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Abstract: Let 𝑮 =  (𝑽, 𝑬) be a graph. A graph G is k-colorable if it has a proper k-coloring. The chromatic number (G) is the least k 

such that G is k- colorable. In this paper, we examine the relation between the domination number, chromatic number and dominating 

-color number of Harary graph Hk,n. And we answer a question posed in [1] by showing that if q = 0, then (𝑯𝟐𝒓,𝒏)  =  𝒑 if not p + 1 

such that 𝒏 =  (𝒓 +  𝟏)𝒔 +  𝒕 and𝒏 =  𝒑𝒔 +  𝒒 with 𝒓 ≥  𝒕 ≥  𝟎, 𝒔 >  𝑞 ≥  0. 
 

Keywords: Proper coloring, Chromatic number, Maximal independent set, Domination number, Dominating-color number. 

 

1. Introduction 
 

Let G =  (V, E) be a simple, connected, finite, undirected 

graph. The order and size of G are denoted by n and m 

respectively [1]. 

 

In graph theory, coloring and domination are two important 

areas which have been extensively studied. The fundamental 

parameter in the theory of graph coloring is the chromatic 

number (G) of a graph G which is defined to be the 

minimum number of colors required to color the vertices of 

G in such a way that no two adjacent vertices receive the 

same color [3,4]. 

 

The minimum cardinality of a maximal independent set of a 

graph G is called the lower independence number and is 

denoted by i(G). A set D  V is a dominating set of G, if for 

every vertex 𝑥  𝑉 \ 𝐷 there is a vertex y  D with xy  E. 

The minimum cardinality of a dominating set of G is the 

domination number and is denoted by (G). Since a set is 

maximal independent if and only if it is a dominating set, 

(G)  ≤  i (G) [5]. 

 

For a given k with 2 ≤  𝑘 ≤  𝑛, the Harary graph 𝐻𝑘,𝑛  is 

constructed as follows: 

Place n vertices 𝑣1 , 𝑣2, … . . , 𝑣𝑛  

i) If k is even. Let k = 2r, then every vertex 𝑣𝑖  is adjacent to 

the consecutive r vertices on either side of 𝑣𝑖 . 

ii) If k is odd and n is even. Let k = 2r + 1 and n = 2m, then 

every vertex is adjacent with 2r vertices as previously 

mentioned and then adding edges joining vertex 𝑣𝑖  to 𝑣𝑖+𝑚  

iii) If k is odd and n is odd .Let k = 2r + 1 and n = 2m - 1, 

then Hk,n is obtained from Hk-1,n by adding the edge 

𝑣𝑖𝑣𝑖+𝑚 for each 1 ≤  𝑖 ≤  
𝑛−1

2
 and 𝑣1𝑣𝑚 . It is clear that H2,n  

= 𝑐𝑛andHn−1,n= Kn. Further (H2,2n)  =  2, (H2,2n+1)  =

 3, (Hn−1,n)  =  n. 

 

2. Preliminary Results 
 

Let G be a graph of order n whose n vertices are listed in 

some specified order. In greedy coloring, if the vertices of G 

are listed in the order  𝑣1 , 𝑣2 , … . . , 𝑣𝑛  , then the resulting 

greedy coloring assigns the color 1 to 𝑣1. If 𝑣2 is not 

adjacent to 𝑣1, then assign the color 1 to 𝑣2, otherwise assign 

the color 2. In general, suppose first j vertices 𝑣1 , 𝑣2 , … . . , 𝑣𝑗 , 

1 ≤ j < n in the sequence have been colored and t is the 

smallest positive integer not used in any neighbor of 

𝑣𝑗 +1from among 𝑣1 , 𝑣2 , … . . , 𝑣𝑗 . Then assign the color t to 

𝑣𝑗 +1 [6]. 

 

Definition 2.1 [2]  

 

Let G be a graph with (G) = k. Let 𝐶 = {𝑉1, 𝑉2, … . . , 𝑉𝑘} be 

a k-coloring of G. Let 𝑑𝑐  denote the number of color classes 

in C which are dominating sets of G. Then d(G) = max c𝑑𝑐  

where the maximum is taken over all the - colorings of G, 

is called the dominating --color number of G. Arumugam et 

al. [2] prove the following theorems, 

 

Theorem 2.2 [2]  

If G is uniquely - colorable, then d(G) = (G) 

 

Proposition 2.3 [2]  

For n ≥ 3, d(C n) =  
3, if𝑛 ≡ 3(mod6)

2, otherwise
  

 

The following observations are straight forward, 

1. For all graphs G, 1≤ d(G) ≤ (G) 

2. (G) = n iffd(G) = n iff G = Kn 

3. If G is bipartite, then d(G) = 2. 

4. For all graphs G, d(G) ≤𝛿(𝐺) + 1. 

 

Theorem 2.4 (Brooks’ Theorem) 

For any graph 𝐺, (𝐺)  ≤  (𝐺), unless 𝐺 is a complete 

graph or an odd cycle. 

 

Theorem 2.5 [6]  

If 𝐻 is a subgraph of a graph 𝐺, then  (𝐻)  ≤   (𝐺) 

 

Theorem 2.6 [6]  

For every graph 𝐺,  (𝐺)  ≤  (𝐺). 
 

3. Chromatic Number of Hk,n 
 

Let 𝐻𝑘,𝑛 =  𝐻2𝑟,𝑛  𝑜𝑟 𝐻2𝑟+1,𝑛  be a Harary graph with n 

vertices 𝑣1 , 𝑣2 , … . . , 𝑣𝑛  as defined in the introduction. 

 

Lemma 3.1 

Let 𝐻𝑘,𝑛 =  𝐻2𝑟,𝑛  𝑜𝑟 𝐻2𝑟+1,𝑛 , with r ≥ 2. Then  
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𝜒 𝐻 ≥   
𝑟 + 1 if 𝑟 + 1\𝑛
𝑟 + 2 otherwise

  

 

Proof: 

Case - 1: If 𝑟 +  1divide 𝑛. 

Define the coloring function, c : V → {1,2, … . , 𝑟 + 1} 

defined by 𝑐(𝑣𝑖)  =  𝑗 
withi ≡  j(mod r + 1) and 1 ≤  𝑗 ≤  𝑟 + 1. Also every 

𝑟 + 1 consecutive vertices of H has a 𝑟 +  1- clique. By 

Theorem 2.6, the graph H has 𝑟 +  1- clique, and therefore 

(𝐻)  ≥  𝑟 +  1. 
 

Case - 2: If r + 1 does not divides n. 

Coloring can be made in such a way that, Divide the vertex 

into {𝑉1, 𝑉2, … . . , 𝑉𝑝} with r + 1 vertices each and with r + 1 

different colors. Since r + 1 does not divides n, the remaining 

{𝑣1 , 𝑣2 , … . . , 𝑣𝑖} vertices with 1 ≤  𝑖 <  𝑟 +  1 and 𝑖 <  𝑝 

will be colored r + 2 and it occupies each vertex set 

increasing the color class from r + 1 to r + 2. Thus (𝐻)  ≥
 𝑟 +  2. 

 

Theorem 3.2 

For every 𝑛 = 𝑝  
𝑛

𝑟+1
 + 𝑞 with 0 ≤ 𝑞 ≤  

𝑛

𝑟+1
 , we have  

𝜒 𝐻2𝑟 ,𝑛 =  
𝑝 if 𝑞 = 0

𝑝 + 1 otherwise
  

 

Proof: 

Case - 1: If 𝑞 =  0. Clearly, 𝑟 +  1 divides n and 𝑛 =

𝑝  
𝑛

𝑟+1
 . Therefore, by lemma 𝜒 𝐻2𝑟 ,𝑛 = 𝑝.  

Case - 2: If 𝑞 ≠ 0. Clearly, 𝑟 +  1 does not divides n and 

𝑛 = 𝑝  
𝑛

𝑟+1
 + 𝑞. By assuming 𝑞 =  0 color the 

𝑝  
𝑛

𝑟+1
 vertices with 𝑝 colors and the 

remaining{𝑣1 , 𝑣2 , … . . , 𝑣𝑖} , 𝑖 <  𝑝 vertices will be given a 

color 𝑝 + 1 and it occupies each vertex set increasing the 

color class from 𝑝 to 𝑝 + 1.Therefore 𝜒 𝐻2𝑟 ,𝑛 = 𝑝 + 1. For 

𝑟 =  1, 𝐻2𝑟,𝑛  =  𝐶𝑛 . Since 𝑛 =  2𝑠 +  𝑡 with the conditions 

𝑛 =  𝑝𝑠 +  𝑞with 𝑟 ≥  𝑡 ≥  0, 𝑠 >  𝑞 ≥  0, we find for all 

𝑛, 𝑝 =  2. If n is even, then 𝑞 =  0 that is (Cn) = 2 and if 𝑛 

is odd, then 𝑞 ≠  0 that is (𝐶𝑛)  =  3. 

 

The interesting question which is first appeared in print in [1] 

is  

 

Question [1]  

If 𝑟 ≥  3, then can one say 𝜒 𝐻2𝑟,3𝑟+2 ≠ 𝑟 + 2 ?  

 

Solution: 

Here, 𝑛 =  3𝑟 +  2, implies that 𝑛 =  (𝑟 +  1)2 +  𝑟. If r 

is an even number, then n can be rewritten as  𝑟 + 1 +

𝑟22+0 and if r is an odd number, then𝑟 + 1 + 𝑟−122 + 1. 

By theorem 3.2, the chromatic number of 𝐻2𝑟,3𝑟+2 is 

either 𝑟 + 1 +
𝑟

2
 2 𝑜𝑟  𝑟 +  1 +  

𝑟−1

2
  and therefore 

𝜒 𝐻2𝑟,3𝑟+2 = 𝑟 + 2 +  
𝑟

2
 . Since 

𝑟

2
 > 0, it is clear that 

𝜒 𝐻2𝑟,3𝑟+2 > 𝑟 + 2  

  

Theorem 3.3 

Let G = 𝐻2𝑟+1,2𝑚 , then 

 𝜒(𝐻2𝑟+1,2𝑚) =  
 𝜒(𝐻2𝑟,2𝑚 ) if 𝑟 + 1 ∤ 𝑚

 𝜒(𝐻2𝑟,2𝑚 ) + 1 otherwise
 with𝑚 − 1 >

 𝑟 ≥  1. 
 
Proof:  

Since H2r+1,2m  is obtained from adding the edges 𝑣𝑖𝑣𝑖+𝑚  

with 1 ≤  𝑖 ≤  𝑛 in the graph H2r,2m . By Theorem 2.5, the 

graph H2r,2m is the subgraph of H2r+1,2m  and 

thereforeχ(H2r,2m ) ≤ χ(H2r+1,2m ). If r + 1 ∤ m, then the 

increment of edges 𝑣𝑖𝑣𝑖+𝑚  does not affect the coloring. The 

colors of H2r,2m  is enough to get the proper coloring 

ofH2r+1,2m , soχ(H2r+1,2m ) =  χ(H2r,2m ). If not, χ(H2r,2m )\
m. So, 𝑣1 and 𝑣𝑚  are in the color class 𝑉1 and vm is adjacent 

with atleast one vertex in each color class. Therefore 𝑣𝑚  has 

a color other then 1,2,3, …… ,  𝜒(𝐻2𝑟 ,2𝑚). 
 

There is a result analogous to Theorem 3.3 that expresses the 

chromatic number of a graph 𝐻2𝑟+1,2𝑚  in terms of the 

chromatic number of 𝐻2𝑟,2𝑚 .  

For r = 1;  𝜒(𝐻2𝑟+1,2𝑚) = 3 and 𝑟 =  𝑚 −  1; 

 𝜒(𝐻2𝑟+1,2𝑚) = 2m. 

 

Theorem 3.4 

Let G = 𝐻2𝑟+1,2𝑚−1 , then  𝜒(𝐻2𝑟+1,2𝑚−1) 

=  
 𝜒(𝐻2𝑟,2𝑚−1) if 𝜒(𝐻2𝑟,2𝑚−1)  ∤ 𝑚 𝑜𝑟 𝑚 − 1 

 𝜒(𝐻2𝑟,2𝑚−1) + 1 otherwise
  

with 𝑚 − 1 >  𝑟 ≥  1. 

 

Proof: 

Since H2r+1,2m−1 is obtained from adding the edges 𝑣𝑖𝑣𝑖+𝑚  

with 1 ≤  𝑖 ≤  𝑛 in the graph H2r,2m−1. By Theorem 2.5, the 

graph H2r,2m−1is the subgraph of H2r+1,2m−1 and 

thereforeχ(H2r,2m − 1) ≤ χ(H2r+1,2m−1). If  𝜒(𝐻2𝑟,2𝑚−1)  ∤
m or m-1, then the increment of edges𝑣𝑖𝑣𝑖+𝑚  does not affect 

the coloring. The colors of H2r,2m−1 is enough to get the 

proper coloring ofH2r+1,2m−1, soχ(H2r+1,2m−1) =
 χ(H2r,2m−1). If not, χ(H2r,2m−1)\m or m−1. Assume 

v1 is adjacent with vm (or vm-1). And also vm and vm-1 are 

adjacent with atleast one vertex in each color class. 

Therefore vm (or vm-1) has a color other then 1,2,3,…… , 

χ(H2r,2m−1).   

There is a result analogous to Theorem 3.4 that expresses the 

chromatic number of a graph 𝐻2𝑟+1,2𝑚−1 in terms of the 

chromatic number of 𝐻2𝑟,2𝑚−1. For r = 1;  𝜒(𝐻2𝑟+1,2𝑚−1) = 3 

and 𝑟 =  𝑚 −  2;  𝜒(𝐻2𝑟+1,2𝑚−1)  =  𝑚. 

 

To sharpen the lower bound of chromatic number in the 

lemma 3.1, we derive the following Theorem 3.5 from 

Theorems 3.2, 3.3 and 3.4.  

 

 

Theorem 3.5 

For any graph Hk,n =  H2r,n  or H2r+1,n  ,with r ≥ 2, then 

(Hk,n) ≥ p such that 𝑛 =  (𝑟 +  1)𝑠 +  𝑡 and 𝑛 =  𝑝𝑠 +
 𝑞 with 𝑟 ≥  𝑡 ≥  0;  𝑠 >  𝑞 ≥  0. 
 

Proof: 
Since s is cardinality of maximal independent set of vertices 

of Hk,n , (Hk,n) ≥
𝑛

𝑠
.Thus(𝐻𝑘,𝑛) ≥ 𝑝. 
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4. The relation between ,  and 𝐝𝛘 

 

In this section we derive the relation between the 

parameters,  and 𝑑𝜒of the Harary graph Hk,n . 

 

Theorem 4.1 

For any graph H2r,n  , we have 𝑑𝜒 (H2r,n ) = p such that 

𝑛 =  (𝑟 +  1)𝑠 +  𝑡 and 𝑛 =  𝑝𝑠 +  𝑞 with 𝑟 ≥  𝑡 ≥
 0;  𝑠 >  𝑞 ≥  0. 
 

Proof: 

Let 𝑉𝑖 , 1 ≤  𝑖 ≤  𝑘 be the color class of H2r,n . If 𝑞 =  0, 

then H2r,n  is uniquely p-colorable. By Theorem 2.2, H2r,n is 

uniquely p-colorable and therefore 𝑑𝜒 (𝐻2r,n)  =

 (𝐻2r,n))  =  𝑝. If q ≠ 0, then (H2r,n ) = p + 1. We claim 

that the color class 𝑉𝑝+1with 𝑞 vertices is not a dominating 

set. Every 𝑣𝑖dominates 𝑣𝑗 , with 𝑖 − 𝑟 ≤  𝑗 ≤  𝑖 + 𝑟 (where 

addition is taken to modulo n). There is no adjacent vertices 

𝑣𝑗  , with 𝑛 −  𝑟 +  1 ≤  𝑗 ≤  𝑛 of 𝑣1 has the color p+1 

because 𝑟(<  𝑝) is not a multiple of p. Since no vertex of 

𝑉𝑝+1 dominates𝑣1, dominating--color number is 

𝑑(𝐻2𝑟 ,𝑛)  =  𝑝. 

 

The following is then an immediate consequence of the 

Theorem 4.1. It gives the relation between the dominating - 

- color number and chromatic number of a Hararygraph 

H2r,n . 

 

Corollary 4.2 

Let 𝑛 =  (𝑟 + 1) 𝑠 + 𝑡 and𝑛 =  𝑝𝑠 + 𝑞with 𝑟 ≥  𝑡 ≥
 0;  𝑠 >  𝑞 ≥  0.  

 H2r,n =  
𝑑𝜒 H2r,n  if q = 0

𝑑𝜒 H2r,n + 1 otherwise
  

 

Theorem 4.3 

For any Harary graph, 𝐻𝑘,𝑛  =  𝐻2𝑟,𝑛or H2r+1,n , with r ≥ 1, 

then 1 ≤  (Hk,n) ≤ s such that 𝑛 =  (𝑟 + 1) 𝑠 + 𝑡 and 

𝑛 =  𝑝𝑠 + 𝑞 with 𝑟 ≥  𝑡 ≥  0;  𝑠 > 𝑞 ≥  0. 

 

Proof: 
An obvious lower bound on the domination number is one. 

Since s is cardinality of maximal independent set, the 

domination number of Hk,n is less than or equal to s.  

 

The following result offers the relation between domination 

number, chromatic number and dominating --color number 

of a Harary graph Hk,n [7,8]. 

 

Theorem 4.4 

For any Harary graph Hk,n with 𝑘 ≥  2, 𝑑𝜒 ≤
𝑛

𝛾
 ≤ 𝜒 + 1 

 

Proof: 

Let c be the cardinality of the color class Vi with 1 ≤  𝑖 ≤
 𝑑𝜒 , which can dominate all other vertices of a graph. By 

definition of dominating  color number, 𝑐 <
𝑛

𝑑𝜒
 

First, to show that 𝛾𝑑𝜒 < 𝑛, assume to the contrary, that 

 𝛾𝑑𝜒 > 𝑛. Then 𝑐 <
𝑛

𝑑𝜒
< 𝛾. Therefore the number of c with 

c < , vertices can dominate the graph. This is contradiction. 

To show that 𝑛 ≤ 𝛾 (𝜒 +  1), assume to the contrary, that 

𝑛 > 𝛾 (𝜒 +  1). And let s as defined in the Theorem 4.3. 

Then n /(χ+1) > . Since ≤ 𝑟 +  1, 𝑠 >  . By Theorem 4.3, 

which contradicts the fact that <  . 
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