARIMA MODEL has been chosen 

since it is one of reliable and simple models which can be 

used for prediction purposes. Other models could however 

be applied but gives results with a lower precision. 

 

3. Procedure 
 

i. Assume you have stored your data in a particular file, 

then you need to read it to time series. This is possible 

by assigning your data a variable. For instance suppose 

your data is in CSV file format then you may use the 

command;  
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< variableName <- read.csv("C:/fileName.csv") 

 

ii. Store your variable in a time series object by using ts() 

function, for instance 

> variableNametimeseries <- ts(variableName) 

 

iii. If the time series data you have collected is for regular 

intervals that are less than a year, you may specify the 

number of times that the data was collected using the 

frequency parameter in ts function, ts(). For example 

for monthly time series data you can set the frequency = 

12, for quarterly time series data set the frequency = 4 

and so on 

 

iv. You can also specify the first year that the data was 

collected, and the first interval in that year by using the 

„start‟ parameter in the ts() function. For example, if the 

first data point corresponds to the second quarter of 1990, 

you would set start=c(1990,2).  

>variableNametimeseries<-  

ts(variableName,frequency=12, start=c(1990,2)) 

 

v. Now you can plot your time series data. Investigate the 

random fluctuations for your time series data. If the 

fluctuations for your time series data are roughly constant 

over time you may need to use an additive model. An 

additive model is not appropriate for describing a time 

series, if the size of the seasonal fluctuations and random 

fluctuations seem to increase with the level of the time 

series. Thus, we may need to transform the time series in 

order to get a transformed time series that can be 

described using an additive model. 

> plot.ts(variableNametimeseries) 

 

vi. Transform your time series data if need be. In many 

situations, it is desirable or necessary to transform a time 

series data set before using the sophisticated methods for 

the following reasons: 

 Almost all methods assume that the amount of 

variability in a time series is constant across time. 

 Many times we would like to study what is left in a data 

set after having removed trends (low frequency content) 

or cycles in the data. 

 

Techniques for transforming data: 

 

 Power transformation- This involves taking the 

(square root, cube root, log, etc) of the time series 

data to stabilize its (time series) over time 

 Dividing seasonal standard deviation - Sometimes 

with data observed periodically (hourly, daily, 

monthly, etc), variability may vary for different 

periods; for example, there may be more variability 

on Aprils than on September, and so on. When this 

happens, it is often useful to calculate the standard 

deviation for each of the different periods and then 

for example, divide each April by the standard 

deviation of all the Aprils, the Septembers by the 

standard deviation of the Septembers, and so on 

(notice that dividing a set of any numbers by their 

standard deviation results in the standard deviation 

of the new set of numbers being equal to one). 

 Subtracting seasonal means - One way to remove 

cycles in data observed periodically is to calculate 

the sample means of each of the periods (hours or 

days, for example) and then subtract them from the 

corresponding period (subtract the mean of the 

Aprils from Aprils, that of September from each 

September and so on). 

 The differencing technique –This is commonly used 

in fitting ARIMA models as discussed above. It is 

therefore our focus since we are dealing with such a 

model. The ARIMA model takes three parameters 

p, d and q that is, ARIMA (p,d,q) where p is the 

order of AR, d the differencing order and q is the 

order of MA. 

 

You can difference a time series using the “diff()” function 

in R. 

> variableNametimeseriesdiff1 <- 

diff(variableNametimeseries, differences=1) 

 

> plot.ts(variableNametimeseriesdiff1) 

 

This process is iterative and therefore we move on by 

changing the differences until you time series is stationary 

 

vii. Next you need to determine the values of p and q 

for the ARIMA model. To do this, you usually need 

to examine the autocorrelogram and partial 

correlogram of the stationary time series. To plot a 

correlogram and partial correlogram, we can use the 

“acf()” and “pacf()” functions in R, respectively. To 

get the actual values of the autocorrelations and 

partial autocorrelations, we set “plot=FALSE” in the 

“acf()” and“pacf()” functions. 

 

To plot the correlogram and partial correlogram for lags 1-20 

for the once differenced time series of the 

variableNametimeseriesdiff1, and get the values of the 

correlations and partial autocorrelations, we use “acf()” and 

“pacf()” function, by typing: 

 

>acf(variableNametimeseriesdiff1, lag.max=20) 

>acf(variableNametimeseriesdiff1,lag.max=20,plot=FALSE) 

> pacf(variableNametimeseriesdiff1, lag.max=20) # plot a 

partial correlogram 

>pacf(variableNametimeseriesdiff1,lag.max=20, 

plot=FALSE) 

 

Here we investigate the lag after which the autocorrelogram 

or the partial correlogram becomes zero or tends to zero (this 

gives us the values of q and p respectively). In simple terms 

this is the last lag that falls out of the significance boundary. 

Out of the two plots for the ACF and the PACF , you 

definitely come up with two ARMA models for your 

difference, d: 

An ARMA(p, 0) ; an autoregressive model of order p, where 

p is determined from the plot of PACF and in this case the 

autocorrelogram is said to tail off to zero 

An ARMA(0, q); a moving average model of order q, where 

q is determined from ACF plot and in this case the partial 

autocorrelogram is said to tail off to zero 

 

Decision on the model to choose 

The model with the fewest parameters is always the best 
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If p<q , the model becomes ARMA(P,0) 

If q<p, the model becomes ARMA(0,q) 

The original time series model is then modeled using the 

ARMA model chosen for example suppose we choose 

ARMA(P,0) then the ARIMA model is stated as 

ARIMA(p,d,0), otherwise, ARIMA(0,d,q) 

 

viii. Estimating the parameters 

Once you have selected the ARIMA model, the next step is 

to estimate the parameters which can then be used for 

forecasting. You can estimate these parameters using 

“arima()” function in R, for instance 

fit<-arima(data,order =c(p,d,q)) 

 

ix. Forecasting 

After determining the parameters you can then predict future 

values for your time series using predict() function in R 

Package. Specify the period for which you want the forecast  

using the n.ahead parameter in predict function. For instance 

to predict values for our data for the next 5 years, we may 

use the command. 

data.pred<-predict(fit, n.ahead=5) 

 

x. Plot the forecasted values 

One may use “plot. forecast”function , for example; 

 

> library("forecast") # load the "forecast" R library 

 > plot.forecast(data.predict) 

 

xi. Investigate whether the forecast errors of an arima 

model are normally distributed with mean zero and 

constant variance, and whether there are correlations 

between successive forecast errors. 

You make the correlogram of the forecast errors for your 

ARIMA model and perform the Ljung-Box test for lags you 

specify. For illustration purpose, suppose we want to carry 

out investigation for data.pred for 20 lags and then we get 

results as follows; 

  

> acf(data.pred$residuals, lag.max=20) 

>Box.test(data.pred$residuals, lag=20, type="Ljung-Box") 

Box-Ljung test 

data: data.pred$residuals 

X-squared = 13.5844, df = 20, p-value = 0.851 

 
Figure 1: ACF for data .pred 

 

Since the correlogram shows that none of the sample 

autocorrelations for lags 1-20 exceed the significance 

bounds, and the p-value for the Ljung-Box test is 0.9, we can 

conclude that there is very little evidence for non-zero 

autocorrelations in the forecast errors at lags 1-20. 

 

To investigate whether the forecast errors are normally 

distributed with mean zero and constant variance, we can 

make a time plot and histogram (with overlaid normal curve) 

of the forecast errors: 

 

> plot.ts(data.pred$residuals) # make time plot of forecast 

errors 

> plotForecastErrors(data.pred$residuals)# make a histogram 

 

 
Case 1:  Forecast errors normally distributed with mean zero 

 
Case 2: Forecast errors skewed to right with negative mean 

 

3.1 Explanation 

 

Case 1 gives the kind of results we would expect if indeed 

our forecast errors are normally distributed with mean zero. 
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In Case 2 it is clear that the forecast errors have non-zero 

mean, contrary to our expectation. This may lead to a 

conclusion that even if the forecast errors may have a 

constant variance, some of the predicted values are negative. 

This therefore means that the ARIMA model stated is not 

sufficient for our prediction and therefore it can be improved 

upon to give a better prediction. 

 

4. Conclusion  
 

The proposed algorithm/procedure is simple and time saving 

since it is straight forward. 

  

5. Recommendations 
 

A variety of R commands are available for performing a 

particular task and therefore one should not only depend on 

the commands used in this paper but also make effort to be 

conversant with other commands which are equally 

applicable. 
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