Dominating- χ -Color Number of Harary Graph

T. Ramachandran¹, A. Naseer Ahmed²

¹Department of Mathematics, M.V.M Government Arts College for Women, Dindigul, Tamil Nadu, India

²Department of Mathematics, Chettinad College of Engineering and Technology, Karur, Tamil Nadu, India

Abstract: Let G = (V, E) be a graph. A graph G is k-colorable if it has a proper k-coloring. The chromatic number $\chi(G)$ is the least k such that G is k- colorable. In this paper, we examine the relation between the domination number, chromatic number and dominating χ -color number of Harary graph $H_{k,n}$. And we answer a question posed in [1] by showing that if q = 0, then $\chi(H_{2r,n}) = p$ if not p + 1 such that n = (r + 1)s + t and n = ps + q with $r \ge t \ge 0$, $s > q \ge 0$.

Keywords: Proper coloring, Chromatic number, Maximal independent set, Domination number, Dominating₂-color number.

1. Introduction

Let G = (V, E) be a simple, connected, finite, undirected graph. The order and size of G are denoted by n and m respectively [1].

In graph theory, coloring and domination are two important areas which have been extensively studied. The fundamental parameter in the theory of graph coloring is the chromatic number $\chi(G)$ of a graph G which is defined to be the minimum number of colors required to color the vertices of G in such a way that no two adjacent vertices receive the same color [3,4].

The minimum cardinality of a maximal independent set of a graph G is called the lower independence number and is denoted by i(G). A set $D \subseteq V$ is a dominating set of G, if for every vertex $x \in V \setminus D$ there is a vertex $y \in D$ with $xy \in E$. The minimum cardinality of a dominating set of G is the domination number and is denoted by $\gamma(G)$. Since a set is maximal independent if and only if it is a dominating set, $\gamma(G) \leq i(G)$ [5].

For a given k with $2 \le k \le n$, the Harary graph $H_{k,n}$ is constructed as follows:

Place n vertices v_1, v_2, \ldots, v_n

i) If k is even. Let k = 2r, then every vertex v_i is adjacent to the consecutive r vertices on either side of v_i .

ii) If k is odd and n is even. Let k = 2r + 1 and n = 2m, then every vertex is adjacent with 2r vertices as previously mentioned and then adding edges joining vertex v_i to v_{i+m}

iii) If k is odd and n is odd .Let k = 2r + 1 and n = 2m - 1, then $H_{k,n}$ is obtained from $H_{k-1,n}$ by adding the edge $v_i v_{i+m}$ for each $1 \le i \le \frac{n-1}{2}$ and $v_1 v_m$. It is clear that $H_{2,n} = c_n \text{ and } H_{n-1,n} = K_n$. Further $\chi(H_{2,2n}) = 2, \chi(H_{2,2n+1}) = 3, \chi(H_{n-1,n}) = n$.

2. Preliminary Results

Let G be a graph of order n whose n vertices are listed in some specified order. In greedy coloring, if the vertices of G are listed in the order v_1, v_2, \ldots, v_n , then the resulting greedy coloring assigns the color 1 to v_1 . If v_2 is not adjacent to v_1 , then assign the color 1 to v_2 , otherwise assign the color 2. In general, suppose first j vertices v_1, v_2, \ldots, v_j , $1 \le j < n$ in the sequence have been colored and t is the smallest positive integer not used in any neighbor of v_{j+1} from among v_1, v_2, \dots, v_j . Then assign the color t to v_{j+1} [6].

Definition 2.1 [2]

Let G be a graph with $\chi(G) = k$. Let $C = \{V_1, V_2, \dots, V_k\}$ be a k-coloring of G. Let d_c denote the number of color classes in C which are dominating sets of G. Then $d_{\chi}(G) = \max_{c} d_c$ where the maximum is taken over all the χ - colorings of G, is called the dominating - χ -color number of G. Arumugam et al. [2] prove the following theorems,

Theorem 2.2 [2]

If G is uniquely χ - colorable, then $d_{\chi}(G) = \chi(G)$

Proposition 2.3 [2] For $n \ge 3$, $d_{\chi}(C_n) = \begin{cases} 3, \text{ if } n \equiv 3 \pmod{6} \\ 2, \text{ otherwise} \end{cases}$

The following observations are straight forward,

1. For all graphs G, $1 \le d_{\chi}(G) \le \chi(G)$

2. $\chi(G) = n \operatorname{iffd}_{\chi}(G) = n \operatorname{iff} G = K_n$

3. If G is bipartite, then $d_{\chi}(G) = 2$.

4. For all graphs G, $d_{\chi}(G) \leq \delta(G) + 1$.

Theorem 2.4 (Brooks' Theorem)

For any graph G, $\chi(G) \leq \Delta(G)$, unless G is a complete graph or an odd cycle.

Theorem 2.5 [6] If *H* is a subgraph of a graph *G*, then $\chi(H) \leq \chi(G)$

Theorem 2.6 [6] For every graph G, $\omega(G) \leq \chi(G)$.

3. Chromatic Number of H_{k,n}

Let $H_{k,n} = H_{2r,n}$ or $H_{2r+1,n}$ be a Harary graph with n vertices v_1, v_2, \dots, v_n as defined in the introduction.

Lemma 3.1

Let $H_{k,n} = H_{2r,n}$ or $H_{2r+1,n}$, with $r \ge 2$. Then

$$\chi(H) \ge \begin{cases} r+1 \text{ if } r+1 \backslash n \\ r+2 \text{ otherwise} \end{cases}$$

Proof:

Case - 1: If r + 1 divide n.

Define the coloring function, c : V \rightarrow {1,2,...,r+1} defined by $c(v_i) = j$

with $\equiv j \pmod{r+1}$ and $1 \leq j \leq r+1$. Also every r+1 consecutive vertices of H has a r+1- clique. By Theorem 2.6, the graph H has r+1- clique, and therefore $\chi(H) \geq r+1$.

Case - 2: If r + 1 does not divides n.

Coloring can be made in such a way that, Divide the vertex into $\{V_1, V_2, \ldots, V_p\}$ with r + 1 vertices each and with r + 1 different colors. Since r + 1 does not divides n, the remaining $\{v_1, v_2, \ldots, v_i\}$ vertices with $1 \le i < r + 1$ and i < p will be colored r + 2 and it occupies each vertex set increasing the color class from r + 1 to r + 2. Thus $\chi(H) \ge r + 2$.

Theorem 3.2

For every
$$n = p \left\lfloor \frac{n}{r+1} \right\rfloor + q$$
 with $0 \le q \le \left\lfloor \frac{n}{r+1} \right\rfloor$, we have $\chi(H_{2r,n}) = \begin{cases} p \text{ if } q = 0\\ p+1 \text{ otherwise} \end{cases}$

Proof:

Case - 1: If q = 0. Clearly, r + 1 divides n and $n = p \left| \frac{n}{r+1} \right|$. Therefore, by lemma $\chi(H_{2r,n}) = p$.

Case - 2: If $q \neq 0$. Clearly, r + 1 does not divides n and $n = p \left| \frac{n}{r+1} \right| + q$. By assuming q = 0color the $p\left|\frac{n}{r+1}\right|$ vertices with pcolors and the remaining $\{v_1, v_2, \dots, v_i\}, i < p$ vertices will be given a color p + 1 and it occupies each vertex set increasing the color class from p to p + 1. Therefore $\chi(H_{2r,n}) = p + 1$. For $r = 1, H_{2r,n} = C_n$. Since n = 2s + t with the conditions n = ps + q with $r \ge t \ge 0$, $s > q \ge 0$, we find for all n, p = 2. If n is even, then q = 0 that is $\chi(C_n) = 2$ and if n is odd, then $q \neq 0$ that is $\chi(C_n) = 3$.

The interesting question which is first appeared in print in [1] is

Question [1]

If $r \ge 3$, then can one say $\chi(H_{2r,3r+2}) \ne r+2$?

Solution:

Here, n = 3r + 2, implies that n = (r + 1)2 + r. If r is an even number, then n can be rewritten as (r + 1 + r22 + 0) and if r is an odd number, then r + 1 + r-122 + 1. By theorem 3.2, the chromatic number of $H_{2r,3r+2}$ is either $(r + 1 + \frac{r}{2}) 2 \text{ or } (r + 1 + \frac{r-1}{2})$ and therefore $\chi(H_{2r,3r+2}) = r + 2 + \lfloor \frac{r}{2} \rfloor$. Since $\lfloor \frac{r}{2} \rfloor > 0$, it is clear that $\chi(H_{2r,3r+2}) > r + 2$

Theorem 3.3

Let $G = H_{2r+1,2m}$, then

$$\chi(H_{2r+1,2m}) = \begin{cases} \chi(H_{2r,2m}) \text{ if } r+1 \nmid m\\ \chi(H_{2r,2m})+1 \text{ otherwise} \end{cases} \text{ with } m-1 > r \ge 1.$$

Proof:

Since $H_{2r+1,2m}$ is obtained from adding the edges $v_i v_{i+m}$ with $1 \le i \le n$ in the graph $H_{2r,2m}$. By Theorem 2.5, the graph $H_{2r,2m}$ is the subgraph of $H_{2r+1,2m}$ and therefore $\chi(H_{2r,2m}) \le \chi(H_{2r+1,2m})$. If $r + 1 \nmid m$, then the increment of edges $v_i v_{i+m}$ does not affect the coloring. The colors of $H_{2r,2m}$ is enough to get the proper coloring of $H_{2r+1,2m}$, so $\chi(H_{2r+1,2m}) = \chi(H_{2r,2m})$. If not, $\chi(H_{2r,2m}) \setminus$ m. So, v_1 and v_m are in the color class V_1 and v_m is adjacent with atleast one vertex in each color class. Therefore v_m has a color other then 1,2,3,, $\chi(H_{2r,2m})$.

There is a result analogous to Theorem 3.3 that expresses the chromatic number of a graph $H_{2r+1,2m}$ in terms of the chromatic number of $H_{2r,2m}$.

For r = 1; $\chi(H_{2r+1,2m}) = 3$ and r = m - 1; $\chi(H_{2r+1,2m}) = 2m$.

Theorem 3.4

Let G =
$$H_{2r+1,2m-1}$$
, then $\chi(H_{2r+1,2m-1})$
= $\begin{cases} \chi(H_{2r,2m-1}) \text{ if } \chi(H_{2r,2m-1}) \neq m \text{ or } m-1 \\ \chi(H_{2r,2m-1}) + 1 \text{ otherwise} \end{cases}$
with $m-1 > r \ge 1$.

Proof:

Since $H_{2r+1,2m-1}$ is obtained from adding the edges $v_i v_{i+m}$ with $1 \leq i \leq n$ in the graph $H_{2r,2m-1}$. By Theorem 2.5, the graph $H_{2r,2m-1}$ is the subgraph of $H_{2r+1,2m-1}$ and therefore $\chi(H_{2r,2m} - 1) \leq \chi(H_{2r+1,2m-1})$. If $\chi(H_{2r,2m-1}) \nmid$ m or m-1, then the increment of edges $v_i v_{i+m}$ does not affect the coloring. The colors of $H_{2r,2m-1}$ is enough to get the proper coloring of $H_{2r+1,2m-1}$, so $\chi(H_{2r+1,2m-1}) =$ $\chi(H2r,2m-1)$. If not, $\chi(H2r,2m-1) \backslash$ m or m-1. Assume v_1 is adjacent with v_m (or v_{m-1}). And also v_m and v_{m-1} are adjacent with atleast one vertex in each color class. Therefore v_m (or v_{m-1}) has a color other then 1,2,3,....., $\chi(H_{2r,2m-1})$.

There is a result analogous to Theorem 3.4 that expresses the chromatic number of a graph $H_{2r+1,2m-1}$ in terms of the chromatic number of $H_{2r,2m-1}$. For r = 1; $\chi(H_{2r+1,2m-1}) = 3$ and r = m - 2; $\chi(H_{2r+1,2m-1}) = m$.

To sharpen the lower bound of chromatic number in the lemma 3.1, we derive the following Theorem 3.5 from Theorems 3.2, 3.3 and 3.4.

Theorem 3.5

For any graph $H_{k,n} = H_{2r,n}$ or $H_{2r+1,n}$, with $r \ge 2$, then $\chi(H_{k,n}) \ge p$ such that n = (r + 1)s + t and n = ps + q with $r \ge t \ge 0$; $s > q \ge 0$.

Proof:

Since s is cardinality of maximal independent set of vertices of $H_{k,n}, \chi(H_{k,n}) \ge \frac{n}{s}$. Thus $\chi(H_{k,n}) \ge p$.

Licensed Under Creative Commons Attribution CC BY

4. The relation between χ , γ and d_{χ}

In this section we derive the relation between the parameters χ , γ and d_{χ} of the Harary graph H_{k,n}.

Theorem 4.1

For any graph $H_{2r,n}$, we have $d_{\chi}(H_{2r,n}) = p$ such that n = (r + 1)s + t and n = ps + q with $r \ge t \ge 0$; $s > q \ge 0$.

Proof:

Let V_i , $1 \le i \le k$ be the color class of $H_{2r,n}$. If q = 0, then H_{2r,n} is uniquely p-colorable. By Theorem 2.2, H_{2r,n} is uniquely p-colorable therefore $d_{\gamma}(H_{2r,n}) =$ and $\chi(H_{2r,n})$ = p. If q \neq 0, then $\chi(H_{2r,n})$ = p + 1. We claim that the color class V_{p+1} with q vertices is not a dominating set. Every v_i dominates v_j , with $i - r \leq j \leq i + r$ (where addition is taken to modulo n). There is no adjacent vertices v_j , with $n - r + 1 \le j \le n$ of v_1 has the color p+1 because r(< p) is not a multiple of p. Since no vertex of V_{p+1} dominates v_1 , dominating - χ -color number $d_{\chi}(H_{2r,n}) = p.$

The following is then an immediate consequence of the Theorem 4.1. It gives the relation between the dominating - χ - color number and chromatic number of a Hararygraph $H_{2r,n}$.

Corollary 4.2

Let n = (r + 1)s + t and n = ps + q with $r \ge t \ge 0$; $s > q \ge 0$.

$$\chi(\mathbf{H}_{2\mathbf{r},\mathbf{n}}) = \begin{cases} d_{\chi}(\mathbf{H}_{2\mathbf{r},\mathbf{n}}) \text{ if } \mathbf{q} = 0\\ d_{\chi}(\mathbf{H}_{2\mathbf{r},\mathbf{n}}) + 1 \text{ otherwise} \end{cases}$$

Theorem 4.3

For any Harary graph, $H_{k,n} = H_{2r,n}$ or $H_{2r+1,n}$, with $r \ge 1$, then $1 \le \gamma$ ($H_{k,n}$) \le s such that n = (r + 1) s + t and n = ps + q with $r \ge t \ge 0$; $s > q \ge 0$.

Proof:

An obvious lower bound on the domination number is one. Since s is cardinality of maximal independent set, the domination number of $H_{k,n}$ is less than or equal to s.

The following result offers the relation between domination number, chromatic number and dominating $-\chi$ -color number of a Harary graph $H_{k,n}$ [7,8].

Theorem 4.4

For any Harary graph $H_{k,n}$ with $k \ge 2$, $d_{\chi} \le \frac{n}{\gamma} \le \chi + 1$

Proof:

Let c be the cardinality of the color class V_i with $1 \le i \le d_{\chi}$, which can dominate all other vertices of a graph. By definition of dominating χ color number, $c < \frac{n}{d_{\chi}}$

First, to show that $\gamma d_{\chi} < n$, assume to the contrary, that $\gamma d_{\chi} > n$. Then $c < \frac{n}{d_{\chi}} < \gamma$. Therefore the number of c with $c < \gamma$, vertices can dominate the graph. This is contradiction.

To show that $n \le \gamma$ ($\chi + 1$), assume to the contrary, that $n > \gamma$ ($\chi + 1$). And let s as defined in the Theorem 4.3. Then n /(χ +1) > γ . Since $\le r + 1$, $s > \gamma$. By Theorem 4.3, which contradicts the fact that $< \gamma$.

References

- Adel P. Kazemi, "Chromatic number of some Graphs", International Mathematical Forum, 2, 35, 1723-1727, 2007.
- [2] S. Arumugam, Teresa W.Haynes, Michael A. Henning, YaredNigussie, "Maximal independent sets in minimum colorings", Discrete Mathematics, 311, 1158-1165, 2011.
- [3] S. Arumugam, I. Sahul Hamid and A. Muthukamatchi, "Independent Domination and Graph Colorings", In: Proceedings of international Conference on Discrete Mathematics. Lecture Note series in Mathematics, Ramanujan Mathematical Society Lecture Notes Series 7, 195-208, 2008.
- [4] Harary, E., "Graph Theory". Addison Wesley, Reading, Mass, 1972.
- [5] Gary Chartrand, Ping Zhang, "Introduction to Graph Theory", TataMcGraw-Hill edition, 2010.
- [6] Gary Chartrand, Ping Zhang, "Chromatic Graph Theory", Tata McGraw- Hill edition, 2010.
- [7] J. John Arul Singh and R. Kala, "Min-Dom-Color Number of a Graph", Int.J. Contemp. Math. Sciences, Vol. 5, 2010, 41, 2019-2027.
- [8] H. AbdollahzadehAhangar and L. Puspalatha, "On the Chromatic number of some Harary Graphs", International Mathematical Forum, 4, 31, 1511-1514, 2009.