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Abstract: Speech recognition is a multileveled pattern recognition task, in which acoustical signals are examined and structured into a 

hierarchy of subword units (e.g., phonemes), words, phrases, and sentences. Each level may provide additional temporal constraints, 

e.g., known word pronunciations or legal word sequences, which can compensate for errors or uncertainties at lower levels. This 

hierarchy of constraints can best be exploited by combining decisions probabilistically at all lower levels, and making discrete decisions 

only at the highest level.. 
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1. Introduction 
 

In speech recognition, the main goal of the feature extraction 

step is to compute a parsimonious sequence of feature 

vectors providing a compact representation of the given 

input signal. The feature extraction is usually performed in 

three stages. The first stage is called the speech analysis or 

the acoustic front end. It performs some kind of spectro 

temporal analysis of the signal and generates raw features 

describing the envelope of the power spectrum of short 

speech intervals. The second stage compiles an extended 

feature vector composed of static and dynamic features. 

Finally, the last stage( which is not always present) 

transforms these extended feature vectors into more compact 

and robust vectors that are then supplied to the recognizer. 

Although there is no real consensus as to what the optimal 

feature sets should look like, one usually would like them to 

have the following properties: they should allow an 

automatic system to discriminate between different through 

similar sounding speech sounds, they should allow for the 

automatic creation of acoustic models for these sounds 

without the need for an excessive amount of training data, 

and they should exhibit statistics which are largely invariant 

cross speakers and speaking environment. 

 

2. Mel Spectral Coefficients 
 

The human ear does not show a linear frequency resolution 

but builds several groups of frequencies and integrates the 

spectral energies within a given group. Furthermore, the 

mid-frequency and bandwidth of these groups are non–

linearly distributed. The non–linear warping of the 

frequency axis can be modeled by the so–called mel-scale. 

The frequency groups are assumed to be linearly distributed 

along the mel-scale. The so–called mel–frequency f_mel can 

be computed from the frequency f as follows: 

 

f_mel (f)=2595∙log⁡(1+f/(700 Hz)) (a) 

The human ear has high frequency resolution in low–
frequency parts of the spectrum and low frequency 
resolution in the high–frequency parts of the spectrum. 
The coefficients of the power spectrum 〖|V (n) |〗^2 

are now transformed to reflect the frequency resolution 
of the human ear. 
 
Cepstral Transformation 

Since the transmission function of the vocal tract H(f) is 

multiplied with the spectrum of the excitation signal X(f), 

we had those un-wanted ―ripples‖ in the spectrum. For the 

speech recognition task, a smoothed spectrum is required 

which should represent H(f) but not X(f). To cope with this 

problem, cepstral analysis is used. If we look at (3.2), we 

can separate the product of spectral functions into the 

interesting vocal tract spectrum and the part describing 

theexcitation and emission properties: 

S(f) = X(f)•H(f)•R(f)=H(f)•U(f) (b) 

We can now transform the product of the spectral functions 

to a sum by taking the logarithm on both sides of the 

equation:  

log⁡〖(S(f))=log⁡〖(H(f)〗〗∙U(f)) 

=log⁡〖(H(f))+log⁡〖(U(f))〗〗 (c) 
This holds also for the absolute values of the power 

spectrum and also for their squares: 

log⁡〖(|S(f)|^2 )=log⁡〖(|H(f)|^2∙|U(f)|^2 〗〗) 

=log⁡〖(|H(f)|^2 〗)+log⁡〖(|U(f)|^2)〗 (d) 

In figure 1 we see an example of the log power spectrum, 

which contains unwanted ripples caused by the excitation 

signal U(f)=X(f)•R(f). 

In the log–spectral domain we could now subtract the 

unwanted portion of the signal, if we knew |〖U(f)|〗^2 

exactly. But all we know is that U(f) produces the ―ripples‖, 

which now are an additive component in the log–spectral 

domain, and that if we would interpret this log–spectrum as 

a time signal, the ―ripples‖ would have a ―high frequency‖ 

compared to the spectral shape of |H(f)|. To get rid of the 

influence of U(f), one would have to get rid of the ―high-

frequency‖ parts of the log–spectrum (remember, we are 

dealing with the spectral coefficients as if they would 

represent a time signal). This would be a kind of low–pass 

filtering. The filtering can be done by transforming the log–

spectrum back into the time–domain (in the following, 

〖FT〗^(-1) denotes the inverse Fourier transform): 

 

s (̂d)=〖FT〗^(-1) {log⁡(|S(f)|^2 ) } 
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=〖FT〗^(-1) {log(|H(f)|^2 ) }+〖FT〗^(-1){log(|U(f)|^2 

)} 

 (e) 

 
Figure 1: Log power spectrum of the vowel /a: / (f_s = 11 

kHz). The ripples in the spectrum are caused by X (f) 

 

The inverse Fourier transform brings us back to the time–

domain (d is also called the delay or frequency), giving the 

so–called cepstrum (a reversed ―spectrum‖). The resulting 

cepstrum is real–valued, since 〖|U(f)|〗^2 and 〖|H(f)|〗^2 

are both real-valued and both are even: 〖|U(f)|〗^2= 〖|U(-

f)|〗^2 and 〖|H(f)|〗^2=〖|H(-f)|〗^2. Applying the 

inverse DFT to the log power spectrum coefficients 

log⁡〖〖|V(n)|〗^2 〗 yields: 

 

 
Figure 2: Cepstrum of the vowel /a: / (f_s = 11 kHz, N = 

512). The ripples in the spectrum result in a peak in the 

cepstrum 

 

3. Mel Cepstrum 
 

Now that we are familiar with the cepstral transformation 

and cepstral smoothing, we will compute the mel cepstrum 

commonly used in speech recognition. As stated above, for 

speech recognition, the mel spectrum is used to reflect the 

perception characteristics of the human ear. In analogy to 

computing the cepstrum, we now take the logarithm of the 

mel power spectrum (3.11) (instead of the power spectrum 

itself ) and transform it into the frequency domain to 

compute the so–called mel cepstrum. Only the first Q (less 

than 14) coefficients of the mel cepstrum are used in typical 

speech recognition systems. The restriction to the first Q 

coefficients reflects the low–pass liftering process as 

described above. 

 

Since the mel power spectrum is symmetric due to (e), the 

Fourier-Transform can be replaced by a simple cosine 

transform: 

𝑐 𝒒 =  𝒍𝒐𝒈 𝑮 𝒌  

𝜿−𝟏

𝒌=𝟎

∙ 𝒄𝒐𝒔  
𝝅𝒒 𝟐𝒌 + 𝟏 

𝟐К
  ; 𝒒

= 𝟎, 𝟏, … , 𝓠 − 𝟏  
 (f) 

While successive coefficients G(k) of the mel power 

spectrum are correlated, the Mel Frequency Cepstral 

Coefficients (MFCC) resulting from the cosine transform (f) 

are de-correlated. The MFCC are used directly for further 

processing in the speech recognition system instead of 

transforming them back to the frequency domain. 

 

4. Feature and Vector Space 
 

Until now, we have seen that the speech signal can be 

characterized by a set of parameters (features), which will be 

measured in short intervals of time during a preprocessing 

step. Before we start to look at the speech recognition task, 

we will first get familiar with the concept of feature vectors 

and vector space. 

 

If you have a set of numbers representing certain features of 

an object you want to describe, it is useful for further 

processing to construct a vector out of these numbers by 

assigning each measured value to one component of the 

vector. As an example, think of an air conditioning system 

which will measure the temperature and relative humidity in 

your office. If you measure those parameters every second 

or so and you put the temperature into the first component 

and the humidity into the second component of a vector, you 

will get a series of two–dimensional vectors describing how 

the air in your office changes in time. Since these so–called 

feature vectors have two components, we can interpret the 

vectors as points in a two–dimensional vector space. Thus 

we can draw a two–dimensional map of our measurements 

as sketched below. Each point in our map represents the 

temperature and humidity in our office at a given time. As 

we know, there are certain values of temperature and 

humidity which we find more comfortable than other values. 

In the map the comfortable value– pairs are shown as points 

labeled ―+‖ and the less comfortable ones are shown as ―-‖. 

You can see that they form regions of convenience and 

inconvenience, respectively. 

 

Let’s assume we would want to know if a value–pair we 

measured in our office would be judged as comfortable or as 

uncomfortable by you. One way to find out is to initially run 

a test series trying out many value–pairs and labeling each 

points either ―+‖ or ―-‖ in order to draw a map as the one 

you saw above.  

 

Now if you have measured a new value–pair and you are to 

judge if it will be convenient or not to a person, you would 

have to judge if it lies within those regions which are 

marked in your map as ―+‖ or if it lies in those marked as ―-

‖.This is our first example of a classification task: We have 

two classes (―comfortable‖ and ―uncomfortable‖) and a 

vector in feature space which has to be assigned to one of 

these classes. — But how do you describe the shape of the 

regions and how can you decide if a measured vector lies 

within or without a given region? In the following chapter 

we will learn how to represent the regions by prototypes and 

how to measure the distance of a point to a region. 
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Fig. 3: A map of feature vectors 

 

Classification of Vectors 

A) Prototype Vectors 

The problem of how to represent the regions of 

―comfortable‖ and ―uncomfortable‖ feature vectors of our 

classification task can be solved by several approaches. One 

of the easiest is to select several of the feature vectors we 

measured in our experiments for each of our classes (in our 

example we have only two classes) and to declare the 

selected vectors as ―prototypes‖ representing their class. We 

will later discuss how one can find a good selection of 

prototypes using the ―k–means algorithm‖. For now, we 

simply assume that we were able to make a good choice of 

the prototypes, as shown in figure 4. 

 
Figure 4: Selected prototypes 

B) Nearest Neighbor Classification 

The classification of an unknown vector is now 

accomplished as follows: Measure the distance of the 

unknown vector to all classes. Then assign the unknown 

vector to the class with the smallest distance. The distance of 

the unknown vector to a given class is defined as the 

smallest distance between the unknown vector and all of the 

prototypes representing the given class.One could also 

verbalize the classification task as: Find the nearest 

prototype to the unknown vector and assign the unknown 

vector to the class this ―nearest neighbor‖ represents (Hence 

the name). Fig. 3.13 shows the unknown vector and the two 

―nearest neighbors‖ of prototypes of the two classes. The 

classification task we described can be formalized as 

follows: Let Ω ={ ω_1,ω_2. ..ω_((V -1) )} be the set of 

classes, V being the total number of classes. Each class is 

represented by its prototype vectors p (k,ω_v ), where k = 

0,1,...,(K_(ω_v )- 1). Let x denote the unclassified vector. 

Let the distance measure between the vector and a prototype 

be denoted as d (x ,p (k,ω_v )) Then the class distance 

between x ⃗ and the class ω_v is defined as: 

𝒅𝝎𝒗
 𝒙  ⃗  = 𝐦𝐢𝐧𝒌 𝒅 𝒙  ⃗ , 𝒑  ⃗ 𝒌,𝝎𝒗

  ; 𝒌 = 𝟎, 𝟏,… ,  𝒌 − 𝟏         (g) 

5. Distance Measurement 
 

So far, we have found a way to classify an unknown vector 

by calculation of its class–distances to predefined classes, 

which in turn are defined by the distances to their individual 

prototype vectors. Now we will briefly look at some 

commonly used distance measures. Depending on the 

application at hand, each of the distance measures has its 

pros and cons, and we will discuss their most important 

properties. 

 

(A) Euclidean Distance 

 

The Euclidean distance measure is the ―standard‖ distance 

measure between two vectors in feature space (with 

dimension DIM) as you know it from school: 

𝒅𝑬𝒖𝒄𝒍𝒊𝒅
𝟐  𝒙  ⃗ , 𝒑  ⃗  =   𝒙𝒊 − 𝒑𝒊 

𝟐𝑫𝑰𝑴−𝟏
𝒊=𝟎 (h) 

calculate the Euclidean distance measure, you have to 

compute the sum of the squares of the differences between 

the individual components of ~x and p~. This can also be 

written as the following scalar product: 

𝒅𝑬𝒖𝒄𝒍𝒊𝒅
𝟐  𝒙  ⃗ , 𝒑  ⃗  =  𝒙  ⃗ − 𝒑  ⃗  ′ ∙  𝒙  ⃗ − 𝒑  ⃗  (i) 

Where ' denotes the vector transpose. Note that both 

equations (h) and (i) compute the square of the Euclidean 

distance, d^2 instead of d. The Euclidean distance is 

probably the most commonly used distance measure in 

pattern recognition. 

 

(B)City Block Distance 

 

The computation of the Euclidean distance involves 

computing the squares of the individual differences thus 

involving many multiplications. To reduce the 

computational complexity, one can also use the absolute 

values of the differences instead of their squares. This is 

similar to measuring the distance between two points on a 

street map: You go three blocks to the East, then two blocks 

to the South (instead of straight trough the buildings as the 

Euclidean distance would assume). Then you sum up all the 

absolute values for all the dimensions of the vector space. 

 

(C) Weighted Euclidean Distance 

 

Both the Euclidean distance and the City Block distance are 

treating the individual dimensions of the feature space 

equally, i.e., the distances in each dimension contributes in 

the same way to the overall distance. But if we remember 

our example , we see that for real–world applications, the 

individual dimensions will have different scales also. While 

in our office the temperature values will have a range of 

typically between 18 and 22 degrees Celsius, the humidity 

will have a range from 40 to 60 percent relative humidity. 

While a small difference in humidity of e.g., 4 percent 

relative humidity might not even be noticed by a person, a 

temperature difference of 4 degrees Celsius certainly will. In 

Figure 5 we see a more abstract example involving two 

classes and two dimensions. The dimension x_1 has a wider 

range of values than dimension x_2, so all the measured 

values (or prototypes) are spread wider along the axis 

denoted as ―x_1‖ as compared to axis ‖x_2‖. Obviously, a 

Euclidean or City Block distance measure would give the 

wrong result, classifying the unknown vector as ―class A‖ 
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instead of ―class B‖ which would (probably) be the correct 

result. 

 

To cope with this problem, the different scales of the 

dimensions of our feature vectors have to be compensated 

when computing the distance. This can be done by 

multiplying each contributing term with a scaling factor 

specific for the respective dimension. This leads us to the 

so–called ―Weighted Euclidean Distance‖. 

 

(D) Mahalanobis Distance 

 

So far, we can deal with different scales of our features 

using the weighted Euclidean distance measure. This works 

very well if there is no correlation between the individual 

features as it would be the case if the features we selected 

for our vector space were statistically independent from each 

other. What if they are not? Figure 3.15 shows an example 

in which the features x_1 and x_2 are correlated. 

 

Obviously, for both classes A and B, a high value of x_1 

correlates with a high value for x_2 (with respect to the 

mean vector (center) of the class), which is indicated by the 

orientation of the two ellipses. In this case, we would want 

the distance measure to regard both the correlation and scale 

properties of the features. Instead, the correlations between 

the individual components of the feature vector will have to 

be regarded when computing the distance between two 

vectors. This leads us to a new distance measure, the so–

called Mahalanobis Distance. 

 
Figure 6: Two dimensions with different scales 

 

 
Figure 6: Correlated Features 

 

6. Dynamic Time Warping 
 

In the last section, we were dealing with the task of 

classifying single vectors to a given set of classes which 

were represented by prototype vectors computed from a set 

of training vectors. Several distance measures were 

presented, some of them using additional sets of parameters 

(e.g., the covariance matrices) which also had to be 

computed from training vectors. 

 

How does this relate to speech recognition? 

 

As we saw in section 3, our speech signal is represented by a 

series of feature vectors which are computed every 10 ms. A 

whole word will comprise dozens of those vectors, and we 

know that the number of vectors (the duration) of a word 

will depend on how fast a person is speaking. Therefore, our 

classification task is different from what we have learned 

before. In speech recognition, we have to classify not only 

single vectors, but sequences of vectors. Let’s assume we 

would want to recognize a few command words or digits. 

For an utterance of a word w which is T_X vectors long, we 

will get a sequence of vectors X ={x _0,x _1,...,x _(X-1)} 

from the acoustic preprocessing stage. What we need here is 

a way to compute a ―distance‖ between this unknown 

sequence of vectors X and known sequences of vectors W 

_k={w _(k0,) w _(k1,) …,w _(kT_(W_k ) ) } which are 

prototypes for the words we want to recognize. Let our 

vocabulary (here: the set of classes Ω) contain V different 

words w_0,w_1,...w_(V-1). In analogy to the Nearest 

Neighbor classification task from section 3.2, we will allow 

a word w_v (here: class w_v∈Ω) to be represented by a set 

of prototypes W_(〖k,ω〗_v ),k=0,1,…,(K_(ω_v )-1) to 

reflect all the variations possible due to different 

pronunciation or even different speakers. 

 

 
Figure 7: Possible assignment between the vector pairs of X 

and W 

 

7. The Dynamic Programming Algorithm 
 

In the following formal framework we will iterate through 

the matrix column by column, starting with the leftmost 

column and beginning each column at the bottom and 

continuing to the top.For ease of notation, we define d(i,j) to 

be the distance d( w _i,x _j) between the two vectors w _i 

and x _j. 

 

Since we are iterating through the matrix from left to right, 

and the optimization for column j according to (g) uses only 

the accumulated distances from columns j and j-1, we will 

use only two arrays δ_j (i) and δ_(j-1) (i) to hold the values 

for those two columns instead of using a whole matrix for 

the accumulated distances δ(i,j).Let δ_j (i) be the 

accumulated distance δ(i,j) at grid point (i,j) and δ_(j-1) (i) 
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the accumulated distance δ(i,j-1) at grid point (i,j-1).It 

should be mentioned that it possible to use a single array for 

time indices j and j-1. One can overwrite the old values of 

the array with the new ones. However, for clarity, the 

algorithm using two arrays is described here and the 

formulation for a single–array algorithm is left to the reader. 

 

To keep track of all the selections among the path 

hypotheses during the optimization, we have to store each 

path alternative chosen for every grid point. We could for 

every grid point (i,j) either store the indices k and l of the 

predecessor point (k,l) or we could only store a code number 

for one of the three path alternatives (horizontal, diagonal 

and vertical path) and compute the predecessor point (k,l) 

out of the code and the current point (i,j).While the 

description of the DTW classification algorithm in section 

3.4 might let us think that one would compute all the 

distances sequentially and then select the minimum distance, 

it is more useful in practical applications to compute all the 

distances between the unknown vector sequence and the 

class prototypes in parallel. This is possible since the DTW 

algorithm needs only the values for time index t and (t-1) 

and therefore there is no need to wait until the utterance of 

the unknown vector sequence is completed. Instead, one can 

start with the recognition process immediately as soon as the 

utterance begins (we will not deal with the question of how 

to recognize the start and end of an utterance here). 

 

To do so, we have to reorganize our search space a little bit. 

First, let’s assume the total number of all prototypes over all 

classes is given by M. If we want to compute the distances 

to all M prototypes simultaneously, we have to keep track of 

the accumulated distances between the unknown vector 

sequence and the prototype sequences individually. Hence, 

instead of the column (or two columns, depending on the 

implementation) we used to hold the accumulated distance 

values for all grid points; we now have to provide M 

columns during the DTW procedure.Now we introduce an 

additional ―virtual‖ grid point together with a specialized 

local path alternative for this point: The possible 

predecessors for this point are defined to be the upper–right 

grid points of the individual grid matrices of the prototypes. 

In other words, the virtual grid point can only be reached 

from the end of each prototype word, and among all the 

possible prototype words, the one with the smallest 

accumulated distance is chosen. By introducing this virtual 

grid point, the classification task itself (selecting the class 

with the smallest class distance) is integrated into the 

framework of finding the optimal path. 

 

Now all we have to do is to run the DTW algorithm for each 

time index j and along all columns of all prototype 

sequences. At the last time slot (T_W-1) we perform the 

optimization step for the virtual grid point, i.e, the 

predecessor grid point to the virtual grid point is chosen to 

be the prototype word having the smallest accumulated 

distance. Note that the search space we have to consider is 

spanned by the length of the unknown vector sequence on 

one hand and the sum of the length of all prototype 

sequences of all classes on the other hand. Figure 3.19 

shows the individual grids for the prototypes (only three are 

shown here) and the selected optimal path to the virtual grid 

point. The backtracking procedure can of course be 

restricted to keeping track of the final optimization step 

when the best predecessor for the virtual grid point is 

chosen. The classification task is then performed by 

assigning the unknown vector sequence to the very class to 

which the prototype belongs to whose word end grid point 

was chosen. 

 

Of course, this is just a different (and quite complicated) 

definition of how we can perform the DTW classification 

task we already defined in (3.42). Therefore, only a verbal 

description was given and we did not bother with a formal 

description. However, by the reformulation of the DTW 

classification we learned a few things: 

 The DTW algorithm can be used for real–time 

computation of the distances 

 The classification task has been integrated into the search 

for the optimal path 

 Instead of the accumulated distance, now the optimal path 

itself is important for the classification task 

 

8. Conclusion 
 

Speech is the primary, and the most convenient means 

ofcommunication between people. Whether due to 

technological curiosity to build machines that mimic humans 

or desire to automate work with machines, research in 

speech and speaker recognition, as a first step toward natural 

human-machine communication, has attracted much 

enthusiasm over the past five decades. we have also 

encountered a number of practical limitations which hinder a 

widespread deployment of application and services. In most 

speech recognition tasks, human subjects produce one to two 

orders of magnitude less errors than machines. There is now 

increasing interest in finding ways to bridge such a 

performance gap. What we know about human speech 

processing is very limited. Although these areas of 

investigations are important the significant advances will 

come from studies in acoustic-phonetics, speech perception, 

linguistics, and psychoacoustics. Future systems need to 

have an efficient way of representing, storing, and retrieving 

knowledge required for natural conversation. This paper 

attempts to provide a comprehensive survey of research on 

speech recognition and to provide someyear wise progress to 

this date. Although significant progress has been made in the 

last two decades, there is still work to bedone, and we 

believe that a robust speech recognition system should be 

effective under full variation in: environmental conditions, 

speaker variability s etc. Speech Recognition is a 

challenging and interesting problem in and of itself. We 

have attempted in this paper to provide a comprehensive 

cursory, look and review of how much speech recognition 

technology progressed in the last 60 years. Speech 

recognition is one of the most integrating areas of machine 

intelligence, since, humans do a daily activity of speech 

recognition. Speech recognition has attracted scientists as an 

important discipline and has created a technological impact 

on society and is expected to flourish further in this area of 

human machine interaction. We hope this paper brings about 

understanding and inspiration amongst the research 

communities of ASR. 
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