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Abstract: Let 6 = (V,E) be a graph. A graph G is k-colorable if it has a proper k-coloring. The chromatic number (G) is the least k
such that G is k- colorable. In this paper, we examine the relation between the domination number, chromatic number and dominating
x-color number of Harary graph Hy . And we answer a question posed in [1] by showing that if g = 0, then y(Hz,,) = pifnotp+1
suchthatn = (r + 1)s + tandn = ps + qwithr >t > 0,s > q = 0.
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1. Introduction

Let G = (V,E) be a simple, connected, finite, undirected
graph. The order and size of G are denoted by n and m
respectively [1].

In graph theory, coloring and domination are two important
areas which have been extensively studied. The fundamental
parameter in the theory of graph coloring is the chromatic
number y(G) of a graph G which is defined to be the
minimum number of colors required to color the vertices of
G in such a way that no two adjacent vertices receive the
same color [3,4].

The minimum cardinality of a maximal independent set of a
graph G is called the lower independence number and is
denoted by i(G). A set D <V is a dominating set of G, if for
every vertex x e V'\ D there is a vertex y € D with xy € E.
The minimum cardinality of a dominating set of G is the
domination number and is denoted by y(G). Since a set is
maximal independent if and only if it is a dominating set,

7(G) < i(G)[5].

For a given k with 2 < k < n, the Harary graph Hy, is
constructed as follows:

Place n vertices vy, vy, ....., U,

i) If k is even. Let k = 2r, then every vertex v; is adjacent to
the consecutive r vertices on either side of v;.

i) If kis odd and n is even. Let k = 2r + 1 and n = 2m, then
every vertex is adjacent with 2r vertices as previously
mentioned and then adding edges joining vertex v; to v; .,
iii) Ifkisoddand nisodd .Letk=2r+1and n=2m- 1,
then Hy, is obtained from Hy,, by adding the edge

. -1 .
ViVim fOreach 1 < i < “——and v;v,. Itis clear that Hy,,

= cpandH,_;,= K, Further y(Hyzn) = 2,x(Hz2n41) =
S’X(Hn—l,n) =

2. Preliminary Results

Let G be a graph of order n whose n vertices are listed in
some specified order. In greedy coloring, if the vertices of G
are listed in the order vy, v,,....,1v, , then the resulting
greedy coloring assigns the color 1 to v;. If v, is not
adjacent to vy, then assign the color 1 to v,, otherwise assign
the color 2. In general, suppose first j vertices vy, vy, ....., v,

1 <j < n in the sequence have been colored and t is the
smallest positive integer not used in any neighbor of
v 41from among vy, vy, .....,v;. Then assign the color t to

V41 [6]-
Definition 2.1 [2]

Let G be a graph with (G) = k. Let C = {I},V,, ....., V;} be
a k-coloring of G. Let d. denote the number of color classes
in C which are dominating sets of G. Then d,(G) = max .d,
where the maximum is taken over all the y- colorings of G,
is called the dominating -y-color number of G. Arumugam et
al. [2] prove the following theorems,

Theorem 2.2 [2]
If G is uniquely - colorable, then d,(G) = %(G)

Proposition 2.3 [2]
Forn=3,d,(C,) = {3, ifn = 3(mod6)

2, otherwise

The following observations are straight forward,
1. For all graphs G, 1<d,(G) < x(G)
2. %(G) = niiffd,(G) = niff G = K,
3. If G is bipartite, then d,(G) = 2.
4. For all graphs G, d,(G) <6(G) + 1.

Theorem 2.4 (Brooks’ Theorem)
For any graph G, y(G) < A(G), unless G is a complete
graph or an odd cycle.

Theorem 2.5 [6]
If H is a subgraph of a graph G, then y (H) < x(G)

Theorem 2.6 [6]
For every graph G, o (G) < x(G).

3. Chromatic Number of Hyp,

Let Hy, = H., or Hy.41, be a Harary graph with n
vertices vy, vy, ....., v, as defined in the introduction.

Lemma 3.1
Let Hk,n = HZr,n or H2r+1'n, Wlth r> 2 Then
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r+1ifr+1\n
x(H) = {r + 2 otherwise
Proof:
Case - 1: If r + 1divide n.
Define the coloring function, ¢ :
defined by c(v;) = j
withi = j(modr+1) and 1 <j < r+1. Also every
r + 1 consecutive vertices of H has a r + 1- clique. By
Theorem 2.6, the graph H has r + 1- clique, and therefore
yH) =2 r + 1.

V -{12,...,r+1}

Case - 2: If r + 1 does not divides n.

Coloring can be made in such a way that, Divide the vertex
into {V,V,,.....,V,} with r + 1 vertices each and withr + 1
different colors. Since r + 1 does not divides n, the remaining
{vi,vy, .., v} vertices with 1 < i <r+landi <p
will be colored r + 2 and it occupies each vertex set
increasing the color class fromr + 1 tor + 2. Thus y(H) =
r + 2.

Theorem 3.2
Foreveryn =p L"?J +qwith0 < g < L"?J we have
_( pifg=0
X(Horp) = {p + 1 otherwise
Proof:

Case - 1. If ¢ = 0. Clearly, r + 1 divides n and n =
p L%J Therefore, by lemma x(Ha, ,,) = p.

Case - 2: If ¢ # 0. Clearly, r + 1 does not divides n and
n=plrn: +q. By assuming g = 0 color the

p L"?Jvertices with p colors and the
remaining{vy, v,, .....,v;}, i < p vertices will be given a
color p + 1 and it occupies each vertex set increasing the
color class from p to p + 1.Therefore y(H,,,) = p + 1. For
r = 1,H,., = C,.Since n = 2s + t with the conditions
n=ps+qwithr >t > 0,5 > q = 0, we find for all
n,p = 2. 1fniseven, thenq = 0thatis x(C,) =2andifn
isodd, then g # Othatis y(C,) = 3.

The interesting question which is first appeared in print in [1]
is

Question [1]
If r > 3,then can one say x(Hy,3,42) =7 +27

Solution:
Here, n = 3r + 2, impliesthat n = (r + 1)2 + r. If r

is an even number, then n can be rewritten as (r+ 1+

722+0and if r is an odd number, then» + 71 + »—122 + 1.
By theorem 3.2, the chromatic number of Hj. 3,4, is

either(r +1+ %) 2 or (r + 1+ %) and
X(Hyrari2) =742+ EJ Sincel%] > 0,it is clear that
X(Hayp3r42) >7+2

therefore

Theorem 3.3
Let G = Hy, 412m, then

X(HZT,ZTH) ifr+1 + m

X(Hyppm) +1 otherwiseWIthm 1>

X(Hyp12m) = {
r = 1.

Proof:

Since Hj.41 ., is obtained from adding the edges v;v; .,
with 1 < i < n in the graph Hy, . By Theorem 2.5, the
graph  Hy.pnis the subgraph  of  Hyiqpyn and
thereforex(Hy, om) < X(Har412m). If r+1 +m, then the
increment of edges v;v;,,, does not affect the coloring. The
colors of H,.,, is enough to get the proper coloring
ofHzr41,2my SOX(H2r412m) = X(Har2m)- If not, x(Hzp2m)\
m. So, v; and v,, are in the color class V; and vy, is adjacent
with atleast one vertex in each color class. Therefore v, has
a color other then 1,2,3, ... ... » X(Hap 2m).

There is a result analogous to Theorem 3.3 that expresses the
chromatic number of a graph Hj,.q12, in terms of the
chromatic number of Hy, 5,,.
For r = 1, x(Hyi12m)
X(Hary1,2m) = 2m.

3 and r =m — 1;

Theorem 3.4
Let G = Hyry10m—1,then x(Hary12m-1)
_ {X(HZr,Zm—l) if y(Hyp 2m-1) tmorm—1
X(Hyr 2m-1) + 1 otherwise
withm—-1>r > 1.

Proof:

Since Hy;412m—1 is Obtained from adding the edges v;v; .,
with 1 < i < ninthe graph Hy, »,,—;. By Theorem 2.5, the
graph  Hy.pm—1is the subgraph of Hp.iqpp-7; and
thereforex(Hzr om — 1) < X(Hzrp1,2m-1)- 1f X(Hzr2m-1) +
m or m-1, then the increment of edgesv, v, ., does not affect
the coloring. The colors of Hy,,,—; IS enough to get the
proper  coloring ofHyr11,2m-1, sox(Hzr4+1,2m-1) =
x(H2r,2m—1). If not, x(H2r,2m—1)\m or m—1. Assume
v, is adjacent with v, (or vi,1). And also v, and v, are
adjacent with atleast one vertex in each color class.
Therefore v, (or vp.1) has a color other then 1,2,3,...... ,
X(Hzr2m-1)-

There is a result analogous to Theorem 3.4 that expresses the
chromatic number of a graph Hy,.q2,—1 in terms of the
chromatic number of Hy, 5., 1. FOr r =1; x(Hppi12m-1) =3
andr = m — 2; x(Hyr412m-1) = m.

To sharpen the lower bound of chromatic number in the
lemma 3.1, we derive the following Theorem 3.5 from
Theorems 3.2, 3.3 and 3.4.

Theorem 3.5
For any graph Hy, = Hy., or Hp.i1,,with r > 2, then

x(Hgn) = psuchthatn = (r + 1)s + tand n = ps +
qwithr >t > 0;s >q= 0.

Proof:
Since s is cardinality of maximal independent set of vertices

of Hy , x(Hyn) = %-ThUSZ(Hk,n) 2 p.
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4. The relation between y,y and d,,

In this section we derive the relation between the
parametersy, yand d, of the Harary graph Hy,.

Theorem 4.1

For any graph H,., , we have d,(H,.,) = p such that
n=+1Ds+t and n=ps+q with r>1t >
0;s >qg=0.

Proof:

Let V;,1 < i < k be the color class of Hy.,. If ¢ = 0,
then Hy,, is uniquely p-colorable. By Theorem 2.2, Hj,. ,is
uniquely  p-colorable and therefore  d,(H,.,) =
¥(Hyen)) = p. If g #0, then y(H,.,) = p + 1. We claim
that the color class V, . with g vertices is not a dominating
set. Every v;dominates v;, with i —r < j < i+ r (where
addition is taken to modulo n). There is no adjacent vertices
v, Withn —r + 1<) <nof v has the color p+1
because r(< p) is not a multiple of p. Since no vertex of
V,+1 ~ dominatesv;,  dominating-y-color  number s

d;((HZr,n) = p.

The following is then an immediate consequence of the
Theorem 4.1. It gives the relation between the dominating -
¥- color number and chromatic number of a Hararygraph
H2r,n-

Corollary 4.2
Let n=(@r +1s+t
0;s >q = 0.

taen) ={

andn = ps+qwith r >t >

d,(Hy,)ifq=0
d, (HZr,n) + 1 otherwise

Theorem 4.3

For any Harary graph, H,, = Hp, ,0r Hy 1, With r > 1,
then 1 <y (Hxn) < s such that n = (r +1)s+t and
n=ps+qwithr>t >0;s >q= 0.

Proof:

An obvious lower bound on the domination number is one.
Since s is cardinality of maximal independent set, the
domination number of Hy , is less than or equal to s.

The following result offers the relation between domination
number, chromatic number and dominating -y-color number
of a Harary graph Hy, [7,8].

Theorem 4.4
For any Harary graph He, withk > 2,d, < 3 <xy+1

Proof:
Let ¢ be the cardinality of the color class V; with 1 < i <
d,, which can dominate all other vertices of a graph. By

definition of dominating  color number, ¢ < dl
X

First, to show thatyd, <n, assume to the contrary, that

yd, >n.Thenc < di < y. Therefore the number of ¢ with
X

c <y, vertices can dominate the graph. This is contradiction.

To show that n <y (¥ + 1), assume to the contrary, that
n >y (¥ + 1). And let s as defined in the Theorem 4.3.
Then n /(xt1) >y . Since <r + 1,5 > y. By Theorem 4.3,
which contradicts the fact that < .
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