
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Review of Feature Extraction Technique for

Automatic Speech Recognition

Sandeep Joshi
1
, Parag Parandkar

2

1PG Student, Embedded Systems, Oriental University Indore, M.P, India

2Associate Professor, Electronics & Communication Engineering, Oriental University Indore, M.P, India

Abstract: Speech recognition is a multileveled pattern recognition task, in which acoustical signals are examined and structured into a

hierarchy of subword units (e.g., phonemes), words, phrases, and sentences. Each level may provide additional temporal constraints,

e.g., known word pronunciations or legal word sequences, which can compensate for errors or uncertainties at lower levels. This

hierarchy of constraints can best be exploited by combining decisions probabilistically at all lower levels, and making discrete decisions

only at the highest level..

Keywords: ASR, Mel frequency, Cepstrum coefficient, feature & vector space, distance measurement

1. Introduction

In speech recognition, the main goal of the feature extraction

step is to compute a parsimonious sequence of feature

vectors providing a compact representation of the given

input signal. The feature extraction is usually performed in

three stages. The first stage is called the speech analysis or

the acoustic front end. It performs some kind of spectro

temporal analysis of the signal and generates raw features

describing the envelope of the power spectrum of short

speech intervals. The second stage compiles an extended

feature vector composed of static and dynamic features.

Finally, the last stage(which is not always present)

transforms these extended feature vectors into more compact

and robust vectors that are then supplied to the recognizer.

Although there is no real consensus as to what the optimal

feature sets should look like, one usually would like them to

have the following properties: they should allow an

automatic system to discriminate between different through

similar sounding speech sounds, they should allow for the

automatic creation of acoustic models for these sounds

without the need for an excessive amount of training data,

and they should exhibit statistics which are largely invariant

cross speakers and speaking environment.

2. Mel Spectral Coefficients

The human ear does not show a linear frequency resolution

but builds several groups of frequencies and integrates the

spectral energies within a given group. Furthermore, the

mid-frequency and bandwidth of these groups are non–

linearly distributed. The non–linear warping of the

frequency axis can be modeled by the so–called mel-scale.

The frequency groups are assumed to be linearly distributed

along the mel-scale. The so–called mel–frequency f_mel can

be computed from the frequency f as follows:

f_mel (f)=2595∙log⁡(1+f/(700 Hz)) (a)

The human ear has high frequency resolution in low–
frequency parts of the spectrum and low frequency
resolution in the high–frequency parts of the spectrum.
The coefficients of the power spectrum 〖|V (n) |〗^2

are now transformed to reflect the frequency resolution
of the human ear.

Cepstral Transformation

Since the transmission function of the vocal tract H(f) is

multiplied with the spectrum of the excitation signal X(f),

we had those un-wanted ―ripples‖ in the spectrum. For the

speech recognition task, a smoothed spectrum is required

which should represent H(f) but not X(f). To cope with this

problem, cepstral analysis is used. If we look at (3.2), we

can separate the product of spectral functions into the

interesting vocal tract spectrum and the part describing

theexcitation and emission properties:

S(f) = X(f)•H(f)•R(f)=H(f)•U(f) (b)

We can now transform the product of the spectral functions

to a sum by taking the logarithm on both sides of the

equation:

log⁡〖(S(f))=log⁡〖(H(f)〗〗∙U(f))

=log⁡〖(H(f))+log⁡〖(U(f))〗〗 (c)
This holds also for the absolute values of the power

spectrum and also for their squares:

log⁡〖(|S(f)|^2)=log⁡〖(|H(f)|^2∙|U(f)|^2 〗〗)

=log⁡〖(|H(f)|^2 〗)+log⁡〖(|U(f)|^2)〗 (d)

In figure 1 we see an example of the log power spectrum,

which contains unwanted ripples caused by the excitation

signal U(f)=X(f)•R(f).

In the log–spectral domain we could now subtract the

unwanted portion of the signal, if we knew |〖U(f)|〗^2

exactly. But all we know is that U(f) produces the ―ripples‖,

which now are an additive component in the log–spectral

domain, and that if we would interpret this log–spectrum as

a time signal, the ―ripples‖ would have a ―high frequency‖

compared to the spectral shape of |H(f)|. To get rid of the

influence of U(f), one would have to get rid of the ―high-

frequency‖ parts of the log–spectrum (remember, we are

dealing with the spectral coefficients as if they would

represent a time signal). This would be a kind of low–pass

filtering. The filtering can be done by transforming the log–

spectrum back into the time–domain (in the following,

〖FT〗^(-1) denotes the inverse Fourier transform):

s (̂d)=〖FT〗^(-1) {log⁡(|S(f)|^2) }

Paper ID: SUB151198 435

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

=〖FT〗^(-1) {log(|H(f)|^2) }+〖FT〗^(-1){log(|U(f)|^2

)}

 (e)

Figure 1: Log power spectrum of the vowel /a: / (f_s = 11

kHz). The ripples in the spectrum are caused by X (f)

The inverse Fourier transform brings us back to the time–

domain (d is also called the delay or frequency), giving the

so–called cepstrum (a reversed ―spectrum‖). The resulting

cepstrum is real–valued, since 〖|U(f)|〗^2 and 〖|H(f)|〗^2

are both real-valued and both are even: 〖|U(f)|〗^2= 〖|U(-

f)|〗^2 and 〖|H(f)|〗^2=〖|H(-f)|〗^2. Applying the

inverse DFT to the log power spectrum coefficients

log⁡〖〖|V(n)|〗^2 〗 yields:

Figure 2: Cepstrum of the vowel /a: / (f_s = 11 kHz, N =

512). The ripples in the spectrum result in a peak in the

cepstrum

3. Mel Cepstrum

Now that we are familiar with the cepstral transformation

and cepstral smoothing, we will compute the mel cepstrum

commonly used in speech recognition. As stated above, for

speech recognition, the mel spectrum is used to reflect the

perception characteristics of the human ear. In analogy to

computing the cepstrum, we now take the logarithm of the

mel power spectrum (3.11) (instead of the power spectrum

itself) and transform it into the frequency domain to

compute the so–called mel cepstrum. Only the first Q (less

than 14) coefficients of the mel cepstrum are used in typical

speech recognition systems. The restriction to the first Q

coefficients reflects the low–pass liftering process as

described above.

Since the mel power spectrum is symmetric due to (e), the

Fourier-Transform can be replaced by a simple cosine

transform:

𝑐 𝒒 = 𝒍𝒐𝒈 𝑮 𝒌

𝜿−𝟏

𝒌=𝟎

∙ 𝒄𝒐𝒔
𝝅𝒒 𝟐𝒌 + 𝟏

𝟐К
 ; 𝒒

= 𝟎, 𝟏, … , 𝓠 − 𝟏
 (f)

While successive coefficients G(k) of the mel power

spectrum are correlated, the Mel Frequency Cepstral

Coefficients (MFCC) resulting from the cosine transform (f)

are de-correlated. The MFCC are used directly for further

processing in the speech recognition system instead of

transforming them back to the frequency domain.

4. Feature and Vector Space

Until now, we have seen that the speech signal can be

characterized by a set of parameters (features), which will be

measured in short intervals of time during a preprocessing

step. Before we start to look at the speech recognition task,

we will first get familiar with the concept of feature vectors

and vector space.

If you have a set of numbers representing certain features of

an object you want to describe, it is useful for further

processing to construct a vector out of these numbers by

assigning each measured value to one component of the

vector. As an example, think of an air conditioning system

which will measure the temperature and relative humidity in

your office. If you measure those parameters every second

or so and you put the temperature into the first component

and the humidity into the second component of a vector, you

will get a series of two–dimensional vectors describing how

the air in your office changes in time. Since these so–called

feature vectors have two components, we can interpret the

vectors as points in a two–dimensional vector space. Thus

we can draw a two–dimensional map of our measurements

as sketched below. Each point in our map represents the

temperature and humidity in our office at a given time. As

we know, there are certain values of temperature and

humidity which we find more comfortable than other values.

In the map the comfortable value– pairs are shown as points

labeled ―+‖ and the less comfortable ones are shown as ―-‖.

You can see that they form regions of convenience and

inconvenience, respectively.

Let’s assume we would want to know if a value–pair we

measured in our office would be judged as comfortable or as

uncomfortable by you. One way to find out is to initially run

a test series trying out many value–pairs and labeling each

points either ―+‖ or ―-‖ in order to draw a map as the one

you saw above.

Now if you have measured a new value–pair and you are to

judge if it will be convenient or not to a person, you would

have to judge if it lies within those regions which are

marked in your map as ―+‖ or if it lies in those marked as ―-

‖.This is our first example of a classification task: We have

two classes (―comfortable‖ and ―uncomfortable‖) and a

vector in feature space which has to be assigned to one of

these classes. — But how do you describe the shape of the

regions and how can you decide if a measured vector lies

within or without a given region? In the following chapter

we will learn how to represent the regions by prototypes and

how to measure the distance of a point to a region.

Paper ID: SUB151198 436

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Fig. 3: A map of feature vectors

Classification of Vectors

A) Prototype Vectors

The problem of how to represent the regions of

―comfortable‖ and ―uncomfortable‖ feature vectors of our

classification task can be solved by several approaches. One

of the easiest is to select several of the feature vectors we

measured in our experiments for each of our classes (in our

example we have only two classes) and to declare the

selected vectors as ―prototypes‖ representing their class. We

will later discuss how one can find a good selection of

prototypes using the ―k–means algorithm‖. For now, we

simply assume that we were able to make a good choice of

the prototypes, as shown in figure 4.

Figure 4: Selected prototypes

B) Nearest Neighbor Classification

The classification of an unknown vector is now

accomplished as follows: Measure the distance of the

unknown vector to all classes. Then assign the unknown

vector to the class with the smallest distance. The distance of

the unknown vector to a given class is defined as the

smallest distance between the unknown vector and all of the

prototypes representing the given class.One could also

verbalize the classification task as: Find the nearest

prototype to the unknown vector and assign the unknown

vector to the class this ―nearest neighbor‖ represents (Hence

the name). Fig. 3.13 shows the unknown vector and the two

―nearest neighbors‖ of prototypes of the two classes. The

classification task we described can be formalized as

follows: Let Ω ={ ω_1,ω_2. ..ω_((V -1))} be the set of

classes, V being the total number of classes. Each class is

represented by its prototype vectors p (k,ω_v), where k =

0,1,...,(K_(ω_v)- 1). Let x denote the unclassified vector.

Let the distance measure between the vector and a prototype

be denoted as d (x ,p (k,ω_v)) Then the class distance

between x ⃗ and the class ω_v is defined as:

𝒅𝝎𝒗
 𝒙 ⃗ = 𝐦𝐢𝐧𝒌 𝒅 𝒙 ⃗ , 𝒑 ⃗ 𝒌,𝝎𝒗

 ; 𝒌 = 𝟎, 𝟏,… , 𝒌 − 𝟏 (g)

5. Distance Measurement

So far, we have found a way to classify an unknown vector

by calculation of its class–distances to predefined classes,

which in turn are defined by the distances to their individual

prototype vectors. Now we will briefly look at some

commonly used distance measures. Depending on the

application at hand, each of the distance measures has its

pros and cons, and we will discuss their most important

properties.

(A) Euclidean Distance

The Euclidean distance measure is the ―standard‖ distance

measure between two vectors in feature space (with

dimension DIM) as you know it from school:

𝒅𝑬𝒖𝒄𝒍𝒊𝒅
𝟐 𝒙 ⃗ , 𝒑 ⃗ = 𝒙𝒊 − 𝒑𝒊

𝟐𝑫𝑰𝑴−𝟏
𝒊=𝟎 (h)

calculate the Euclidean distance measure, you have to

compute the sum of the squares of the differences between

the individual components of ~x and p~. This can also be

written as the following scalar product:

𝒅𝑬𝒖𝒄𝒍𝒊𝒅
𝟐 𝒙 ⃗ , 𝒑 ⃗ = 𝒙 ⃗ − 𝒑 ⃗ ′ ∙ 𝒙 ⃗ − 𝒑 ⃗ (i)

Where ' denotes the vector transpose. Note that both

equations (h) and (i) compute the square of the Euclidean

distance, d^2 instead of d. The Euclidean distance is

probably the most commonly used distance measure in

pattern recognition.

(B)City Block Distance

The computation of the Euclidean distance involves

computing the squares of the individual differences thus

involving many multiplications. To reduce the

computational complexity, one can also use the absolute

values of the differences instead of their squares. This is

similar to measuring the distance between two points on a

street map: You go three blocks to the East, then two blocks

to the South (instead of straight trough the buildings as the

Euclidean distance would assume). Then you sum up all the

absolute values for all the dimensions of the vector space.

(C) Weighted Euclidean Distance

Both the Euclidean distance and the City Block distance are

treating the individual dimensions of the feature space

equally, i.e., the distances in each dimension contributes in

the same way to the overall distance. But if we remember

our example , we see that for real–world applications, the

individual dimensions will have different scales also. While

in our office the temperature values will have a range of

typically between 18 and 22 degrees Celsius, the humidity

will have a range from 40 to 60 percent relative humidity.

While a small difference in humidity of e.g., 4 percent

relative humidity might not even be noticed by a person, a

temperature difference of 4 degrees Celsius certainly will. In

Figure 5 we see a more abstract example involving two

classes and two dimensions. The dimension x_1 has a wider

range of values than dimension x_2, so all the measured

values (or prototypes) are spread wider along the axis

denoted as ―x_1‖ as compared to axis ‖x_2‖. Obviously, a

Euclidean or City Block distance measure would give the

wrong result, classifying the unknown vector as ―class A‖

Paper ID: SUB151198 437

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

instead of ―class B‖ which would (probably) be the correct

result.

To cope with this problem, the different scales of the

dimensions of our feature vectors have to be compensated

when computing the distance. This can be done by

multiplying each contributing term with a scaling factor

specific for the respective dimension. This leads us to the

so–called ―Weighted Euclidean Distance‖.

(D) Mahalanobis Distance

So far, we can deal with different scales of our features

using the weighted Euclidean distance measure. This works

very well if there is no correlation between the individual

features as it would be the case if the features we selected

for our vector space were statistically independent from each

other. What if they are not? Figure 3.15 shows an example

in which the features x_1 and x_2 are correlated.

Obviously, for both classes A and B, a high value of x_1

correlates with a high value for x_2 (with respect to the

mean vector (center) of the class), which is indicated by the

orientation of the two ellipses. In this case, we would want

the distance measure to regard both the correlation and scale

properties of the features. Instead, the correlations between

the individual components of the feature vector will have to

be regarded when computing the distance between two

vectors. This leads us to a new distance measure, the so–

called Mahalanobis Distance.

Figure 6: Two dimensions with different scales

Figure 6: Correlated Features

6. Dynamic Time Warping

In the last section, we were dealing with the task of

classifying single vectors to a given set of classes which

were represented by prototype vectors computed from a set

of training vectors. Several distance measures were

presented, some of them using additional sets of parameters

(e.g., the covariance matrices) which also had to be

computed from training vectors.

How does this relate to speech recognition?

As we saw in section 3, our speech signal is represented by a

series of feature vectors which are computed every 10 ms. A

whole word will comprise dozens of those vectors, and we

know that the number of vectors (the duration) of a word

will depend on how fast a person is speaking. Therefore, our

classification task is different from what we have learned

before. In speech recognition, we have to classify not only

single vectors, but sequences of vectors. Let’s assume we

would want to recognize a few command words or digits.

For an utterance of a word w which is T_X vectors long, we

will get a sequence of vectors X ={x _0,x _1,...,x _(X-1)}

from the acoustic preprocessing stage. What we need here is

a way to compute a ―distance‖ between this unknown

sequence of vectors X and known sequences of vectors W

_k={w _(k0,) w _(k1,) …,w _(kT_(W_k)) } which are

prototypes for the words we want to recognize. Let our

vocabulary (here: the set of classes Ω) contain V different

words w_0,w_1,...w_(V-1). In analogy to the Nearest

Neighbor classification task from section 3.2, we will allow

a word w_v (here: class w_v∈Ω) to be represented by a set

of prototypes W_(〖k,ω〗_v),k=0,1,…,(K_(ω_v)-1) to

reflect all the variations possible due to different

pronunciation or even different speakers.

Figure 7: Possible assignment between the vector pairs of X

and W

7. The Dynamic Programming Algorithm

In the following formal framework we will iterate through

the matrix column by column, starting with the leftmost

column and beginning each column at the bottom and

continuing to the top.For ease of notation, we define d(i,j) to

be the distance d(w _i,x _j) between the two vectors w _i

and x _j.

Since we are iterating through the matrix from left to right,

and the optimization for column j according to (g) uses only

the accumulated distances from columns j and j-1, we will

use only two arrays δ_j (i) and δ_(j-1) (i) to hold the values

for those two columns instead of using a whole matrix for

the accumulated distances δ(i,j).Let δ_j (i) be the

accumulated distance δ(i,j) at grid point (i,j) and δ_(j-1) (i)

Paper ID: SUB151198 438

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the accumulated distance δ(i,j-1) at grid point (i,j-1).It

should be mentioned that it possible to use a single array for

time indices j and j-1. One can overwrite the old values of

the array with the new ones. However, for clarity, the

algorithm using two arrays is described here and the

formulation for a single–array algorithm is left to the reader.

To keep track of all the selections among the path

hypotheses during the optimization, we have to store each

path alternative chosen for every grid point. We could for

every grid point (i,j) either store the indices k and l of the

predecessor point (k,l) or we could only store a code number

for one of the three path alternatives (horizontal, diagonal

and vertical path) and compute the predecessor point (k,l)

out of the code and the current point (i,j).While the

description of the DTW classification algorithm in section

3.4 might let us think that one would compute all the

distances sequentially and then select the minimum distance,

it is more useful in practical applications to compute all the

distances between the unknown vector sequence and the

class prototypes in parallel. This is possible since the DTW

algorithm needs only the values for time index t and (t-1)

and therefore there is no need to wait until the utterance of

the unknown vector sequence is completed. Instead, one can

start with the recognition process immediately as soon as the

utterance begins (we will not deal with the question of how

to recognize the start and end of an utterance here).

To do so, we have to reorganize our search space a little bit.

First, let’s assume the total number of all prototypes over all

classes is given by M. If we want to compute the distances

to all M prototypes simultaneously, we have to keep track of

the accumulated distances between the unknown vector

sequence and the prototype sequences individually. Hence,

instead of the column (or two columns, depending on the

implementation) we used to hold the accumulated distance

values for all grid points; we now have to provide M

columns during the DTW procedure.Now we introduce an

additional ―virtual‖ grid point together with a specialized

local path alternative for this point: The possible

predecessors for this point are defined to be the upper–right

grid points of the individual grid matrices of the prototypes.

In other words, the virtual grid point can only be reached

from the end of each prototype word, and among all the

possible prototype words, the one with the smallest

accumulated distance is chosen. By introducing this virtual

grid point, the classification task itself (selecting the class

with the smallest class distance) is integrated into the

framework of finding the optimal path.

Now all we have to do is to run the DTW algorithm for each

time index j and along all columns of all prototype

sequences. At the last time slot (T_W-1) we perform the

optimization step for the virtual grid point, i.e, the

predecessor grid point to the virtual grid point is chosen to

be the prototype word having the smallest accumulated

distance. Note that the search space we have to consider is

spanned by the length of the unknown vector sequence on

one hand and the sum of the length of all prototype

sequences of all classes on the other hand. Figure 3.19

shows the individual grids for the prototypes (only three are

shown here) and the selected optimal path to the virtual grid

point. The backtracking procedure can of course be

restricted to keeping track of the final optimization step

when the best predecessor for the virtual grid point is

chosen. The classification task is then performed by

assigning the unknown vector sequence to the very class to

which the prototype belongs to whose word end grid point

was chosen.

Of course, this is just a different (and quite complicated)

definition of how we can perform the DTW classification

task we already defined in (3.42). Therefore, only a verbal

description was given and we did not bother with a formal

description. However, by the reformulation of the DTW

classification we learned a few things:

 The DTW algorithm can be used for real–time

computation of the distances

 The classification task has been integrated into the search

for the optimal path

 Instead of the accumulated distance, now the optimal path

itself is important for the classification task

8. Conclusion

Speech is the primary, and the most convenient means

ofcommunication between people. Whether due to

technological curiosity to build machines that mimic humans

or desire to automate work with machines, research in

speech and speaker recognition, as a first step toward natural

human-machine communication, has attracted much

enthusiasm over the past five decades. we have also

encountered a number of practical limitations which hinder a

widespread deployment of application and services. In most

speech recognition tasks, human subjects produce one to two

orders of magnitude less errors than machines. There is now

increasing interest in finding ways to bridge such a

performance gap. What we know about human speech

processing is very limited. Although these areas of

investigations are important the significant advances will

come from studies in acoustic-phonetics, speech perception,

linguistics, and psychoacoustics. Future systems need to

have an efficient way of representing, storing, and retrieving

knowledge required for natural conversation. This paper

attempts to provide a comprehensive survey of research on

speech recognition and to provide someyear wise progress to

this date. Although significant progress has been made in the

last two decades, there is still work to bedone, and we

believe that a robust speech recognition system should be

effective under full variation in: environmental conditions,

speaker variability s etc. Speech Recognition is a

challenging and interesting problem in and of itself. We

have attempted in this paper to provide a comprehensive

cursory, look and review of how much speech recognition

technology progressed in the last 60 years. Speech

recognition is one of the most integrating areas of machine

intelligence, since, humans do a daily activity of speech

recognition. Speech recognition has attracted scientists as an

important discipline and has created a technological impact

on society and is expected to flourish further in this area of

human machine interaction. We hope this paper brings about

understanding and inspiration amongst the research

communities of ASR.

Paper ID: SUB151198 439

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] SadaokiFurui, 50 years of Progress in speech and

Speaker Recognition Research , ECTI Transactions on

Computer and Information Technology,Vol.1. No.2

November 2005.

[2] K.H.Davis, R.Biddulph, and S.Balashek, Automatic

recognition of spoken Digits, J.Acoust.Soc.Am.,

24(6):637-642,1952.

[3] H.F.Olson and H.Belar, Phonetic Typewriter ,

J.Acoust.Soc.Am.,28(6):1072-1081,1956.

[4] D.B.Fry, Theoritical Aspects of Mechanical speech

Recognition , and P.Denes, The design and Operation of

the Mechanical Speech Recognizer at Universtiy

College London, J.British Inst. Radio Engr., 19:4,211-

299,1959.

[5] J.W.Forgie and C.D.Forgie, Results obtained from a

vowel recognition computer program , J.A.S.A.,

31(11),pp.1480-1489.1959.

[6] J.Suzuki and K.Nakata, Recognition of Japanese

Vowels Preliminary to the Recognition of Speech ,

J.Radio Res.Lab37(8):193-212,1961.

[7] T.Sakai and S.Doshita, The phonetic typewriter,

Information processing 1962 , Proc.IFIP Congress,

1962.

[8] K.Nagata, Y.Kato, and S.Chiba, Spoken Digit

Recognizer for Japanese Language , NEC Res.Develop.,

No.6,1963.

[9] T.B.Martin, A.L.Nelson, and H.J.Zadell, Speech

Recognition b Feature Abstraction Techniques ,

Tech.Report AL-TDR-64-176,Air Force Avionics

Lab,1964.

[10] T.K.Vintsyuk, Speech Discrimination by Dynamic

Programming , Kibernetika, 4(2):81-88,Jan.-Feb.1968.

[11] H.Sakoe and S.Chiba, Dynamic programming

algorithmoptimization for spoken word recognition

,IEEE Trans. Acoustics, Speech, Signal Proc., ASSP-

26(1).pp.43- 49,1978.

[12] D.R.Reddy, An Approach to Computer Speech

Recognition by Direct Analysis of the Speech Wave ,

Tech.Report No.C549, Computer Science Dept.,

Stanford Univ., September 1966.

[13] V.M.Velichko and N.G.Zagoruyko ,Automatic

Recognition of 200 words , Int.J.Man-Machine

Studies,2:223,June 1970.

[14] H.Sakoe and S.Chiba, Dynamic Programming

AlgorithmOptimization for Spoken Word Recognition

,IEEE Trans.Acoustics, Speech, Signal Proc.,ASSP-

26(1):43- 49,February 1978.

[15] F.Itakura, Minimum Prediction Residula Applied

toSpeech Recognition ,IEEE Trans.Acoustics,

Speech,Signal Proc., ASSP-23(1):67-72,February 1975.

[16] C.C.Tappert,N.R.Dixon, A.S.Rabinowitz,

andW.D.Chapman, Automatic Recognition of

Continuous Speech Utilizing Dynamic Segmentation,

DualClassification, Sequential Decoding and Error

Recover , Rome Air Dev.Cen, Rome, NY,Tech.Report

TR-71-146,1971.

[17] F.Jelinek, L.R.Bahl, and R.L.Mercer, Design of a

Lingusistic Statistical Decoder for the Recognition

ofContinuous Speech , IEEE

Trans.InformationTheory,IT- 21:250-256,1975.

[18] F.Jelinek, The Development of an Experimental

Discrete Dictation Recognizer, Proc.IEEE,73(11):1616-

624,1985.

[19] L.R.Rabiner, S. E. Levinson, A. E. Rosenberg, and J. G.

Wilpon, Speaker Independent Recognition ofIsolated

Words Using Clustering Techniques , IEEE Trans.

Acoustics, Speech, Signal Proc., ASSP-27:336-

349,August 1979.

Paper ID: SUB151198 440

