Image Steganography Scheme Using Neural Network in Wavelet Transform Domain

Anamika Sharma¹, Ajay Kushwaha²

¹M. Tech Scholar Department of Computer Science, Rungta College of Engineering Bhilai Durg, Bhilai-durg India
²Assistant Professor Department of Computer Science, Rungta College of Engineering Bhilai Durg, Bhilai-durg India

Abstract: ‘Steganography is a art, which enforcing for obscur one part of data or information within another’. this paper shown an image steganography scheme which based on neural network fusion in wavelet transform domain. The cover and stego image is dividing in its frequency coefficients components by wavelet transform domain, and neural network used as classifier. This paper performed on the 256*256 size of image. All experimental result for this method will be performed in MATLAB language.

Keywords: Steganography, Wavelet Transform, Neural Network, Fusion Process

1. Introduction

The phrase Steganography come out from Greek ‘Stegano’ based on cover or secret and ‘Graphy’ based on drawing or writing. Steganography’s main objective is cover-media hide a confidential message in such a manner that can not recognize by other compartment of the hidden message.

Types of Steganography

1.1. Text steganography

It is a most important method of steganography to hide information's in form of texts. Secret message can be hidden in every text message's nth letter of every word. It has decreased its importance after Internet prosperous and different formats type of digital file. Because the text files have a small amount of repeated digital data files is not used in using text stenography.

1.2. Image steganography

As the popular cover objects in steganography images are used in teas. In a digital image, secret key a message is embedded through an embedding algorithm. The resulted stego image can be send to the receiver. On the other side, the same key is processed by the extraction algorithm. During the stego image transmission, unauthenticated persons only noticed the image transmission but can't guess that hidden Image message is exist. Steganography techniques can broadly categorize: Spatial-domain based Transform domain based Steganography.

Figure 2: Image Steganography Classification

a. DWT based steganography: Description of wavelet transformation can be applied as a multiresolution process decomposition in terms of an image elaborated onto a lot of basis wavelet functions. DWT shows its own, property of excellent frequency space localization. In each dimension image processing is filtered by 2D filter & corresponding result can be applied to 2D DWT images. The input image classified by filters in 4 non-overlapping multiresolution sub-band, LL (Approximated coefficient), LH (vertical), HL (horizontal) and HH (diagonal).

The LL sub-band can further continue to receive next scale of wavelet coefficients, until final scale N is gain. Once N is accomplish, we'll have 3N+1 sub-bands which is lie on multi-resolution sub-bands (LLN), (LHX), (HLX) and (HHX) where X ranges start from 1 to N. Image energy almost stored by these drops.

Figure 3: Three level decomposition using DWT
1.3 Protocol steganography: protocol Steganography refers as embedding information technique within network protocols & messages used on the transmission network. Sometimes may be information can be hide in the TCP/IP packet header or never applied in any subject areas.

1.4 Audio steganography: also we can apply another form that is Audio Files for hiding secret data. Where secret messages embedded in the digital audio form. timing is an another unique and different technique for audio coding, where properties work for human ear to hide unnoticeable information. Another audible louder sound is whenever present then significant audible sound is unhearable. In this properties allow to select the channel where information can be hiding. [1-4]

2. Feed Forward Neural Network

The neural network is an optimization technique. Neural is being used as a classifier. Neural networks are being organized in layers. When an element of the neural network fails, Neural Network can continue without any problem because of their parallel nature. An artificial neural network consists of an interconnected group of nodes called neurons. Each circular node represents an artificial neuron and an arrow represents a connection from the output of one neuron to the input of another. Neural is composed of three layers. Input layer means Training set and trained target which passed as input to neural. Hidden layer concerned with the number of iterations at which given the best result. Output layer are generate final result.

![Figure 4: Structure of Neural Network](image)

Neural network are classified as both feed-forward and feedback network. There are some neural network techniques are given for learn the network.

Feed forward technique, which calculate and minimize the generated error during network learning.

![Figure 5: Feed Forward Neural Network](image)

3. Related Work

G. Prabhakaran et.al [5] propose their research on the concentration for perfecting the visible effect of stego image and robustness against several approaches by applying fusion process of DWT & IWT. They conclude that, dual approach observe the combination of DWT & IWT, and execute better visible quality, embedding capacity and computational capacity. Embedding methods for both DWT & IWT obtain PSNR & high imperceptibility values placed between 35-54 db.

Ramamurthya N. et.al [6] proposed method worked on image watermarking based back propgaion neural network in DWT domain, this paper worked on 8*8 bitmap image. Their work were robust for noising, compression, and rotation etc.

Aradhana Sharma et.al [7] proposed and told about the work on an image steganography technique which combines the DWT and DCT. According to them research on 3 level wavelet decomposition carrying a single level of cover image and processing the image as 4×4 blocks with DCT. Regarding all methods and their observations it is conclude that this approach combination is capable for accomplish more imperceptibility & security. As per their study of 3 levels DWT and DCT provide a deep depth value to hide the secret image with PSNR values ranged between 43-48 db.

With the help of IWT, colour cover image hide the multiple secret image and keys, Hemalatha S et.al [8] research paper provide a steganography image technique, where no visual difference between cover and stego image. The extracted secret images look similar as original secret images. Also observed that, in single colour image two secret images can be hide.

Hemalatha S et.al [9] performed their work and proposed that secret image could be hidden by considering the three separate colour component. But secret image hidden by keys that are generated using the corresponding colour components and the keys are hidden in the respective colour components of the cover image. Secret image can be
extracting by using keys. IWT is using for hide the keys. Their result shows the technique gives good quality stego images with better PSNR values compared to similar other techniques.

Neda Raftari et.al [10] proposed work suggesting for transform the cover & secret images from both spatial into frequency domain IWT is uses, assignment algorithm is use for find good match between blocks for embedding. In which secrete image is embedded by different coefficient band cover image. At last with the conclusion the results shows that after applying attacks on stego images, the secret images have good value of PSNR and acceptable visual quality. In addition, for extracting the embedded secret image original cover image does not require.

S.K.Muttoo et.al [11] According to their works, they propose a revocable steganographic image embedding algorithm, consist of three parts. Firstly, original text message are compress or encoded, they use self-synchronization variable codes, T-codes. Secondly, again encrypted the gain encoded binary string by AES improved method. In high frequency bands embed encrypted message, which is obtaining by apply DD DT DWT 1-level decomposition from cover image. This algorithm is comparing with DWT based corresponding algorithm and where is founded that it is good embedding capacity, robustness and imperceptibility.

Jagadeesh B.et.al [12] proposed a combination method of fuzzy logic and artificial neural. Fuzzy neuro system is use for this method. That method was experimented on various image attacks, which gave better robustness as result.

H S Manjunatha Reddy et.al [13] stated that, cover image is sectioned in 4*4 cells & DWT or IWT will be applying on apiece cell. HH band of 2*2 cell of DWT or IWT are consider and manipulating by payload bit pairs (by using identity) matrix to obtain stego image. Key is uses for payload pairs bit extracted at the destination. For all image formats IWT compare by DWT & it is observed that PSNR values are better. The proposed algorithm is robust since the payload is embedding into the transform cover image indirectly. In future the algorithm can be tested with some more transform domain techniques which will be improved the performance.

Seongho Cho a et.al [14] experiment tells about a Traditional image steganalysis which conducted by the large messages size there is high invisibility. This project is implemented in MATLAB language.

V.Meiamai et.al [18] proposed the uses of pixel indicator channel which is deciding uses of histogram technique to secret message file that has to be embedded in the highest color intensity plane. Their result observing the method efficiency which can be enhance by authenticating the user with a key.

4. Methodology

Dual transform technique by applying fusion process which may include arithmetic operations and logical operations.it signify that is even with the large messages size there is high invisibility. This project is implemented in MATLAB language.

A. Embedding Process:

1) In existing algorithm, G. Prabhakaran et.al [5] embedded cover & stego image by DWT or IWT.

2) embedding process Algorithm:
 a) Firstly Read the cover image as C. Convert cover image pixel values into image (CG).
 b) Apply image pre-processing and then process correction to get colour cover image (CG).
 c) Read the secret image (S).
 d) Apply image reprocessing and correction process to get a image as (SG).
 e) Apply dual transforms technique into both cover & secret image.
 f) By applying Wavelet Transform, extract the approximated coefficients of matrix of the cover image (CG1).
 g) By applying Wavelet Transform, extract the approximated coefficients of matrix of the secrete image (SG1).
 h) Neural Fusion operation will be applying on image CG1 and SG1 to getting merge image.
 i) Fused image will be performing by 2-D Inverse Wavelet Transform to get the stego image.
B. Extracting Process:

1) In existing algorithm, G. Prabhakaran et.al [5] extracted cover & stego image by DWT or IWT wavelet.

2) Algorithm for extracting process:
 a) Firstly get the stego image. And a 2-D Wavelet Transform will be performing at both cover and stego image level.
 b) Neural Fusion process will be applied on stego and cover images to getting fused image.
 c) Wavelet coefficients will be separated and applied Inverse Wavelet Transform on the fused image to recover the secret image.

5. Result

Figure 10 (a): Embedding process with DWT

Figure 10 (b): Extracting process with DWT

Figure 10 (c): Result with wavelet neuro

Figure 10 (d): Histogram Result

Performance Analysis: Performance analysis of these transforms is done based on below parameters. PSNR is used for measuring the quality of the Secret image (reconstructed image) that usually expressed as decibels (db), which is a logarithmic scale. Cause of lack of a universal image quality measurement tool we always using PSNR to evaluate the deformation between the stego & original cover images.

MSE representing the difference Between of the original colour cover image which has M x N x size and the get stego image which has M x N x size, and the pixel (x_j,k and x’_j,k)
are located on the jth row of the kth column of images (cover) x and (stego) x respectively.

There are following quality metrics formulas are given,
1) Mean Square Error

\[MSE = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} (x_{ij} - x'_{ij})^2 \]

2) Pick Signal To Noise Ratio

\[PSNR = 10 \log_{10} \left(\frac{255^2}{MSE} \right) \text{dB} \]

<table>
<thead>
<tr>
<th>Table 1: Result of image steganography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result of image steganography for several attacks</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>DWT Original Vs. Stego Image</td>
</tr>
<tr>
<td>DWT Original Vs. Recovery Image</td>
</tr>
<tr>
<td>Neural Network with DWT Original Vs. Stego Image</td>
</tr>
<tr>
<td>Neural Network with DWT Original Vs. Recovery Image</td>
</tr>
</tbody>
</table>

6. Conclusion and Future Scope

This technique mainly concentrates on to gain better robustness and imperceptibility based on several image attacks like cropping, rotation, and noising. The result will also check visual perfection quality of stego image. In this method colour image will be converted into grey image. it is applicable on to hide online content distribution system, secret communication, internet security & medical imaging systems. Values are tested using the Root Mean Square Error method and the value shows that the error is negligible in wavelet neuro. The computational time is also reduced. PSNR value of Wavelet Neuro is increases rather than using only DWT domain. This wavelet neuro algorithm will be further worked for the colour stego image. In future we can perform with various wavelets transform like DCT, IWT etc. We can also work on to colour stego image. In future we can perform with various PSNR value of Wavelet Neuro is increases rather than using only DWT domain.

This wavelet neuro algorithm will be further worked for the colour stego image. In future we can perform with various wavelets transform like DCT, IWT etc. We can also work on another supervised learning with different learning rate. Here we worked on 256*256 sizes of images. In future we can work on greater size of images for getting more clarity and simplicity.

References

Volume 4 Issue 12, December 2015
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[16] Seongho Cho, Byung-Ho Cha, Martin Gawecki a, C.-C. Jay Kuo. "BLOCK-BASED IMAGE STEGANOGRAPHY: ALGORITHM AND PERFORMANCE EVALUATION"1047-3203/$ - see front matter 2013 Elsevier Inc. All rights reserved.

