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Abstract: Weather risk is an unmitigated source of financial losses in developing economies. There is need to model this type risk in 

order to mitigate and reduce losses associated with the weather. In this article, we model the rainfall process at a particular location in 

Kenya using a markovian Gamma distribution whose parameters are estimated by way of maximum likelihood. The derivatives  prices 

are estimated by making use of the Esscher transform. The obtained prices are adjusted by calibrating the market price of rainfall risk. 

The empirical analysis is conducted using Kenyan precipitation and stock market data. 
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1. Introduction 
 

Weather conditions greatly affect business revenues in an 

array of industries. The weather influence presents both 

challenges that are adverse with huge losses and 

opportunities for the emergence, development and growth of 

the financial instruments like weather derivatives. 

Businesses use weather derivatives to hedge on their risks in 

order to make trading profits. Weather exposure can be 

hedged just the same way as currency exposure. 

 

Weather conditions like rainfall, temperature, frost, snow are 

always unpredictable. Moreover, by being so unpromising 

and their patterns being abnormal over the decades, many 

industries become victims of the weather in many ways 

(Geyser, Van derv enter, 2001). 

 

Over the years, the agricultural based businesses have used 

futures contracts of agricultural commodities to hedge on 

weather related risks. However, traditional methods cannot 

cover a number of weather risks. This has given rise to the 

emergence of a more robust, flexible financial instrument 

called the weather Derivatives (Geyser, 2002). 

 

A weather derivative is a contract. It stipulates how payment 

will be settled between the parties involved based on the 

prevailing meteorological conditions during the contract 

period (Leobacher and Ngare, 2011).They are usually 

typically swaps, futures and options based on different 

underlying weather measures(Alaton, Djehiche and 

Stillberger,2002).Weather derivatives, unlike traditional 

derivatives, have no underlying tradable instrument or stock. 

Therefore, they cannot be used to hedge price risk since the 

weather itself cannot be priced. Instead, they hedge against 

volumetric or quantity risk associated with weather 

conditions.   

 

The weather derivatives market is well developed in the 

United States of America (USA) with the energy industry 

players being the leading participants. There is equally rapid 

growth in Asia and Europe. (Douglas-Jones, 2002)Closer 

home, in Africa, businesses in the Agriculture and related 

industries have developed interest in the weather derivatives 

.Agriculture is largely unsubsidized and the energy industry 

is hugely regulated. Maize and wheat growers, silo owners, 

transport companies, sugar industry, fishing as well as 

insurance companies in South Africa have taken advantage 

of this new instrument (Bolin, 2002). Agriculture, clothing, 

construction, hospitality and outdoor entertainment 

industries which are highly weather sensitive and whose 

revenues and productivity are closely correlated with 

weather conditions are the ones heavily affected by harsh 

weather in the region. 

 

The hospitality, tourism and entertainment industries are 

mostly busy during summer, the same time that most of 

Africa receives its rainfall. Thus, the attendance figures 

plummet.  The construction industry is heavily hit in 

financial terms for projects that run beyond completion 

deadlines since operation of heavy machinery and working 

outdoor during rainy conditions is rather difficult. The 

clothing industry is equally dictated by weather since 

weather conditions dictate what people buy and wear. For 

example, during winter, sweater and jacket products 

experience faster sales unlike during a milder than normal 

winter. In agriculture, weather conditions affect the quality 

and quantity of produce (Geyser, 2002).  

 

The emergence of weather derivatives in the agriculture 

sector has particularly drawn considerable interest from 

international institutions like World Bank, International 

Finance Corporation (IFC) and International Monetary Fund 

(IMF). In the developing world, farmers are never covered 

by government sponsored insurance programs yet the 

weather risk is most prevalent in devastating scales. The 

weather derivatives can therefore provide a sure way of 

protecting them against risk of drought and poor harvest or 

any other weather related risk. 

 

According to Cooper (2001) a large portion of South 

America’s economy relates to growing commodities and 

selling them to the world market. In Brazil for instance, 
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coffee harvest can be adversely affected by bad weather 

conditions, which will in turn have considerable effects on 

the economy. Weather is an essential factor of production 

which is, however, uncontrollable. It therefore poses risks 

that are the major sources of uncertainty in production and 

income flows. Weather derivatives can bring added stability. 

 

Weather  derivatives  have  the  advantage  that they  are  not  

affected  by  moral  hazard  or  adverse selection,  which  

may  be  a  serious  problem  for  insurance  companies.  

However, a  considerable risk  may  remain  with  the  

producer  when  using  weather  derivatives,  because  

individual  yield variations in general are not completely 

correlated with the relevant weather variable (Oliver et al, 

2006). 

 

Available  literature  increasingly  deals  with  the  question  

if  weather  derivatives  can  also  play  a role as risk 

management tools in agriculture, (Richards et al, 2004; 

Turvey 2001). 

 

Cao  et  al  (2004)  proposed  a  pricing  model  for  rainfall  

based  on  daily  rainfall  in  which  they calculated a fair 

premium while ignoring market price of rainfall risk. 

Carmona and Diko (2005) proposed  a  Markov  process  

model  for  the  rainfall  process  for  stochastic  dynamics  

of  the underlying precipitation. They assumed the existence 

of tradable rainfall assets and used utility indifference 

approach to price the derivatives. 

 

Leobacher and Ngare (2011) on improving Carmona and 

Diko (2005) did construct a Markovian Gamma model for  

rainfall process with seasonal  effects  and  gives  utility  

indifference  prices  with  exponential  utility.  Lee and  

Oren (2010),Hardle  and  Ospienko  (2011)  obtained  

equilibrium  prices  for  weather  derivatives  on cumulative 

monthly   rainfall by simulating market conditions of two 

types-farmers with profits exposed to weather and financial 

market investors aiming to diversify their financial 

portfolios. The aim of this paper is to develop a pricing 

framework of rainfall derivatives that takes into account 

market price of risk. We rely on the Esscher transform to 

construct an equivalent martingale measure with which we 

calculate the arbitrage free prices of European call options 

whose underlying is a rainfall process. 

 

Classical arbitrage theory assumes that stocks can accurately 

replicate options on tradable assets. However, for derivatives 

on weather conditions like rainfall, temperature indices 

cannot rely on hedging principles since the underlying 

cannot be traded. Therefore, with the market being 

incomplete  there  ought  to  be  many  equivalent  

martingales  to  price  rainfall  derivatives.  Moreover, these 

derivatives should be arbitrage free since they are indeed 

tradable. 

 

The outline of the paper is as follows: Section 2 describes 

our method for pricing rainfall derivatives, includes the 

model for monthly rainfall and information on the Esscher 

transform. Section 3 includes the data applied to our 

approach to calculate theoretical prices for options on 

monthly rainfall with constant market price of risk from the 

rainfall data. Section 4 provides a discussion and conclusion. 

All computations were carried out in R version 3.1.1. 

 

2. Methods 
 

2.1 General Framework. 

 

The weather derivatives market is an incomplete market. 

The underlying weather process is not a tradable asset and 

thus cannot be replicated by other risk factors. In this paper 

we find arbitrage free prices whose underlying is a rainfall 

process by using an equivalent martingale measure via the 

Esscher transform with a constant market price of risk. We 

calculate the prices under the risk neutral probability 

measure Q which we consider equivalent to the physical 

probability measure P. Since the market is incomplete, there 

are many equivalent martingales Q. We need an extra 

parameter𝜃, the market price of risk. Since the assumed 

distribution is nonormal, an esscher transform of the 

distribution is performed with constant market price of risk. 

 

2.2 Daily Rainfall Model 

 

Carmona  and  Diko  (2000)  proposed  a  time  homogenous  

jump  markov  process  to  model  the  rainfall  process.  To  

price  the  derivatives,  they  assumed  the  existence  of  

tradable  asset  whose price depended on rainfall and relied 

on the utility indifference method to price the derivatives. 

This  model  was  later  to  be  improved  by  Leobacher  and  

Ngare  (2011)  who  constructed  a Markovian- Gamma 

model for rainfall process which accounts for the seasonal 

effects of rainfall and calculates utility indifference prices 

with exponential utility. 

 

We intend to exploit this model together with the Escher 

transform with constant market price rainfall risk to 

calculate the prices using an equivalent martingale measure. 

To account for the seasonal effects of rainfall over a given 

period Leobacher and Ngare (2011) partitioned  the  period  

under  consideration  into  equal  sub-periods  and  

separately  modelled  the total amount of rainfall within each 

sub-period. 

 

By letting Y0,Y1,Y2,..... to  be  the  sequence  of  total  

rainfall  per  sub-period,  they  assumed  that  in some sub-

period k, the rainfall  has a cumulative distribution  function 

(CDF),F kmodm , 𝑘 ≥ 0  where  𝐹𝑘  is a continuous function 

and strictly increasing such that the inverse,𝐹𝑘
−1 exists and 

that it is strictly increasing and continuous. 

 

The assumptions above indicate that the sequence 

(F kmodm (𝑌𝑘)), 𝑘 ≥ 0  constitutes of generally dependent 

random variables      𝑈𝑘      uniform on (0, 1) which can 

generate a future rainfall sample path by setting            𝑌𝑘 ≔

𝐹𝑘𝑚𝑜𝑑𝑚
−1 𝑈𝑘 , 𝑘 ≥ 0. 

The sequence F kmodm (𝑌𝑘)     is a discrete-time Markov 

process with state space (0, 1) and therefore rainfall amounts 

of two consecutive months or even the days are not 

independent. 

 

We assume that the rainfall within sub-period  𝑘 follows a 

gamma distribution with shape and scale parameters  𝛼 and  
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𝛽  respectively. Therefore, for some standard normal 

random variable Z, 

𝐹𝑘 𝑧 =  𝑓 𝑦 𝑑𝑦, 𝑤𝑒𝑟𝑒
𝑧

−∞

 

 

𝑓𝑘 𝑦 =  

1

𝛽𝑘Г𝛼𝑘
 
𝑦

𝛽𝑘
 
𝛼𝑘−1

𝑒
−𝑦

𝛽𝑘
 

, 𝑦 > 0,𝛼𝑘 ,𝛽𝑘 > 0

0, 𝑦 < 0

 …… (1) 

 

2.3 Parameter Estimation 

 

Suppose  we  are  given  data 𝑦0 , 𝑦1 ,… . , 𝑦𝑛−1 of  

precipitation  at  a  specific  location  with  m observations 

per year. We want to fit our model to actual data, that is , we 

want to find a set of parameters 𝛼0 ,… . . ,𝛼𝑚−1,𝛽0 ,… . ,𝛽𝑚−1  

such that if 𝐹𝑘 is the CDF of a gamma distribution with 

parameters  𝛼,𝛽   for each  𝑘, then 𝑦0 ,… . 𝑦𝑛−1  has  the  

maximum  likelihood. If the observations are monthly 

then 𝑚 = 12.  

 

We  are  supposed  to  estimate (𝛼𝑘 ,𝛽𝑘) for  every  month  

using  ordinary  maximum  likelihood estimation 

framework. 

We note that consecutive observations are hardly 

independent; no big error can be expected by assuming that 

consecutive Januaries are independent. 

 

From  this  we  would  have  estimated  that  the  

CDFs,F0,F1,...,Fm-1 and  thus  can  compute 

Ф−1 𝐹𝑘𝑚𝑜𝑑𝑚  𝑦𝑘  ≔ 𝑧𝑘 .. This view is also shared by 

Leobacher and Ngare (2011). 

 

2.4 MLE for Gamma Distribution Using data Containing 

Zeros 

 

Wilkis (1990), Leobacher and Ngare (2011) constructed 

their models using the method below. 

 

Suppose  the  given  data  set  contains M0censored  data  

points  (recorded  as  zeros)  of  some  censoring level  for 

example 0.1 and 𝑀𝑣points with known values where  

M=M0+Mv. Then the likelihood function for the distribution 

parameters is given by: 

𝑌 𝛼,𝛽; 𝑦 =  𝐺(𝐴;𝛼,𝛽) 𝑔(𝑦𝑖 ;𝛼,𝛽)

𝑀𝑣

𝑖=1

𝑀0

𝑗=1

 

     =

[𝐺 𝐴;𝛼,𝛽 𝑀0  
1

𝛽Г𝛼
 
𝑦𝑖

𝛽
 
𝛼−1

𝑒
−𝑦𝑖
𝛽𝑀𝑣

𝑖=1 ,𝑤𝑒𝑟𝑒             (1) 

𝐺 𝐴;𝛼,𝛽 =  𝑔 𝑦𝑖 ;𝛼,𝛽 𝑑𝑦
𝐴

0

= ℙ[𝑦𝑗 ≤ 𝐴] 

If we assume that M0=0 that is, all the data values are 

known, then the MLE of the parameters satisfy: 

log 𝛽 + 𝜑 𝛼 =  
𝑙𝑜𝑔𝑦𝑖
𝑀𝑣

𝑀𝑣

𝑖=1

 

𝛼 −
1

𝛽
 

𝑦𝑖
𝑀𝑣

𝑀𝑣

𝑖=1

= 0 

where𝜑 𝛼 =
𝑑𝑙𝑜𝑔 [Г𝛼 ]

𝑑𝛼
   is the digamma function.  Hence the 

MLE for  𝛽 𝑎𝑛𝑑 𝛼can be determined. In the case 

where 𝑀0 ≠ 0, then  

𝐿 𝛼,𝛽; 𝑦 = 𝑀0 log 𝐺 𝐴,𝛼,𝛽  − 𝑀𝑣 𝛼 log 𝛽 +

log 𝛼  +  𝛼 − 1  𝑙𝑜𝑔𝑦𝑖
𝑀𝑣
𝑖=1 −

1

𝛽
 𝑦𝑖
𝑀𝑣
𝑖=1               (2) 

(2) can be evaluated numerically for the values of  𝛼 𝑎𝑛𝑑 𝛽 

using any of the available mathematical software like R. 

 

2.5 The Market Model 

 

We choose a market model given by the stochastic 

differential equation:- 

 𝑑𝑆𝑡 = 𝜇 𝑌𝑡 𝑆𝑡𝑑𝑡 +  𝜎 𝑌𝑡 𝑆𝑡  𝑑𝑍𝑡                    (3) 

where𝑍𝑡~𝑖𝑖𝑑 𝑁(0,1) and 𝜇 𝑌𝑡  𝑎𝑛𝑑 𝜎(𝑌𝑡) are measurable 

functions whose concrete form we are yet to determine. 

 

However we can take 𝜎(𝑌𝑡) as a constant and evaluate 𝜇(𝑌𝑡)   

as: 

   𝜇 𝑌𝑡 = 𝑎 log  𝑌𝑡 + 𝑏,𝑌𝑡 > 0                   (4) 

 

The parameters 𝑎 𝑎𝑛𝑑 𝑏 are estimated by the maximum 

likelihood estimation framework by combining both the 

market and rainfall data. That is, given the rainfall records 

𝑦0 , 𝑦1 ,……… . 𝑦𝑡−1, 𝑦𝑡    and asset prices  

𝑠0 , 𝑠1,……… . 𝑠𝑛−1, 𝑠𝑛   of some hypothetical asset, we can 

set 𝔜𝑡 = log 𝑌𝑡  almost surely and  

 

𝑑𝑆𝑡 = 𝑆𝑡 − 𝑆𝑡−1,  such that   

                                   𝑑𝑆𝑡 =  𝑎𝔜𝑡 + 𝑏 𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑍𝑡  
                    𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑍𝑡  

 
𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑡 + 𝜎𝑍𝑡  , 𝑍𝑡~𝑖𝑖𝑑𝑁 0,1                     (5) 

Rewriting (5) gives: 
𝐼𝑛𝑆𝑡 − 𝜇𝑡

𝜎
= 𝑍𝑡~𝑁(0,1) 

𝑓 𝑧, 𝑡 =
1

√2𝜋
 𝑒𝑥𝑝 −

1

2
[𝑍𝑡]

2 

 

 
1

√2𝜋

𝑛
𝑡=1 exp(

1

2𝜎2  𝑃𝑡
2 − 2𝑃𝑡𝜇𝑡 + 𝜇2𝑡2 )  (6) 

we maximize the log likelihoods of (6) to obtain the 

expressions below as solutions for 𝑎 𝑎𝑛𝑑 𝑏 and  𝜎: 

𝑎 =
𝛽𝛿 − 𝛾𝛼

𝜀𝛿 − 𝛾2
     𝑎𝑛𝑑 𝑏 =

𝛼𝜀 − 𝛽𝛾

𝜀𝛿 − 𝛾2
 

𝜎2 = 𝜏 + 𝑎2𝜀 + 2𝑎𝑏𝛾 + 𝑏2𝛿 − 2𝑎𝛽 − 2𝑏𝛼 

where:   𝑛𝛼 =  𝑡𝑃𝑡
𝑛−1
𝑡=0 𝑛𝜀 =  𝑡2𝑛−1

𝑡=0 𝐾𝑡
2,  𝑛𝛽 =

 𝑡𝑃𝑡
𝑛−1
𝑡=0 𝐾𝑡  

                          𝑛𝛾 =  𝑡2𝑛−1
𝑡=0 𝐾𝑡 ,    𝑛𝛿 =  𝑡2𝑛−1

𝑡=0    , 𝑛𝜏 =

 𝑃𝑡
2𝑛−1

𝑛=0 ,  𝑃𝑡 = 𝐼𝑛𝑆𝑡 = log(
𝑆𝑡

𝑆𝑡−1
) 

 

2.6 Equivalent Martingale Measure Q Using the Esscher 

Transform 

We  study  a  risk  neutral  distribution,  or  equivalently,  

martingale  measure  associated  with  a Markovian  gamma  

process.  A discrete-time martingale is a stochastic process 

𝑥1 , 𝑥2 …… that satisfies for all 𝑛; 
𝐸  𝑋1  < ∞ 

and 𝐸  𝑋𝑛+1 𝑋1 ,𝑋2 ……𝑋𝑛 = 𝑋𝑛  

Gerber  and  Shiu  (1994)  proposed  one  approach  for  

finding  an  equivalent  martingale  measure using the 

Esscher transform. Accordingly, given a statistical model P, 

the Esscher transform induces an equivalent probability 
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measure Q   and a martingale process. The Esscher 

parameter  is  determined  so  that  the  discounted  asset  

price  is  a  martingale  under  the  new probability measure 

Q. 

 Letting  

𝑆𝑡 = 𝑆0𝑒
𝑋𝑡 ,                                   (7) 

where  𝑋𝑡 𝑡≥0is  a  process  with  stationary  and  

independent increments and 𝑋0 = 0then  for each   𝑡  the 

random  variable 𝑋𝑡has an  infinitely divisible distribution 

with probability density given by: 

                                  𝑓 𝑥, 𝑡 , 𝑡 > 0                                  (8) 

In addition, the moment-generating function, assumed to 

exist, is defined as- 

𝑀 𝑢, 𝑡 = 𝐸 𝑒𝑢𝑋𝑡  =  𝑒𝑢𝑥
∞

−∞
𝑓 𝑥, 𝑡 𝑑𝑥            (9) 

Assuming that 𝑀 𝑢, 𝑡 is continuous at 𝑡 = 0, then by 

infinite divisibility:- 

𝑀 𝑢, 𝑡 = [𝑀 𝑢, 1 ]𝑡                        (10) 

Let θ be a real number such that     𝑀 𝜃 =

 𝑒𝜃𝑥
∞

−∞
𝑓 𝑥 𝑑𝑥exists, then the Esscher transform of 

{𝑋𝑡}𝑡≥0with  parameter 𝜃 is defined  as  a  process with  

stationary  and  independent increments where the new 

probability density of    𝑋𝑡 , 𝑡 > 0, is : 

  𝑓 𝑥, 𝑡; 𝜃 =
𝑒𝜃𝑥𝑓 𝑥, 𝑡 

 𝑒𝜃𝑦
∞

−∞
𝑓 𝑦, 𝑡 𝑑𝑦

=
𝑒𝜃𝑥𝑓 𝑥, 𝑡 

𝑀 𝜃, 𝑡 
 

The  modified  distribution  of 𝑋𝑡 is  the  Esscher  transform  

of  the  original  distribution  whose moment-generating 

function given by :- 

𝑀 𝑢, 𝑡; 𝜃 =  𝑒𝑢𝑥
∞

−∞

𝑓 𝑥, 𝑡;𝜃 𝑑𝑥 =
𝑀(𝑢 + 𝜃, 𝑡)

𝑀(𝜃, 𝑡)
 

and 

𝑀 𝑢, 𝑡,𝜃 = [𝑀 𝑢, 1; 𝜃 ]𝑡  
 

Proposition 2.6.1 

The Esscher measure of a gamma process has a MGF at  

𝑡 = 1   given by: 

 
1 − 𝜃𝛽

1 − (𝑢 + 𝜃)𝛽
 
𝛼

 

For detailed proof of the proposition 2.6.1 cf the appendix 

 

The probability measure of the process has in fact changed 

and its exponential function is positive. Therefore, the 

modified probability measure is equivalent to the original 

probability measure, that is, they both have same null sets –

sets of probability measure zero (Gerber and Shiu, 

1994).The  parameter  𝜃  is  determined  so  that  the  

modified  probability  measure  Q  is  an  equivalent 

martingale measure to the original statistical probability 

measure  P. The aim is to find  𝜃 = 𝜃∗ , so that the 

discounted stock price process  𝑒−𝑟𝑡𝑆𝑡 𝑡≥0    is a martingale 

with respect to the probability measure corresponding to 𝜃∗ 
With the martingale condition that,  

𝑆0 = 𝐸𝑄 𝑒−𝑟𝑡𝑆𝑡 = 𝑒−𝑟𝑡𝐸𝑄 𝑆𝑡 ,  
the parameter   𝜃∗ is a solution to:- 

𝑆0 = 𝐸𝑄 𝑒−𝑟𝑡𝑆𝑡 = 𝑒−𝑟𝑡𝐸𝑄 𝑆0𝑒
𝑋𝑡   

= 𝑒−𝑟𝑡𝑆0

𝐸𝑃 𝑒 𝜃+1 𝑋(𝑡) 

𝐸𝑃 𝑒𝜃𝑋 𝑡  
= 𝑒−𝑟𝑡𝑆0

𝑀(𝜃 + 1, 𝑡)

𝑀(𝜃, 𝑡)
 

with𝑟 as the constant risk free rate of interest. 

This is equivalent to:  

1 = 𝑒−𝑟𝑡𝐸𝑄 𝑒𝑋𝑡   𝑜𝑟 𝑒𝑟𝑡 = 𝑀(1, 𝑡;  𝜃∗) 

We note that the solution is independent of   𝑡 and then by 

setting  𝑡 = 1  , we obtain: 

𝑒𝑟 = 𝑀(1,1; 𝜃∗) 
And in logarithm form, the parameter 𝜃  is a 

solution to:- 

𝑟 = log M 1 + 𝜃∗  = log M 1 + 𝜃∗; 1  − log M 𝜃∗, 1   

That is                   𝑟 = log   
1−θβ

1−(u+θ)β
 
α

 = α log 1 − βθ −

log1−βμ+θ 

We know that the parameter  𝜃 = 𝜃∗  is chosen such that  

the  process    𝑒−𝑟𝑡𝑆𝑡 𝑡≥0  is  a  martingale  with  respect  to  

the  probability  measure corresponding to 𝜃∗. 
Precisely,   𝑆0 = 𝐸 𝑒−𝑟𝑡𝑆𝑡 ;𝜃

∗ ;  
Hence𝑒𝑟𝑡 = 𝐸 𝑒𝑋𝑡 ;𝜃∗ =  𝑀 1,1,𝜃∗  𝑡  
that is,     𝑟 = log 𝑀 1,1;𝜃∗   
 

The Esscher measure corresponding to the parameter  𝜃∗  is 
the risk neutral Esscher measure.  

 

The  price  of  a  derivative  security,  whose  payments  

depend  on  𝑆 𝑡     is  calculated  as  a discounted  expected  

value  where  the  expectation  is  taken  with  respect  to  the  

risk -neutral Esscher measure. 

 

The  value  of  a  European  option, at  time 𝑡 = 0 , whose  

exercise  price  and  date  are 𝐾 𝑎𝑛𝑑 𝑡 respectively is given 

as : 

𝐸𝑄 𝑒−𝑟𝑡  𝑆𝑡 − 𝐾 + = 𝑒−𝑟𝑡   𝑆𝑡𝑒
𝑥 − 𝐾 𝑓(𝑥, 𝑡; 𝜃∗)

∞

𝜏

𝑑𝑥 

 = 𝑒−𝑟𝑡𝑆𝑡  𝑒𝑥𝑓 𝑥, 𝑡; 𝜃 𝑑𝑥 − 𝑒−𝑟𝑡
∞

𝜏
𝐾 1 − 𝐹 𝜏, 𝑡; 𝜃∗  , for 

𝜏 = log  𝐾 𝑆(0)   

 

It therefore follows that: 

𝑒𝑥𝑓 𝑥, 𝑡; 𝜃 =
𝑒(𝜃∗+1)𝑓(𝑥, 𝑡)

𝑀(𝜃∗, 𝑡)
=
𝑀 𝜃∗ + 1, 𝑡 

𝑀 𝜃∗𝑡 
𝑓(𝑥, 𝑡; 𝜃∗ + 1) 

= 𝑀 1, 𝑡; 𝜃 𝑓 𝑥, 𝑡; 𝜃∗ + 1 = 𝑒−𝑟𝑡𝑓(𝑥, 𝑡; 𝜃∗ + 1) 

Letting 𝐼(. ) denote  the  indicator  function  and  as  above 

𝜏 = log[
𝐾

𝑆 0 
] ,the  price  of  the option at 𝑡 = 0 is :- 

𝑒−𝑟𝑡𝐸  𝑆𝑡 − 𝐾 𝐼 𝑆𝑡 > 𝐾 ; 𝜃∗  
                                == 𝑒−𝑟𝑡𝐸 𝑆𝑡𝐼(𝑆𝑡 > 𝐾;𝜃∗ − 𝑒−𝑟𝑡𝐾[𝐼(𝑆𝑡

> 𝐾; 𝜃∗] 
The expectation on the right hand side is equivalent to 

Pr 𝑆𝑡 > 𝐾; 𝜃∗ = 1 − 𝐹(𝜏, 𝑡; 𝜃∗) 

Thus, the price of a European call option with exercise price 

𝐾 𝑎𝑛𝑑 𝑑𝑎𝑡𝑒 𝑡  can be given as: 

𝑃𝐸𝐶 = 𝑆𝑡 1 − 𝐹 𝜏, 𝑡; 𝜃∗ + 1 − 𝑒−𝑟𝑡𝐾(1 − 𝐹(𝜏, 𝑡; 𝜃   (11) 

Accordingly (15) can be written as  

𝑆0 Pr 𝑆𝜏 > 𝐾; 𝜃∗ + 1 − 𝑒−𝑟𝑡𝐾𝑃𝑟[𝑆𝜏 > 𝐾; 𝜃∗]](12) 

 

3. Results and Discussion 
 

We apply our method developed in this paper to price a 

hypothetical derivative whose underlying is a markovian 

gamma rainfall process at a particular station in Kenya. We 

use the share price of the main government owned electricity 

producer. We remark that most of Kenya’s electricity is 

hydro generated. 

 

First we estimate all the parameters including the esscher 

parameter as described earlier in section 2.The derivatives 
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being modelled here are European call options for monthly 

rainfall. The contracts are based on a single site, the 

Dagorreti weather in Nairobi, Kenya.And the rainfall is the 

total daily are recorded by the Kenya Meteorological 

Authority. 

 

In this article we use daily prices and rainfall with monthly 

averages. The rainfall data used consist of monthly averages 

in mm for Nairobi city from January 2002 to December 

2012.and the stock market share price is the daily share price 

for (Kenya Power (KPLC) for the period January 2002 to 

December 2012 

 

By assuming a constant MPR risk, we estimate the esscher 

transform of the gamma distribution. In fact, we observe that 

the esscher distribution also transforms the mean and 

variance of the distribution. 

 

Theoretical prices of the monthly rainfall options under Q 

are estimated by using the MPR ≠ 0 in the simulated rainfall 

process.This approach advantageous since we can pick any 

non-zero values for 𝜃. 
 

The monthly values for 𝜃 are obtained from the parameters 

estimates of the monthly rainfall and our choice of interest 

rate which in our case is 𝑟 = 0.11 which is a bond market 

rate in Kenya. 

 

We remark that we are not able to compare the theoretical 

prices with the actual market prices since derivative do not 

trade in the Kenyan market. We observe from the Table 1.0 

that, with increase in the strike price K, there is a 

corresponding increase in the payoff. 

 

4. Conclusion 
 

In this article, we have presented a method on how to 

calculate risk-neutral prices of rainfall derivatives. A 

standard rainfall model is used to simulate the rainfall 

process. Then the process distribution is shifted by the 

Esscher transform to obtain neutral prices.  

 

Rainfall derivatives do not trade in the Kenyan market. 

Therefore the reported prices are actually hypothetical prices 

since they are not from actual trading. Hopefully, in the near 

future, when derivative trading get established, similar 

approaches can be used to investigate  the behaviour of 

rainfall derivatives and the nature of the market price of risk. 

Our calculation can be used for daily trading to analyse 

temporal behaviour of market price of risk and spatial 

behaviour among different regions in the country. 

 

Table 1: EsscherPrices ,t=0.25,r=0.11,S(0)=100 
K/Month Jan Feb Mar Apr May Jun 

80 

 

35.724 

 

35.724 

 

52.224 

 

35.724 

 

35.724 

 

35.724 

 90 30.908 

 

30.908 

 

58.658 

 

33.158 

 

30.908 

 

30.908 

 100 32.093 

 

32.093 

 

65.093 

 

35.093 

 

32.093 

 

26.093 

 110 42.277 

 

43.777 

 

75.277 

 

45.277 

 

43.777 

 

24.350 

 

120 45.717 

 

46.467 

 

82.461 

 

50.217 

 

46.467 

 

29.450 

 130 50.775 

 

50.803 

 

80.646 

 

55.974 

 

50.804 

 

36.635 

 140 58.247 

 

59.094 

 

77.330 

 

65.557 

 

59.094 

 

39.733 

 150 69.495 

 

69.717 

 

77.811 

 

74.837 

 

69.638 

 

46.918 

  
K/Month Jul Aug Sept Oct Nov Dec 

80 37.974 

 

35.724 

 

35.725 

 

35.724 

 

35.724 

 

35.724 

 90 38.408 

 

30.927 

 

33.908 33.908 

 

33.158 

 

30.908 

 100 50.093 

 

26.264 

 

43.343 

 

43.343 

 

35.093 

 

26.103 

 110 54.282 

 

24.107 

 

47.527 

 

47.527 

 

45.277 

 

25.137 

 120 58.533 

 

24.531 

 

53.217 

 

53.217 

 

47.999 

 

31.054 

 130 71.856 

 

38.337 

 

58.275 

 

58.275 

 

53.845 

 

36.770 

 140 78.098 

 

66.449 

 

73.136 

 

73.136 

 

59.958 

 

40.483 

 150 79.737 

 

00.000 

 

74.906 

 

74.906 

 

71.487 

 

49.081 
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Appendix 

 

Proof for proposition 2.6.1 

 

for𝑀 𝑢 + 𝜃 =  𝑒 𝑢+𝜃 𝑦∞

0

1

𝛽𝛼Г𝛼
𝑦𝛼−1𝑒

−𝑦

𝛽 𝑑𝑦 

= 
1

𝛽𝛼Г𝛼
 𝑦𝛼−1∞

0
𝑒
− 

1−𝛽 𝑢+𝜃 

𝛽
 𝑦
𝑑𝑦=

1

𝛽𝛼Г𝛼
 𝑦𝛼−1∞

0
𝑒
− 

1−𝛽 𝑢+𝜃 

𝛽
 𝑦
𝑑𝑦 ∗  

1−𝛽 𝑢+𝜃 

𝛽
1−𝛽 𝑢+𝜃 

𝛽

 

𝛼−1

 

= 
𝛽

1−𝛽 𝑢+𝜃 
 
𝛼−1 1

𝛽𝛼Г𝛼
  

(1−𝛽 𝑢+𝜃 𝑦

𝛽
 
𝛼−1∞

0
𝑒
− 

1−𝛽 𝑢+𝜃 

𝛽
 𝑦
𝑑𝑦   (a) 

Now let 𝑦∗ =  
1−𝛽 𝑢+𝜃 

𝛽
 𝑦 

Therefore  𝑑𝑦 =  
𝛽

1−𝛽(𝑢+𝜃)
 𝑑𝑦∗ 

Equation (a) becomes 

 
𝛽

1−𝛽(𝑢+𝜃)
 
𝛼−1 1

𝛽𝛼Г𝛼
  𝑦∗ 

𝛼−1∞

0
𝑒−𝑦∗  

𝛽

1−𝛽(𝑢+𝜃)
 𝑑𝑦∗  (b) 

Recall: Г𝛼 =  𝑦𝛼−1∞

0
𝑒−𝑦  𝑑𝑦 

This leads (12) to 
𝛽

1−𝛽(𝑢+𝜃)
 
𝛼−1 1

𝛽𝛼Г𝛼
 

𝛽

1−𝛽(𝑢+𝜃)
 Г𝛼 

= 
1

1−𝛽(𝑢+𝜃)
 
𝛼

                                                     (c) 

And for 𝑀 𝜃, 1 =  𝑒𝜃𝑦
∞

0

1

𝛽𝛼Г𝛼
𝑦𝛼−1𝑒

−𝑦

𝛽 𝑑𝑦 

=
1

𝛽𝛼Г𝛼
 𝑦𝛼−1∞

0
𝑒
−(1−𝛽𝜃 )𝑦

𝛽 𝑑𝑦 

=
1

𝛽𝛼Г𝛼
 𝑦𝛼−1∞

0
𝑒
−(1−𝛽𝜃 )𝑦

𝛽 𝑑𝑦 ∗  

1−𝛽𝜃

𝛽
1−𝛽𝜃

𝛽

 

𝛼−1

 

=
1

𝛽𝛼Г𝛼
 

𝛽

1−𝛽𝜃
 
𝛼−1

  (
1−𝛽𝜃

𝛽
)𝑦 

𝛼−1∞

0
𝑒
−(

1−𝛽𝜃 )𝑦

𝛽 𝑑𝑦 

Let  𝑦∗ =
𝑦(1−𝛽𝜃 )

𝛽
 , then  𝑑𝑦 =  

𝛽

1−𝛽𝜃
 𝑑𝑦∗ 

Which now gives rise to, as above, 

=
1

𝛽𝛼Г𝛼
 

𝛽

1 − 𝛽𝜃
 
𝛼−1

  𝑦∗ 
𝛼−1

∞

0

𝑒−𝑦∗  
𝛽

1 − 𝛽𝜃
 𝑑𝑦∗ 

=   
𝛽

1−𝛽𝜃
 
𝛼−1 1

𝛽𝛼Г𝛼
 

𝛽

1−𝛽𝜃
 Г𝛼 =  

1

1−𝛽𝜃
 
𝛼

                             (d) 

Dividing (c) by (d) completes the proof. 
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