Some Interesting Properties of a Subclass of Meromorphic Univalent Functions Defined by Hadamard Product

Waggas Galib Atshan¹, Thamer Khalil Mohammed²

¹Department of Mathematics, College of Computer Science and Mathematics, University of Al-Qadisiya, Diwaniya – Iraq
²Department of Mathematics, College of Education, University of Al-Mustansirya, Baghdad – Iraq

Abstract: In the present paper, we define a new subclass \(SM_u(\tau, \gamma, \lambda, \alpha) \) of meromorphic univalent with positive coefficients defined by Hadamard product in the punctured unit disk \(U^* \). We obtain some interesting properties, like, coefficient estimates, extreme points, distortion theorem, partial sums, integral representation.

2014 Mathematics Subject Classification: 30C45

Keywords: Meromorphic univalent function, Hadamard product, distortion theorem, integral representation.

1. Introduction

Let \(M_u \) denote the class of functions of the form:

\[
f(z) = z^{-1} + \sum_{n=1}^{\infty} a_n z^n,
\]

which are analytic and meromorphic univalent in the punctured unit disk \(U^* = \{z \in \mathbb{C}: 0 < |z| < 1\} \).

Let \(SM_u \) be a subclass of \(M_u \) consisting of functions of the form:

\[
f(z) = z^{-1} + \sum_{n=1}^{\infty} a_n z^n, \quad (a_n \geq 0). \tag{2}
\]

For the function \(f \in SM_u \) given by (2) and \(g \in SM_u \) defined by

\[
g(z) = z^{-1} + \sum_{n=1}^{\infty} b_n z^n, \quad (b_n \geq 0), \tag{3}
\]

the convolution (or Hadamard product) of \(f \) and \(g \) is defined by

\[
(f \ast g)(z) = z^{-1} + \sum_{n=1}^{\infty} a_n b_n z^n. \tag{4}
\]

We shall need to state the extended linear derivative operator of Ruscheweyh type for the function belong to the class \(SM_u \).

\[
D_{\tau}^{A,1} : SM_u \rightarrow SM_u
\]

is defined by the following convolution:

\[
D_{\tau}^{A,1} f(z) = \left(\frac{1 - \lambda}{\lambda} \right)^{A+1} f(z), \quad (\lambda > -1; f \in SM_u). \tag{5}
\]

In terms of binomial coefficients, (5) can be written as

\[
D_{\tau}^{A,1} f(z) = z^{-1} + \sum_{n=1}^{\infty} \binom{A + n}{n} a_n z^n \quad (\lambda > -1; f \in SM_u). \tag{6}
\]

The linear operator \(D_{\tau}^{A,1} \) analogous to \(D_{\tau}^{A,1} \) was considered recently by Raina and Srivastava [7] on the space of analytic and \(p \)-valent functions in \(U(\ U = U^* \cup \{0\}) \).

A function \(f \in M_u \) is said to be in the class \(M_u \) of meromorphic univalent starlike function of order \(\alpha \) if:

\[
- \text{Re} \left(\frac{zf''(z)}{f'(z)} \right) > \alpha, \quad (z \in U^*, 0 \leq \alpha < 1). \tag{7}
\]

A function \(f \in M_u \) is said to be in the class \(M_u \) of meromorphic univalent convex function of order \(\alpha \) if:

\[
- \text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha, \quad (z \in U^*, 0 \leq \alpha < 1). \tag{8}
\]

Definition 1: A function \(f \in SM_u \) is said to be in the class of \(SM_u(\tau, \gamma, \lambda, \alpha) \) if it satisfies the following condition:

\[
\frac{2T}{\tau} \left(\frac{D_{\tau}^{A,1}(f \ast g)(z)}{D_{\tau}^{A,1}(f \ast g)(z)} \right)^{\gamma} + \frac{1}{\tau} < 1, \tag{9}
\]

for \(0 < \gamma < 1, 0 < \tau < 1, 0 < \alpha < 1 \).

Atshan and Kulkarni [3], Atshan and Buti [1], Atshan and Joudah [2], Dzioik et al. [4], Khairnar and More [5] and Najafzadeh and Ebadian [6] studied meromorphic univalent and Multivalent functions for different classes.

2. Coefficient Inequality

The following theorem gives a necessary and sufficient condition for a function \(f \) to be in the class \(SM_u(\tau, \gamma, \lambda, \alpha) \).

Theorem 1: Let \(f \in SM_u \). Then \(f \in SM_u(\tau, \gamma, \lambda, \alpha) \) if and only if

\[
\sum_{n=1}^{\infty} \binom{A + n}{n} a_n b_n \leq \alpha(1 + \gamma), \tag{10}
\]

where \(0 < \gamma < 1, 0 < \tau < 1, 0 < \alpha < 1 \).

The result is sharp for the function.
\[f(z) = z^{-1} + \sum_{n=1}^{\infty} \frac{a(1+\gamma)}{\left(\frac{n^2}{2}(n+1) + a(1+\gamma(3+2n))b_n\right)}z^{-n} \]

Proof: Suppose that the inequality (10) holds true and \(|z| = 1\). Then from (9), we have

\[
\left|\frac{\sum_{n=1}^{\infty} z(n+1)\left(\frac{\lambda+n}{n}\right)a_n b_n z^n}{\left(\frac{\lambda+n}{n}\right)^2(n+1) + a(1+\gamma(3+2n))b_n}\right| \leq |a(1+\gamma)|\left(\frac{1}{r} + 2az\gamma\left(\frac{\lambda+n}{n}\right)\right)
\]

Then from (9), we have

\[
\left|\frac{\sum_{n=1}^{\infty} \frac{z}{2}D_{1,1}(f \ast g)(z) + \frac{1}{2}(D_{1,1}(f \ast g)(z))'}{(D_{1,1}(f \ast g)(z)) + \frac{1}{2}}\right| \leq |a(1+\gamma)| + 2z\gamma(z \ast (f \ast g)(z))' + \frac{(\lambda+n)}{n}a_n b_n z^n
\]

Since \(\Re(z) \leq |z|\) for all \(z \in U\), we get

\[
\Re\left(\frac{\sum_{n=1}^{\infty} \frac{z}{2}D_{1,1}(f \ast g)(z) + \frac{1}{2}(D_{1,1}(f \ast g)(z))'}{(D_{1,1}(f \ast g)(z)) + \frac{1}{2}}\right) \leq 1, \quad (12)
\]

We choose the value of \(z\) on the real axis so that \(z^nD_{1,1}(f \ast g)(z)\) is real.

Let \(z \to 1^{-}\) through real values, so we can write (12) as

\[
\Re\left(\frac{\sum_{n=1}^{\infty} \frac{z}{2}D_{1,1}(f \ast g)(z) + \frac{1}{2}(D_{1,1}(f \ast g)(z))'}{(D_{1,1}(f \ast g)(z)) + \frac{1}{2}}\right) \leq |a(1+\gamma)|.
\]

Finally, sharpness follows if we take

\[
\frac{1}{2} \sum_{n=1}^{\infty} (\lambda+n) a_n b_n z^n - a(1+\gamma)z^{-1} + 3\gamma \sum_{n=1}^{\infty} (\lambda+n) a_n b_n z^n - 2\gamma z^{-1} + \sum_{n=1}^{\infty} 2\gamma n (\lambda+n) a_n b_n z^n = 0,
\]

by hypothesis.

Hence, by maximum modulus principle, \(f \in SM_u(r, \gamma, \lambda, \alpha)\) and \(b_n \geq b_1\), \(n \geq 1\), then

\[
\frac{1}{r} - \frac{a(1+\gamma)}{(1+\lambda)(r + a(1+5\gamma))b_1}r \leq |f(z)| \leq \frac{1}{r} + \frac{a(1+\gamma)}{(1+\lambda)(r + a(1+5\gamma))b_1}r, \quad (|z| = r)
\]

We choose the value of \(z\) on the real axis so that \(z^nD_{1,1}(f \ast g)(z)\) is real.

Let \(z \to 1^{-}\) through real values, so we can write (12) as

\[
\Re\left(\frac{\sum_{n=1}^{\infty} \frac{z}{2}D_{1,1}(f \ast g)(z) + \frac{1}{2}(D_{1,1}(f \ast g)(z))'}{(D_{1,1}(f \ast g)(z)) + \frac{1}{2}}\right) \leq |a(1+\gamma)|.
\]

Finally, sharpness follows if we take

\[
\frac{1}{2} \sum_{n=1}^{\infty} (\lambda+n) a_n b_n z^n - a(1+\gamma)z^{-1} + 3\gamma \sum_{n=1}^{\infty} (\lambda+n) a_n b_n z^n - 2\gamma z^{-1} + \sum_{n=1}^{\infty} 2\gamma n (\lambda+n) a_n b_n z^n = 0,
\]

by hypothesis.

Hence, by maximum modulus principle, \(f \in SM_u(r, \gamma, \lambda, \alpha)\) and \(b_n \geq b_1\), \(n \geq 1\), then

\[
\frac{1}{r} - \frac{a(1+\gamma)}{(1+\lambda)(r + a(1+5\gamma))b_1}r \leq |f(z)| \leq \frac{1}{r} + \frac{a(1+\gamma)}{(1+\lambda)(r + a(1+5\gamma))b_1}r, \quad (|z| = r)
\]

3. Distortion Bounds

Next, we obtain the growth and distortion bounds for the class \(SM_u(r, \gamma, \lambda, \alpha)\).

Theorem 2: If \(f \in SM_u(r, \gamma, \lambda, \alpha)\) and \(b_n \geq b_1\), \(n \geq 1\), then

\[
\frac{1}{r} - \frac{a(1+\gamma)}{(1+\lambda)(r + a(1+5\gamma))b_1}r \leq |f(z)| \leq \frac{1}{r} + \frac{a(1+\gamma)}{(1+\lambda)(r + a(1+5\gamma))b_1}r, \quad (|z| = r)
\]
The result is sharp for the function:
\[f(z) = z^{-1} + \frac{\alpha(1 + \gamma)}{(1 + \lambda)(\tau + \alpha(1 + 5\gamma))b_1}z. \] (15)

Proof: Since
\[f(z) = z^{-1} + \sum_{n=1}^{\infty} a_n z^n, \]
then
\[|f(z)| = \left| \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n \right| \leq \frac{1}{|z|} + \sum_{n=1}^{\infty} |a_n| |z|^n = \frac{1}{r} + \sum_{n=1}^{\infty} a_n r^n, \] (16)

Since for \(n \geq 1, \)
\[(1 + \lambda)(\tau + \alpha(1 + 5\gamma))b_1 \leq \left(\frac{\lambda + n}{n} \right) \left(\frac{\tau}{2} (n + 1) \right) + \alpha(1 + \gamma(3 + 2n))b_n, \]
By Theorem (1), we have
\[|f(z)| \leq \alpha(1 + \gamma). \]
That is
\[\sum_{n=1}^{\infty} a_n \leq \frac{\alpha(1 + \gamma)}{(1 + \lambda)(\tau + \alpha(1 + 5\gamma))b_1}. \]
Using the above inequality in (16), we have
\[|f(z)| \leq \frac{1}{r} + \frac{\alpha(1 + \gamma)}{(1 + \lambda)(\tau + \alpha(1 + 5\gamma))b_1} r, \]
and
\[|f'(z)| \geq \frac{1}{r^2} - \frac{\alpha(1 + \gamma)}{(1 + \lambda)(\tau + \alpha(1 + 5\gamma))b_1} r, \]
The result is sharp for the function:
\[f(z) = \frac{1}{z} + \frac{\alpha(1 + \gamma)}{(1 + \lambda)(\tau + \alpha(1 + 5\gamma))b_1} z, \]
Similarly, we have
\[|f'(z)| \leq \frac{1}{r^2} + \frac{\alpha(1 + \gamma)}{(1 + \lambda)(\tau + \alpha(1 + 5\gamma))b_1} r, \]
and
\[|f'(z)| \leq \frac{1}{r^2} + \frac{\alpha(1 + \gamma)}{(1 + \lambda)(\tau + \alpha(1 + 5\gamma))b_1} r. \]

4. Partial Sums

Theorem 3: Let \(f \in SM_{\lambda\alpha} \) be given by (2) and the partial sums \(S_1(z) \) and \(S_k(z) \) be defined by
\[S_1(z) = z^{-1} \text{ and} \]
\[S_k(z) = z^{-1} + \sum_{n=1}^{k-1} a_n z^n, (k > 1). \]
Also, suppose that
\[\sum_{n=1}^{\infty} d_n a_n \]
\[\leq 1, \left(d_n = \frac{(\lambda + n)(\tau)(n + 1) + \alpha(1 + \gamma(3 + 2n))}{\alpha(1 + \gamma)} \right), \] (17)
Then, we have
\[\text{Re} \left(\frac{f(z)}{S_k(z)} \right) > 1 - \frac{1}{d_k}, \] (18)
and
\[\text{Re} \left(\frac{f(z)}{S_k(z)} \right) > \frac{d_k}{1 + d_k}, \] (19)
Each of the bounds in (18) and (19) is the best possible for \(n \in \mathbb{N}. \)

Proof: For the coefficients \(d_n \) given by (17), it is not difficult to verify that
\[d_{n+1} > d_n > 1, n = 1, 2, \ldots. \]
Therefore, by using the hypothesis (17), we have
\[\sum_{n=1}^{k-1} a_n + d_k \sum_{n=k}^{\infty} a_n \leq \sum_{n=1}^{\infty} d_n a_n \leq 1. \] (20)
By setting
\[g_1(z) = d_k \left(\frac{f(z)}{S_k(z)} - 1 \right), \]
and applying (20), we find that
\[\frac{g_1(z) - 1}{g_1(z) + 1} \leq 1, \] (22)
which readily yields the assertion (18), if we take
\[f(z) = z^{-1} - \frac{z^k}{d_k}, \] (23)
then
\[f(z) = 1 - \frac{z^k}{d_k} \to 1 - \frac{1}{d_k} \quad (z \to 1), \]
which shows that the bound (18) is the best possible for each \(n \in \mathbb{N}. \)

Similarly, if we take
\[g_2(z) = (1 + d_k) \left(\frac{f(z)}{S_k(z)} - 1 \right), \]
and make use of (20), we obtain
\[\frac{g_2(z) - 1}{g_2(z) + 1} \leq 1, \] (24)
which leads us to the assertion (19). The bounds in (18) and (19) is sharp with the function given by (21).

Theorem 4: If \(f(z) \) of the form (2) satisfy the condition (10). Then
\[\text{Re} \left(\frac{f(z)}{S_k(z)} \right) > 1 - \frac{k + 1}{d_{k+1}}, \]
\[\text{Re} \left(\frac{f(z)}{S_k(z)} \right) > \frac{d_{k+1}}{k + 1 + d_{k+1}}, \] where
\[d_n \geq \frac{(\lambda + n)^{\frac{1}{2}}}{(n + 1) + a(1 + \gamma(3 + 2n))b_n} \text{ for } n = 2, 3, ... , m \]

The bounds are sharp, with the extremal function \(f(z) \) of the form (15)

Proof: The proof is analogous to that Theorem 3, and we omit details.

5. Integral Representation

Theorem 5: Let \(f \in SM_\mu(\tau, \gamma, \lambda, \alpha) \). Then

\[
\mathcal{D}_\lambda^{1,1}(f \ast g)(z) = \exp \int_0^z \frac{\varphi(t) \alpha(1 + 3\gamma) - \frac{\tau}{2}}{\alpha(1 + 3\gamma) + 2\tau \varphi(t)} \, dt_n,
\]

where \(|\varphi(\zeta)| < 1, \zeta \in U\).

Proof: By putting

\[
\frac{\tau}{2} \varphi(z) + \frac{\tau}{2} = \varphi(z), \quad (|\varphi(z)| < 1, \zeta \in U).
\]

So

\[
\mathcal{D}_\lambda^{1,1}(f \ast g)(z) = \frac{\varphi(z) \alpha(1 + 3\gamma) - \frac{\tau}{2}}{\alpha(1 + 3\gamma) + 2\tau \varphi(z)}
\]

after integration, we have

\[
\log \mathcal{D}_\lambda^{1,1}(f \ast g)(z) = \int_0^z \frac{\varphi(t) \alpha(1 + 3\gamma) - \frac{\tau}{2}}{\alpha(1 + 3\gamma) + 2\tau \varphi(t)} \, dt.
\]

Therefore

\[
\mathcal{D}_\lambda^{1,1}(f \ast g)(z) = \exp \int_0^z \frac{\varphi(t) \alpha(1 + 3\gamma) - \frac{\tau}{2}}{\alpha(1 + 3\gamma) + 2\tau \varphi(t)} \, dt,
\]

and this gives the required result.

6. Extreme Points

Theorem 6: Let \(f_0(z) = z^{-1} \) and \(f_n(z) = z^{-1} + \alpha(1 + \gamma) \frac{(\lambda + n)^{\frac{1}{2}}}{(n + 1) + a(1 + \gamma(3 + 2n))b_n} \).

Then \(f \in SM_\mu(\tau, \gamma, \lambda, \alpha) \), if and only if it can be represented in the form

\[
f(z) = \sum_{n=0}^{\infty} \mu_n f_n(z), \quad (\mu_n \geq 0, \sum_{n=0}^{\infty} \mu_n = 1).
\]

Proof: Suppose that

\[
f(z) = \sum_{n=0}^{\infty} \mu_n f_n(z), \quad (\mu_n \geq 0, \sum_{n=0}^{\infty} \mu_n = 1).
\]

Then

\[
f(z) = \mu_0 f_0(z) + \sum_{n=1}^{\infty} \mu_n f_n(z)
\]

where

\[
\mu_n = \frac{\alpha(1 + \gamma) \mu_n}{\alpha(1 + \gamma) + \frac{(\lambda + n)^{\frac{1}{2}}}{(n + 1) + a(1 + \gamma(3 + 2n))b_n}}.
\]

Therefore

\[
\sum_{n=1}^{\infty} \mu_n \frac{(\lambda + n)^{\frac{1}{2}}}{(n + 1) + a(1 + \gamma(3 + 2n))b_n} = \frac{\alpha(1 + \gamma)}{\alpha(1 + \gamma)}
\]

So by Theorem (1), \(f \in SM_\mu(\tau, \gamma, \lambda, \alpha) \).

Conversely, suppose \(f \in SM_\mu(\tau, \gamma, \lambda, \alpha) \). By (4), we have

\[
a_n \leq \frac{\alpha(1 + \gamma)}{(\lambda + n)^{\frac{1}{2}}(n + 1) + a(1 + \gamma(3 + 2n))b_n}, \quad n \geq 1.
\]

We set

\[
\alpha_n = \frac{(\lambda + n)^{\frac{1}{2}}(n + 1) + a(1 + \gamma(3 + 2n))b_n}{\alpha(1 + \gamma)}, \quad \alpha_n \geq 1,
\]

and

\[
\mu_0 = 1 - \sum_{n=1}^{\infty} \mu_n.
\]

Then, we have

\[
f(z) = \sum_{n=0}^{\infty} \mu_n f_n(z)
\]

Hence the results follows.

References

Volume 3 Issue 9, September 2014

www.ijsr.net

License Under Creative Commons Attribution CC BY

Author Profile

Waggas Galib Atshan, Assist. Prof./Dr. in Mathematics (Complex Analysis), teacher at University of Al-Qadisiya, College of Computer Science & Mathematics, Department of Mathematics. He has 90 papers published in various journals in mathematics till now, he taught seventeen subjects in mathematics till now (undergraduate, graduate). He is supervisor on 20 students (Ph.D., M.Sc.) till now, he attended 23 international and national conferences.