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1. Introduction  
 

The number theory is queen of Mathematics. In particular, 

the Diophantine equations have a blend of attracted 

interesting problems. For an extensive review of variety of 

problems, one may refer to       [3-12]. In this work, we are 

observed another interesting five different methods of the 

non-zero integral solutions the ternary quadratic 

homogeneous Diophantine equation  5x
2
 + 5y

2
 – 9xy =20z

2. 

Further, some elegant properties among the special numbers 

and the solutions are observed.  

 

2. Method of Analysis 
 

The ternary quadratic homogeneous Diophantine equation to 

be solved   is   

5x
2
 + 5y

2
 – 9xy = 20z

2
                               (1) 

Introducing the linear transformation   

x = u + v, y = u – v,   u   v    0                  (2) 

in (1), it reduces   to 

u
2 
+ 19v

2
 = 20z

2
                  (3) 

We discuss below five different methods of non-zero distinct 

integer solutions of (3) 

 

2.1 Method: 1 

 

Let   z = a
2
 + 19b

2
, where a, b   0                (4) 

Write 20 as     

20 = (1 + i 19 ) (1 - i 19 )                         (5) 

Substituting  (4)  &  (5)  in  (3)  and  employing  the  method  

of factorization,  we  get  

(u + i 19 v) = (1 +i 19 ) (a + i 19 b)
2 

 

On equating real and imaginary parts, we get 

u = u (a, b) = a
2
 – 19b

2
 – 38 ab  

v = v (a, b) = a
2 
– 19b

2
 + 2ab  

 

In view of (2), we get the non-zero integral solutions of (1) 

in two parameters. 

x = x (a, b) = 2a
2 
– 38b

2
 – 36ab 

y = y (a, b) = - 40 ab  

 

Properties  

1.  x (A, A) + 74 t4, A = 0 

2.  x (A, A + 1) + 72 t4, A + g56A + 39 = 0 

3. y (A, A + 1) + 40PA = 0 

4.  y (A, A) + 40 t4, A = 0 

5. z (A, B) – t4, A – 19t4, B = 0 

6. z (A(A + 1), B(B + 1)) - 019 22  BA PP  

7. y (A(A+1), A + 80 05 AP
 

 

2.1 Method: 2  

 

Write (3) as  

19v
2
 = 20z

2
 – u

2 
                    (6) 

Write 19 as  

19 = ( )120)(120                    (7) 

Let v = 20 a
2
 – b

2
, where a, b > 0                      (8) 

Using (7) in (6), we get 

20z
2
 – u

2
 = ( 222 )20)(120)(120 ba   

On employing  the  method  of  factorization  & equating  

rational  & irrational  parts,  we  get 

z = z (a, b) = 20a
2
 + b

2
 + 2ab 

 u = u (a, b) =20a
2
 + b

2
 + 40ab 

Substituting u & v in (2), we get the non-zero integral 

solutions of (1) in two parameters 

z = z (a, b) = 40a
2
 + 40ab  

y (a, b) = 2b
2
 + 40ab    

 

Properties  

1.  x (A, A+ 1) – 40 t4,A – 40PA = 0 

2.  y (A(A+1), 1) – 40PA = 2 

3.  z (B, B+1)-23t4, B – g2B = 0 

4.  x (A(A+1),1) – 40 0402  AA PP   

5.  y (A,1)-2t44, A + 42 t4,A )2(mod0  

6.  x (A,A(A+1))-40t4, A – 80 5

AP =0 

7.  z (A,1)-2t22, A + g8A = 0.  
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2.3 Method: 3 

 

Write (3) as  

1*u
2
 = 20z

2
 – 19v

2
                              (9) 

Assume u = u (a,b) = 20a
2
 – 19b

2
  

= )1920()1920( baba      
                          

(10) 

Write 1 as 

1 = ( )1920()1920                              (11) 

Using (10) & (11) in (9), we get      

20z
2
 – 19v

2
 = 

( )19)20 

  2
2

)1920(1920)1920( baba   

On employing the method of factorization and equating the 

rational & irrational parts, we get 

z = z (a, b) = 20a
2
 + 19b

2
 + 38ab   

v = v (a, b) =- 20a
2
 + 19b

2
 + 40ab 

Substituting u & v in (2), we get  

x = x (a, b) = 40a
2
 + 40ab   

 y = y (a, b) = - 38b
2
 – 40ab 

 

Properties  

1. x(A, A + 1) – 40 t4, A - 40 PA = 0 

2. y(A, 1) + g20A + 39 = 0 

3. z(A, A) – 77 t4, A = 0 

4. z(1, B) – t4, B – g19 B 1 (mod 2) 

5. x(A, A(A+1))- 40t4, A – 80 05 AP  

6. y(A, A) + 2 t80, A – g38A = 1 

7. z (A(A+1), 1) – 20 302 AP PA = 19 

 

2.4   Method: 4 

 

Write (3) as  

u
2
 + 19v

2
 = 19z

2
 + z

2 
  

 u
2
 – z

2
 = 19z

2
 – 19v

2
  

(u + z) (u - z) = 19(z + v) ( z - v)              (12) 

Write (12) as  

,0,
)(19










B

B

A

zu

vz

vz

zu  

 

which is equivalent to the system of equations in three 

unknowns 

Bu + Z (B – A) + AV = 0 

-Au + Z (A + 19B) + 19BV = 0 

 

By cross- multiplication, we get 

u = u (A, B) = - A
2
 + 19B

2
 – 38 AB  

v = v (A, B) = - A
2
 + 19B

2
 + 2AB  

z = z (A, B) = - A
2
 – 19B

2
 

Substituting the values of u & v in (2), we get 

 x = x (A, B) = - 2A
2
 + 38B

2
 – 36AB  

 y = y (A, B) = - 40AB  

 z = z (A, B) = - A
2
 – 19B

2
  

 

Properties 

1. x(A, 1) + 2t40, A – g18A 0 (mod 3) 

2. z(A, A) + 2t22, A – g9A = 1 

3. y(A, A+1) + 40 PA = 0.  

4. x(A(A+1), 1) + 2  AA PP 362 0 (mod 2) 

5. z(A, B) + t4, A + 19t4, B = 0 

6. y(A, A(A+1)) +  80 05 AP  

7. x(A, A(A+1)) + 2t4, A – 38 072 52  AA PP  

 

2.5 Method: 5 

 

Write 20 as  

20 = 
49

)1931()1931( ii        (13) 

 Assume z = a
2
 + 19b

2 
                                  (14) 

Substituting equation (13) & (14) in (3) and employing the 

method of factorization, we get 

(u + 19i v)  = 2)199()199(
7

1
bii 

 

Equating real and imaginary parts, we get  

u = u (a, b) = )38589131(
7

1 22 abba                                                                                                                                         

v = v (a, b) = 
7

1 (a
2
 – 19b

2
 + 62ab) 

In view of (2), we get  

x = x (a, b) = 
7

1  [32a
2
 – 608b

2
 + 24ab]              (15) 

y = y (a, b) = 
7

1 (30a
2
 – 570b

2
 – 100ab)              (16)  

Choose a, b suitably so that x, y, and z are in integers. 

Putting a = 7A, b = 7B in (15) & (16), we get the non-zero 

integral solutions of (1) in two parameters                                                                                                                                           

x = x (A, B) =224A
2
 – 4256B

2
 +168AB                                                                                                                                

y = y (A, B) = 210A
2
 – 3990B

2
 – 700AB                                                                                                                               

z = z (A, B) = 49A
2
 + 931B

2
  

 

Properties 

1.  z (A, B) -49 t4, A - 931 t4,B  = 0  

2.  z (A(A+1), B)) -49 2

AP -931 t4,B = 0  

3.  y (1, A(A+1)) – 3990 2

AP  +700
AP    0(mod7)  

4.  x (A, A) + 3864 t4, A = 0  

5.  x (A(A+1), B( B+1)) -49PA
2
- 931 PB

2 
= 0

 
6.  y(1,B) + 3990 t4,B + ).3(mod0350 Bg

    

7.  z (1,A(A+1)) – 931PA
2
     0(mod7)  

8.  x (B(B+1), 1) -224 PB
2
 – 168PB    0 (mod 2) 

  

3. Conclusion  
 

In this work, we have observed five different patterns of the 

non-zero integral solutions of the ternary quadratic 

homogeneous Diophantine equation 5x
2
 + 5y

2 
– 9xy = 20z

2
 

and relations between solutions and special numbers are also 

obtained. One may research for any other patterns of this 

equation and their corresponding properties.  
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