
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

An Overview of Agile Software Development

Process

Abhilasha Yadav

Sri Satya Sai Institute of Science & Technology, Sehore

Abstract: We all know that in recent modern era software is the basic requirement for operating almost every digital machine. So that

we have to think about software and about creation of software which is efficient to fulfill the requirement and consume less time. And

after studying about many software development method there quality and loopholes the final outcome is documented in this paper. This

paper is all about agile, concept behind agile, range of agile, how agile achieve quality under time pressure and changing requirement

environment? The Advantages and disadvantages of agile.

Keyword: Agile methodology, The Agile Manifesto, Agile quality technique

1. Introduction

Software plays a very crucial role in numerous numbers of

areas of technology and business world, as it is driven

extensively both by the individuals and the companies either

as a single main application or as a part of an aggregate

project in order to ease the level of effort, raise functionality

and consistency of the work by computerizing procedures

and enabling services.

Due to the constant development of information systems, the

increasing demand in the field and as the business has taken

different forms over the years, different software

development methods and models have been invented and

used over the last five decades in order to facilitate the

development processes.

With the aforementioned qualities, some of the traditional

methods have turned into highly documentation-oriented

ways of development and such models strictly requiring and

limiting developers to follow and apply certain processes.

As a counter-reaction to those problems the traditional

methods had brought, the understanding of the significance

of human factor, importance of collaboration and

communication between the team and the customers, and the

value of ability to respond to changes has begun to arise in

the software industry. This leaded the new Agile Methods be

formulated and applied over the last two decades, in order to

overcome the shortcomings of the traditional methods.

The reality is that agile methods have gained tremendous

acceptance in the commercial arena since late 90s because

they accommodate volatile requirements, focus on

collaboration between developers and customers, and

support early product delivery. Two of the most significant

characteristics of the agile approaches are[10]:

1. They can handle unstable requirements throughout the

development lifecycle

2. They deliver products in shorter timeframes and under

budget constraints when compared with traditional

development methods.

Compare the quality assurance techniques of agile and

traditional software development processes. In three steps:

I. build a complete outline of the traditional model

including its supporting processes,

II. Identify those practices within agile methods that purport

to ensure software quality,

III. Determine the similarities and differences between agile

and traditional software quality assurance techniques.

By applying such an approach, we can systematically

investigate how agile methods integrate support for software

quality within their life cycle.

This paper contain ^ parts, part 1 introduction, Part 2 about

Agile software development, part 3 Agile methods Quality

techniques, part 4 Advantage & Disadvantage , part 5 Future

Work and part 6 Conclusion.

2. Agile Software Development

Agile software development is a group of software

development methods in which requirements and solutions

evolve through collaboration between self-organizing, cross-

functional teams. It promotes adaptive planning,

evolutionary development, early delivery, continuous

improvement and encourages rapid and flexible response to

change. It is a conceptual framework that focuses on

frequently delivering small increments of working software.

To be able to fully understand the concept, it is helpful to

first describe the meaning of the term “agility” from

different perspectives. The term agility was defined well in

Agile Competitors and Virtual Organizations, in fact for

flexible manufacturing, as “Agility is dynamic, context-

specific, aggressively change-embracing, and growth-

oriented. It is not about improving efficiency, cutting costs,

or battening down the business hatches to ride out fearsome

competitive “storms”. It is about succeeding and about

winning: about succeeding in emerging competitive arenas,

and about winning profits, market share, and customers in

the very center of the competitive storms many companies

now fear.”[2][7]

So-called lightweight agile software development methods

evolved in the mid-1990s as a reaction against the

heavyweight waterfall-oriented methods, which were

characterized by their critics as being heavily regulated,

regimented, micromanaged and over-incremental

approaches to development.

Paper ID: 04031501 651

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Proponents of lightweight agile methods contend that they

are returning to development practices that were present

early in the history of software development.

Early implementations of agile methods include Rational

Unified Process (1994), Scrum (1995), Crystal Clear,

Extreme Programming (1996), Adaptive Software

Development, Feature Driven Development (1997), and

Dynamic Systems Development Method (DSDM) (1995).

These are now collectively referred to as agile

methodologies, after the Agile Manifesto was published in

2001.[7]

In February of 2001, seventeen practitioners of several

programming methodologies came together at a summit in

Utah to discuss the problems of existing methodologies, the

ways to overcome those, and the values to support agile or

lightweight software development at high level; then they

published The Agile Manifesto with the four main values

that were agreed on as[20]:

“Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan”

In 2002, along with the four main values Agile Alliance has

published The Twelve Principles behind the Agile Manifesto

that further explicate what it is to be Agile. These principles

are as follows[19]:

1. Our highest priority is to satisfy the customer through

early and continuous delivery of valuable software.

2. Welcome changing requirements, even late in

development. Agile processes harness change for the

customer‟s competitive advantage.

3. Deliver working software frequently, from a couple of

weeks to a couple of months, with a preference to the

shorter timescale.

4. Business people and developers must work together

daily throughout the project.

5. Build projects around motivated individuals. Give them

the environment and support they need, and trust them

to get the job done.

6. The most efficient and effective method of conveying

information to and within a development team is face-

to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The

sponsors, developers, and users should be able to

maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good

design enhances agility.

10. Simplicity–the art of maximizing the amount of work

not done–is essential.

11. The best architectures, requirements, and designs

emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to become

more effective, then tunes and adjusts its behavior

accordingly.

Agile methodologies include:

 Extreme Programming

 Agile Modeling

 SCRUM

 Test-driven development (TDD)

 Feature-driven development (FDD)

a) Extreme Programming (XP)

Extreme Programming was introduced by Kent Beck in

2000. XP offers a number of practices, values and principles

for software development project. Extreme Programming

was in fact targeted especially at small co-located teams

developing non-critical products [6][12]. Currently,

however, it has been used by companies of all different sizes

and industries worldwide.

1. Architecture Spike-The holy grail of XP is the delivery of

working software within a short time frame. This

exclusive focus on functionality could easily turn the

project into a „Feature Factory‟, with the risk of

accumulating architectural deficiencies and technical

debt that has an impact on performance of the software

and overall product quality. This risk can be mitigated by

incorporation of a sound architectural basis for the

system under development, applying 'Architecture

Spikes‟.[2][12]

2. Release Planning-Planning and estimating in the agile

world depend on a single key metric: the development

team's velocity, which describes how much work the

team can get done per iteration. (We describe velocity in

detail separately.) Given a team's known velocity for its

last project (if it is known), a release plan represents how

much scope that team intends to deliver by a given

deadline. [2][12]. The goal of initial release planning is

to estimate roughly which features will be delivered by

the release deadline (presuming the deadline is fixed), or

to choose a rough delivery date for a given set of features

(if scope is fixed). We use this information to decide

whether or not the project will produce enough ROI to at

least pay for itself, and therefore whether or not we

should proceed.

3. Iteration-Iteration is the act of repeating a process with

the aim of approaching a desired goal, target or result.

Each repetition of the process is also called an

"iteration", and the results of one iteration are used as the

starting point for the next iteration. The pentagon on the

right also is a good example of how iteration relates to

recursion. Although iteration is used, for example, to

parse a linked list, recursion is required when we step up

to binary trees. The pentagon demonstrates both. [2][12]

4. Acceptance testing -In engineering and its various

subdisciplines, acceptance testing is a test conducted to

determine if the requirements of a specification or

contract are met. It may involve chemical tests, physical

tests, or performance tests.In systems engineering it may

involve black-box testing performed on a system (for

example: a piece of software, lots of manufactured

mechanical parts, or batches of chemical products) prior

to its delivery.
[1]

Software developers often distinguish

acceptance testing by the system provider from

acceptance testing by the customer (the user or client)

prior to accepting transfer of ownership. In the case of

software, acceptance testing performed by the customer

is known as user acceptance testing (UAT), end-user

testing, site (acceptance) testing, or field (acceptance)

testing. [2][12]

Paper ID: 04031501 652

http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Fields_of_engineering
http://en.wikipedia.org/wiki/Specification
http://en.wikipedia.org/wiki/Contract
http://en.wikipedia.org/wiki/Chemical_test
http://en.wikipedia.org/wiki/Physical_test
http://en.wikipedia.org/wiki/Physical_test
http://en.wikipedia.org/wiki/Performance_test_%28assessment%29
http://en.wikipedia.org/wiki/Systems_engineering
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Software_system
http://en.wikipedia.org/wiki/Acceptance_testing#cite_note-1
http://en.wikipedia.org/wiki/Customer
http://en.wikipedia.org/wiki/Acceptance_testing#User_acceptance_testing

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5. Small Release planning-The development team needs to

release iterative versions of the system to the customers

often. Some teams deploy new software into production

every day. At the very least you will want to get new

software into production every week or two. At the end

of every iteration you will have tested, working,

production ready software to demonstrate to your

customers. The decision to put it into production is

theirs. [2][12]

The release planning meeting is used to plan small units

of functionality that make good business sense and can

be released into the customer's environment early in the

project. This is critical to getting valuable feedback in

time to have an impact on the system's development. The

longer you wait to introduce an important feature to the

system's users the less time you will have to fix it.

The programming principles that are encouraged by XP are:

 Its simplicity and flexibility to reduce maintenance costs

of the software.

 The intensive and robust testing mechanism that reduces

the number of defects after delivery.

 Embraces changes, during the development process.

 Moreover, encourages creating high quality code [12]

Figure 1: Extreme Programming

b) Agile Modeling (AM)

Modeling is important and enables software developers to

think about complex issues prior to its implementation.

Agile Modeling (AM) was established by Scott Ambler in

2002. It is a collection of values, principles, and practices for

modeling software for development project in an effective

and light-weight manner [10].

Humility means to accept that you may not know

everything; others may also provide useful contribution to

the project [10].

Again, the principles of AM are quite similar to those of XP,

such as assuming simplicity, accepting changes,

incrementally of the system, and rapid feedback. In addition

to these principles, AM include the knowledge of the

purpose for modeling; having multiple effective models; the

content is more important than the representation; keeping

open and honest communication between parties involved in

the development process; and finally, to focus on the quality

of the work [10].

The practices of AM have some commonalities with those of

XP, too. AM practices highlight on active stakeholder

participation focus on group work to create the suitable

models; apply the appropriate artifact as UML diagrams;

verify the correctness of the model, implement it and show

the resulting interface to the user; model in small

increments; create several function models in parallel; apply

modeling standards; and other practices [10].

Agile Model Driven Development (AMDD) is the agile

version of model driven development. To apply AMDD, an

overall high level model for the whole system is created at

the early stage of the project. During the development

iterations, the modeling is performed per iteration, along

with other methodologies, such as Test Driven Development

(TDD), and Extreme Programming (XP), to get the best

results [10].

AM basically creates a mediator between rigid

methodologies and lightweight methodologies, by

suggesting that developers communicate architectures

through applying its practices to the modeling process.

Figure 2: Agile Modeling

c) SCRUM

SCRUM methodology was introduced by Ken Swaber in

1995 and was practiced before the announcement of Agile

Manifesto. Later, it was included into agile methodology.

SCRUM is used with the objective of simplifying project

control through simple processes, easy to update

documentation and higher team iteration over exhaustive

documentation [1][9].

Scrum is a management framework for incremental product

development using one or more cross-functional, self-

organizing teams. It provides structure of roles, meetings,

rules, and artifacts. Teams are responsible for creating and

adapting their processes within this framework. Scrum uses

fixed-length iterations, called Sprints.

1. Initiate - This phase includes the processes related to

initiation of a project: Create Project Vision, Identify

Scrum Master and Stakeholder(s), Form Scrum Team,

Develop Epic(s), Create Prioritized Product Backlog, and

Conduct Release Planning.[15]

2. Plan and Estimate - This phase consists of processes

related to planning and estimating tasks, which include

Create User Stories, Approve, Estimate, and Commit User

Stories, Create Tasks, Estimate Tasks, and Create Sprint

Backlog.[15]

Paper ID: 04031501 653

http://www.extremeprogramming.org/rules/planninggame.html

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3. Implement - This phase is related to the execution of the

tasks and activities to create a project's product. These

activities include creating the various deliverables,

conducting Daily Standup Meetings, and grooming (i.e.,

reviewing, fine-tuning, and regularly updating) the

Product Backlog at regular intervals. [15]

4. Review and Retrospect - This phase is concerned with

reviewing the deliverables and the work that has been

done and determining ways to improve the practices and

methods used to do project work.[15]

5. Release - This phase emphasizes on delivering the

Accepted Deliverables to the customer and identifying,

documenting, and internalizing the lessons learned during

the project.[15]

Figure 3: SCRUM Process Stages

Schwaber lists the key principles of SCRUM as follows[21]:

 Small working teams that maximize communication,

minimize overhead, and maximize sharing of tacit,

informal knowledge

 Adaptability to technical or marketplace (user/customer)

changes to ensure the best possible product is produced

 Frequent ”builds”, or construction of executable, that can

be inspected, adjusted, tested, documented, and built on

 Partitioning of work and team assignments into clean, low

coupling partitions, or packets

 Constant testing and documentation of a product - as it is

built

 Ability to declare a product “done” whenever required

(because the competition just shipped, because the

company needs the cash, because the user/customer needs

the functions, because that was when it was promised...)

d) Test-driven development (TDD)

Test-driven development (TDD) is a software development

process that relies on the repetition of a very short

development cycle: first the developer writes an (initially

failing) automated test case that defines a desired

improvement or new function, then produces the minimum

amount of code to pass that test, and finally refactors the

new code to acceptable standards. Kent Beck, who is

credited with having developed or 'rediscovered' the

technique, stated in 2003 that TDD encourages simple

designs and inspires confidence.[16]

Test-driven development is related to the test-first

programming concepts of extreme programming, begun in

1999,
[3]

 but more recently has created more general interest

in its own right.
[4]

. It includes:

1. Add a test-In test-driven development, each new feature

begins with writing a test. To write a test, the developer

must clearly understand the feature's specification and

requirements. The developer can accomplish this through

use cases and user stories to cover the requirements and

exception conditions, and can write the test in whatever

testing framework is appropriate to the software

environment.

2. Run all tests and see if the new one fails-This validates

that the test harness is working correctly, that the new

test does not mistakenly pass without requiring any new

code, and that the required feature does not already exist.

This step also tests the test itself, in the negative: it rules

out the possibility that the new test always passes, and

therefore is worthless.

3. Write some code-The next step is to write some code that

causes the test to pass. The new code written at this stage

is not perfect and may, for example, pass the test in an

inelegant way. That is acceptable because it will be

improved and honed in Step 5.

Figure 4: Test-driven development

4. Run tests-If all test cases now pass, the programmer can

be confident that the new code meets the test

requirements, and does not break or degrade any existing

features. If they do not, the new code must be adjusted

until they do.

5. Refactor code-The growing code base must be cleaned

up regularly during test-driven development. New code

can be moved from where it was convenient for passing a

test to where it more logically belongs. Duplication must

be removed. Object, class, module, variable and method

names should clearly represent their current purpose and

use, as extra functionality is added. As features are

added, method bodies can get longer and other objects

larger.

e) Feature-driven development (FDD)

Feature-driven development (FDD) is an iterative and

incremental software development process. It is one of a

number of lightweight or Agile methods for developing

software. FDD blends a number of industry-recognized best

practices into a cohesive whole. These practices are all

driven from a client-valued functionality (feature)

perspective. Its main purpose is to deliver tangible, working

software repeatedly in a timely manner.[17]

FDD is a model-driven short-iteration process that consists

of five basic activities.

Paper ID: 04031501 654

http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Test_case
http://en.wikipedia.org/wiki/Code_refactoring
http://en.wikipedia.org/wiki/Kent_Beck
http://en.wikipedia.org/wiki/Extreme_programming
http://en.wikipedia.org/wiki/Test-driven_development#cite_note-Cworld92-3
http://en.wikipedia.org/wiki/Test-driven_development#cite_note-Newkirk-4
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/User_story
http://en.wikipedia.org/wiki/Test_harness
http://en.wikipedia.org/wiki/Code_refactoring
http://en.wikipedia.org/wiki/Code_refactoring
http://en.wikipedia.org/wiki/Duplicate_code
http://en.wikipedia.org/wiki/Object_%28computer_science%29
http://en.wikipedia.org/wiki/Class_%28computer_programming%29
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Variable_%28computer_science%29
http://en.wikipedia.org/wiki/Method_%28computer_programming%29
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Lightweight_methodology
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Feature_Driven_Development#Best_practices
http://en.wikipedia.org/wiki/Feature_Driven_Development#Best_practices
http://en.wikipedia.org/wiki/Feature_%28software_design%29

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

1. Develop overall model-The FDD project starts with a

high-level walkthrough of the scope of the system and its

context. Next, detailed domain models are created for

each modeling area by small groups and presented for

peer review. One of the proposed models, or a

combination of them, is selected to become the model for

each domain area. Domain area models are progressively

merged into an overall model.

2. Build feature list-The knowledge gathered during the

initial modeling is used to identify a list of features, by

functionally decomposing the domain into subject areas.

Subject areas each contain business activities, and the

steps within each business activity form the basis for a

categorized feature list. Features in this respect are small

pieces of client-valued functions expressed in the form

"<action> <result> <object>", for example: 'Calculate the

total of a sale' or 'Validate the password of a user'.

Features should not take more than two weeks to

complete, else they should be broken down into smaller

pieces.

3. Plan by feature-After the feature list is completed, the

next step is to produce the development plan; assigning

ownership of features (or feature sets) as classes to

programmers.

Figure 5: Feature-driven development

4. Design by feature-A design package is produced for each

feature. A chief programmer selects a small group of

features that are to be developed within two weeks.

Together with the corresponding class owners, the chief

programmer works Together with the corresponding

class owners, the chief programmer works out detailed

sequence diagrams for each feature and refines the

overall model. Next, the class and method prologues are

written and finally a design inspection is held.

1. Build by feature-After a successful design inspection as

per feature activity to produce a completed client-valued

function (feature) is planned. The class owners develop

the code for their classes. After a unit test and a

successful code inspection, the completed feature is

promoted to the main build.

Table 1

Agile quality technique

Methodology Feature

Driven

Iterative-

Incremental

Refactoring Micro-

Optimizing

Customer

Involvement

Team

Dynamics

Continuous

Integration

Scrum X X X X X

XP X X X X X X

TDD X X X X

FDD X X

Crystal X X X X

Agile software development can be considered as merely “a

collection of practices, a frame of mind”, it is difficult to tell

whether a company‟s process model is defined as Agile.

Some may choose to follow those Agile beliefs loosely

while others may employ a strict Agile system. Therefore it

is important to distinguish companies with different levels of

“agility” in order to properly analyze the effectiveness of the

agile system.

Agile methodology will be defined as [7][2]

1. Follows all the Agile principles and strict practices,

similar to Extreme Programming and Scrum.

2. Agile development may have different effects on a

company depending on its stage and size. The cost of

implementing the Agile methodology and the benefits

vary as the company grows.

3. We must first discuss the scope of the metrics that we are

using to determine the effectiveness of a process model.

The metrics used in this discussion are cost, time, quality

and scope as they apply to a startup.

3. Agile Methods Quality Techniques

Agile methods include many practices that have QA

potential. By identifying these practices and comparing them

with QA techniques used in the waterfall model, we can

analyze agile methods QA practices. System metaphor is

used instead of a formal architecture. It presents a simple

shared story of how the system works; this story typically

involves a handful of classes and patterns that shape the core

flow of the system being built. There are two main purposes

for the metaphor. The first is communication. It bridges the

gap between developers and users to ensure an easier time in

discussion and in providing examples. The second purpose

is that the metaphor contributes to the team‟s development

of software architecture.

Agile methods move into the development phase very

quickly. Although this kind of development style renders

most separate static techniques on early phase artifact

unsuitable, code makes dynamic techniques useful and

Paper ID: 04031501 655

http://en.wikipedia.org/wiki/Software_walkthrough
http://en.wikipedia.org/wiki/Feature-driven_development#SMALL_GROUP
http://en.wikipedia.org/wiki/Peer_review
http://en.wikipedia.org/wiki/Feature-driven_development#SUBJECT_AREA
http://en.wikipedia.org/wiki/Feature-driven_development#BUSINESS_ACTIVITY
http://en.wikipedia.org/wiki/Class_%28computer_science%29
http://en.wikipedia.org/wiki/Programmer
http://en.wikipedia.org/wiki/Feature-driven_development#DESIGN_PACKAGE
http://en.wikipedia.org/wiki/Sequence_diagrams
http://en.wikipedia.org/wiki/Feature-driven_development#CLASS_AND_METHOD_PROLOGUE
http://en.wikipedia.org/wiki/Software_inspection
http://en.wikipedia.org/wiki/Unit_test
http://en.wikipedia.org/wiki/Code_review
http://en.wikipedia.org/wiki/Feature-driven_development#BUILD_PROMOTION

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

available very early. Also developers are more responsible

for quality assurance compared with having a separate QA

team and process. This allows more integration of QA into

the development phase. Small releases also bring customer

feedback for product validation frequently and requirements

verification. The QA techniques for agile methods are based

on:

 Applying dynamic QA techniques as early as possible

(e.g. TDD, acceptance testing)

 Moving more QA responsibility on to the developer (e.g.

code inspection in peer/pair programming, refactoring,

collective code ownership, coding standards)

 Early product validation [10] (e.g. customer on site,

acceptance testing, small release, continuous integration)

a) System Metaphor

Metaphor is a way to express meaning in a condensed

manner by referring to qualities of known entities.

Metaphors are useful because they are efficient. The system

metaphor is a story that everyone: customers, programmers,

and managers, can tell about how the system works. We

seek a system metaphor for several reasons: common vision,

shared vocabulary, generativity, and architecture [10]. It

presents a simple shared story of how the system works, this

story typically involves a handful of classes and patterns that

shape the core flow of the system being built. The idea of

using a System metaphor to facilitate communication works

toward revealing the reality of the team towards its task. For

a team starting out, metaphors are a comfortable and flexible

starting point and they leave open the chance to use the

metonymy that patterns provide [9]. System metaphor does

not seem to address bigger architectural issues such as if the

system should even be implemented using objects, the

hardware component of architecture, the process and inter-

process communication component of architecture, or the

separation of the system into layers and/or components

[9].System metaphor is helpful for communication between

customer and developer. It helps the agile development team

in architectural evaluation by increasing communication

between team members and users. So enhance

maintainability, efficiency, reliability and flexibility.

b) Architectural Spike

An architectural spike is technical risk reduction techniques

popularized by Extreme Programming (XP) where write just

enough code to explore the use of a technology or technique

that you're unfamiliar with. For complicated spikes

architecture owners will often pair with someone else to do

the spike [4][2]. It intends to identify areas of maximum

risk, to get started with estimating them correctly. Agile

projects are designed for iteration at a time. It is a thin slice

of the entire application built for the purpose of determining

and testing a potential architecture.

c) Onsite Customer Feedbacks

Onsite customer is one of the most practices in most agile

projects that help the developers refine and correct

requirements throughout the project by communicating.

Customer are only involved during requirement collecting in

traditional software developments but they are directly

involved in agile methodology. All phases of agile project

require communication with the customer, preferably face to

face, on site. It's best to simply assign one or more

customers to the development team. A real customer must

sit with the team, available to answer questions, resolve

disputes, and set small-scale priorities. Agile is intended to

improve software quality and responsiveness to changing

customer requirements. As a type of agile software

development it advocates frequent releases in short

development cycles, which is intended to improve

productivity and introduce checkpoints where new customer

requirements can be adopted.

d) Refactoring

Refactoring is a disciplined technique for restructuring an

existing body of code, altering its internal structure without

changing its external behavior. Its heart is a series of small

behavior preserving transformations. Each transformation

(called a 'refactoring') does little, but a sequence of

transformations can produce a significant restructuring.

Since each refactoring is small, it's less likely to go wrong.

The system is also kept fully operational after each small

refactoring. Practically refactoring means making code

clearer and cleaner and simpler and well designed. It can

reduce the chances that a system can get seriously broken

during the restructuring [11][2]. So refactoring reduces the

probability of generating errors for the period of

developments, hence improve software quality factors such

as efficiency, reliability, intra-operability and

interoperability, testability.

e) Pair Programming

Pair programming is a technique in which two programmers

or engineers work together at one workstation. One writes

code while the other, the observer, reviews each line of code

as it is typed in. The best way to pair program is to just sit

side by side in front of the monitor. Slide the key board and

mouse back and forth. Both programmers concentrate on the

code being written and continuously collaborating on the

same design, algorithm, code or test [6][12]. The two

programmers switch roles frequently. While reviewing, the

observer also considers the strategic direction of the work,

coming up with ideas for improvements and likely future

problemsto address. This procedure increases software

quality without impacting time to deliver. Pair programming

can improve design quality factors such as correctness,

verifiability, and testability and reduce defects [12][6].

f) Stand-up-Meeting

Stand-up-meeting is the most important practice in agile

methods. It increases the communication between term

members and developers. A stand-up meeting (or simply

"stand-up") is a daily team meeting held to provide a status

update to the team members. Communication among the

entire team is the purpose of the stand-up- meeting. The

meeting is usually held at the same time and place every

working day. All team members are encouraged to attend,

but the meetings are not postponed if some of the team

members are not present.[1][15].

4. The Advantages and Disadvantages of agile

Advantages

 It is a very realistic approach to software development

 It Promotes teamwork and cross training.

Paper ID: 04031501 656

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Its Functionality can be developed rapidly and

demonstrated.

 Its Resource requirements are minimum.

 It is Suitable for fixed or changing requirements

 It delivers early partial working solutions.

 It is Good model for environments that change steadily.

 Its Minimal rules, documentation easily employed.

 Enables concurrent development and delivery within an

overall planned context.

 Little or no planning required

 Easy to manage

 Gives flexibility to developers

 Customer satisfaction by rapid, continuous delivery of

useful software.

 People and interactions are emphasized rather than

process and tools. Customers, developers and testers

constantly interact with each other.

 Working software is delivered frequently (weeks rather

than months).

 Face-to-face conversation is the best form of

communication.

 Close, daily cooperation between business people and

developers.

 Continuous attention to technical excellence and good

design.

 Regular adaptation to changing circumstances.

 Even late changes in requirements are welcomed

Disadvantages

 Not suitable for handling complex dependencies.

 More risk of sustainability, maintainability and

extensibility.

 An overall plan, an agile leader and agile PM practice is a

must without which it will not work.

 Strict delivery management dictates the scope,

functionality to be delivered, and adjustments to meet the

deadlines.

 Depends heavily on customer interaction, so if customer is

not clear, team can be driven in the wrong direction.

 There is very high individual dependency, since there is

minimum documentation generated.

 Transfer of technology to new team members may be

quite challenging due to lack of documentation.

 In case of some software deliverables, especially the large

ones, it is difficult to assess the effort required at the

beginning of the software development life cycle.

 There is lack of emphasis on necessary designing and

documentation.

 The project can easily get taken off track if the customer

representative is not clear what final outcome that they

want.

 Only senior programmers are capable of taking the kind of

decisions required during the development process. Hence

it has no place for newbie programmers, unless combined

with experienced resources.

5. Future Work

A possible area for future research is the analysis of the

effects of process models on mobile-centric startups.

Practices such as continuous integration in Agile or

continuous deployment in Lean Startup become nearly

impossible in a startup with heavy focus on mobile

development. The process models that focus heavily on the

ability to integrate and deploy continuously or split testing

may not be effective for mobile-centric startups. In this new

era in which mobile development is becoming more and

more popular, perhaps a new process model is required.

6. Conclusion

The Agile Manifesto is considered as a milestone for the

development of new agile methodologies, since it provided a

general base with its four values pointing out the most

crucial facts of a software development process.

The process or role oriented traditional methods have

difficulties, since individuals are not, in fact, replaceable;

especially where the individuality is important as in software

development. Furthermore, rather than focusing on strict and

long-term plans, Agile Software Development focuses on

responding to changes and on the working software with less

documentation. Even though some agile practices are not

new, agile methods themselves are recent and have become

very popular in industry. There is an important need for

developers to know more about the quality of the software

produced. Developers also need to know how to revise or

tailor their agile methods in order to attain the level of

quality they require. The conclusion we draw here is:

1. Agile methods do have practices that have QA abilities,

some of them are inside the development phase and some

others can be separated out as supporting practices

2. The frequency with which these agile QA practices occur

is higher than in a waterfall development

3. Agile QA practices are available in very early

process stages due to the agile process

characteristics.

Table 2: Provides a comparison among different discussed

methodologies and quality assurance factors obtained from

them in different processes. Pragmatic Programming has

been intentionally left blank due to its immature nature and

unavailability in literature.

Paper ID: 04031501 657

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Reference

[1] Cristal. M,Wildt. D. and Prikladnicki. R (2008) Usage

of SCRUM Practices within a Global Company. In

IEEE International Conference on Global Software

Engineering, pp 222-226.

[2] Erickson. J, Lyytinen. K and Siau. K, (2005), Agile

Modeling, Agile Software Development, and Extreme

Programming: The State of Research. In Journal of

Database Management, 16(4), pp 88-100.

[3] McCall,J.A., Richards,P. K., & Walters, G. F., Factors

in Software Quality, Vols.1, 2 and 3, National Technical

Information Service, 1977

[4] Ambler,S., Quality in an Agile World, Software Quality

Professional, Vol. 7, No. 4, pp. 34-40,2005

[5] "IEEE guide for software quality assurance planning",

IEEE Std. 730.1-1995, 10 April 1996.

[6] Beck K., "Extreme Programming Explained: Embrace

Change", Addison- Wesley, 2000.

[7] Cockburn A., "Agile Software Development", Addison-

Wesley, 2001.

[8] George, B., Williams L., "An Initial Investigation of

Test-Driven development in Industry", Proceedings of

the ACM symposium on applied computing, March

2003.

[9] Schwaber K, Beedle M., "Agile Software Development

With Scrum", Upper Saddle River, NJ: Prentice-Hall,

2002.

[10] Ming Huo, June Verner, Liming Zhu, Muhammad Ali

Babar, Software Quality and Agile Methods,

Proceedings of the 28th Annual International Computer

Software and Applications Conference (COMPSAC’04)

[11] www.agilemodeling.com

[12] www.extremeprogramming.org

[13] http://en.wikipedia.org/Crystal_Clear

[14] http://en.wikipedia.org/agile_molding

[15] http://en.wikipedia.org/SCRUM

[16] http://en.wikipedia.org/TDD

[17] http://en.wikipedia.org/FDD

[18] http://www.agilealliance.org/the-alliance/the-agile-

manifesto

[19] http://agilemanifesto.org/principles.html

[20] http://www.agilemanifesto.org

Paper ID: 04031501 658

