On Some Certain Properties of a New Subclass of Univalent Functions Defined by Differential Subordination Property

Waggas Galib Atshan1, Ali Hussein Battor2, Amal Mohammed Dereush3

1Department of Mathematics, College of Computer Science and Mathematics, University of Al-Qadisiya, Diwaniya, Iraq
2, 3Department of Mathematics, College of Education for Girls, University of Kufa, Najaf, Iraq

Abstract: In this paper, we have studied a new subclass of univalent functions defined by differential subordination property by using the linear operator \(\mathcal{L}_{\alpha, \beta, m} \). Coefficient bounds, some properties of neighborhoods, convolution properties; Integral mean inequalities for the fractional integral for this class are obtained.

Keywords: Univalent Function, Differential Subordination, \(\phi \)-neighborhood, Integral Mean, Fractional Integral

2014 Mathematics Subject Classification: 30C45

1. Introduction

Let \(\mathcal{S} \) be the class of all functions of from the:

\[
\mathcal{S}(\mathcal{S}) = \{ f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad (n \in \mathbb{N}) \}
\]
(1)

which are analytic and univalent in the open unit disk \(\mathbb{U} = \{ z \in \mathbb{C} : |z| < 1 \} \).

Let \(D \) denote the subclass of \(\mathcal{S} \) containing of functions of the from:

\[
f(z) = z - \sum_{n=2}^{\infty} b_n z^n, \quad (a_n \geq 0, n \in \mathbb{N}).
\]
(2)

The Hadamard product (or convolution) of two power series

\[
f(z) = z - \sum_{n=2}^{\infty} a_n z^n \quad \text{and} \quad g(z)
\]
(3)

in \(D \) is defined by:

\[
(f \ast g)(z) = f(z) \ast g(z) = \sum_{n=2}^{\infty} \left(\sum_{k=2}^{n} a_k b_{n-k} \right) z^n.
\]
(4)

For positive real values of \(\alpha_1, \ldots, \alpha_j, \beta_1, \ldots, \beta_m (\beta_j \neq 0, -1, \ldots, j = 1, 2, \ldots, m) \), the generalized hypergeometric function \(F_m(x) \) is defined by:

\[
F_m(x) = \sum_{n=1}^{\infty} \frac{\prod_{j=1}^{m} \Gamma(n+\alpha_j)}{\prod_{j=1}^{m} \Gamma(n+\beta_j) n!} z^n,
\]
(5)

\(\lfloor m \rfloor \) is the pochhammer symbol defined by

\[
\lfloor m \rfloor = \begin{cases} 1, & m = 0 \, \text{or} \, 1 \, \text{or} \, 2, \\ (\alpha(n+1)(\alpha+2) \ldots (\alpha+n-1)), & \alpha \in \mathbb{N}. \end{cases}
\]
(6)

The notation \(F_m \) is quite useful for representing many well-know functions such as the exponential, the Bessel and laguerre polynomial. Let

\[
H(\alpha_1, \ldots, \alpha_j, \beta_1, \ldots, \beta_m): \mathbb{D} \to \mathbb{D}
\]

be a linear operator defined by

\[
H(\alpha_1, \ldots, \alpha_j, \beta_1, \ldots, \beta_m; f(z)) = z \ast F_m(\alpha_1, \ldots, \alpha_j, \beta_1, \ldots, \beta_m; z) \ast f(z)
\]

which is given by (1), then we see form (7), (8), (9) and (11) that

\[
F_m z = \sum_{n=2}^{\infty} W_n(a_n; \alpha_j; \beta_j; \gamma) z^n.
\]
(7)

\[
W_n(a_n; \alpha_j; \beta_j; \gamma) = \frac{(\alpha_1)_{n-1} \ldots (\alpha_j)_{n-1}}{(\beta_1)_{n-1} \ldots (\beta_m)_{n-1} (n-1)!}.
\]
(8)

For notational simplicity, we use shorter notation \(H_m^\alpha \) for \(H(\alpha_1, \ldots, \alpha_j, \beta_1, \ldots, \beta_m) \).

In the sequel. It follows from (7) that

\[
H_m^\alpha f(z) = f(z), \quad H_m^\alpha z f(z) = zf(z).
\]

The linear operator \(H_m^\alpha \) is called Dozik-Srivastava operator (see [5]) introduced by Dozik and Srivastava which was subsequently extended by Dzioik and Raina [4] by using the generalized hypergeometric function, recently Srivastava et. al. [12] defined the linear operator \(\mathcal{L}_{\alpha, \beta, m} \) as follows:

\[
\mathcal{L}_{\alpha, \beta, m}^1 f(z) = (1-\lambda) H_m^\alpha f(z) + \lambda (H_m^\alpha f(z))',
\]

\[
\mathcal{L}_{\alpha, \beta, m}^2 f(z) \quad \text{and} \quad \mathcal{L}_{\alpha, \beta, m}^3 f(z) \quad \text{in general},
\]

\[
H_m^\alpha f(z) = \mathcal{L}_{\alpha, \beta, m}^1 f(z)
\]

\[
F_m(z) = \mathcal{L}_{\alpha, \beta, m}^2 f(z)
\]

\[
F_m(z) = \mathcal{L}_{\alpha, \beta, m}^3 f(z)
\]

\[
(\lfloor m \rfloor) \quad \text{and} \quad \mathcal{L}_{\alpha, \beta, m}^1 f(z) = (1-\lambda) H_m^\alpha f(z) + \lambda (H_m^\alpha f(z))', \quad (l \leq m + 1; \ i, m \in \mathbb{N}_0 = N \cup \{0\}; z \in \mathbb{U})
\]

\[
F_m(z) = \mathcal{L}_{\alpha, \beta, m}^2 f(z)
\]

\[
F_m(z) = \mathcal{L}_{\alpha, \beta, m}^3 f(z)
\]

\[
(\lfloor m \rfloor) \quad \text{and} \quad \mathcal{L}_{\alpha, \beta, m}^1 f(z) = (1-\lambda) H_m^\alpha f(z) + \lambda (H_m^\alpha f(z))', \quad (l \leq m + 1; \ i, m \in \mathbb{N}_0 = N \cup \{0\}; z \in \mathbb{U})
\]

If the function \(f(z) \) is given by (1), then we see form (7), (8), (9) and (11) that
\[L_{\lambda,\mu,m}^{\alpha_1}(z) = 1 + Az \]

Taking \(|z| = r \), for sufficiently small \(r \) with \(0 < r < 1 \), the denominator of (20) is positive and so it is positive for all \(r \) with \(0 < r < 1 \), since \(w(z) \) is analytic for \(|z| < 1 \). Then, the inequality (20) yields

\[
\sum_{n=2}^{\infty} W_n^{\gamma}(\alpha_1; \lambda; \mu; m)(1 - AB)a_n r^n + (B - A - 1)r.
\]

Equivalently,

\[\sum_{n=2}^{\infty} W_n^{\gamma}(\alpha_1; \lambda; \mu; m)(1 - AB)a_n r^n \leq (1 + A(A - B - 1))r, \]

and (17) follows upon letting \(r \rightarrow 1 \).
Conversely, for $|z| = r, 0 < r < 1$, we have $r^n < r$. That is,

$$\sum_{n=2}^{\infty} W_{n}^{+c}(\alpha; \lambda; \nu; m)(1-AB) a_n r^n$$

$$\leq \sum_{n=2}^{\infty} W_{n}^{+c}(\alpha; \lambda; \nu; m)(1-AB) a_n r^n \leq [1 + A(A-B-1)] r^n.$$

From (17), we have

$$\left| (B-A-1)z + \sum_{n=2}^{\infty} W_{n}^{+c}(\alpha; \lambda; \nu; m)(1-AB) a_n z^n \right|$$

$$\leq (B-A-1)r + \sum_{n=2}^{\infty} W_{n}^{+c}(\alpha; \lambda; \nu; m)(1-AB) a_n r^n$$

$$< \sum_{n=2}^{\infty} W_{n}^{+c}(\alpha; \lambda; \nu; m)(AB - B - AB)r$$

$$\sum_{n=2}^{\infty} W_{n}^{+c}(\alpha; \lambda; \nu; m)(AB - B - AB)z^n$$

$$+ (A^2 + B - AB) r$$

$$\leq \sum_{n=2}^{\infty} W_{n}^{+c}(\alpha; \lambda; \nu; m)(AB - B - AB) z^n$$

This prove that

$$L_{\lambda, m}^{+, c} (f(z)) < \frac{1+Az}{1+Bz}, z \in U$$

and hence $f \in K(y,c, \alpha, \lambda, \mu, m, A, B)$.

Theorem 2: If

$$\frac{\sum_{n=2}^{\infty} n a_n}{\sum_{n=2}^{\infty} \frac{(\alpha)_1 \cdots (\alpha)_n}{(\beta_1)_1 \cdots (\beta)_n} (1+\lambda)} \leq 1 - A \left(A - B - 1 \right),$$

then $K(y,c, \alpha, \lambda, \mu, m, A, B) \subset N_\phi (e)$.

Proof: It follows from (17), that if $f \in K(y,c, \alpha, \lambda, \mu, m, A, B)$, then

$$W_{2}^{+c}(\alpha; \lambda; \nu; m)(1-AB) \sum_{n=2}^{\infty} n a_n$$

$$\leq [1 + A(A-B-1)].$$

hence

$$\frac{(\alpha)_1 \cdots (\alpha)_n}{(\beta_1)_1 \cdots (\beta)_n} (1+\lambda) \sum_{n=2}^{\infty} n a_n$$

$$\leq [1 + A(A-B-1)].$$

which implies,

$$\sum_{n=2}^{\infty} n a_n \leq \frac{(\alpha)_1 \cdots (\alpha)_n}{(\beta_1)_1 \cdots (\beta)_n} (1+\lambda) \sum_{n=2}^{\infty} n a_n$$

$$= \phi. \quad (23)$$

Using (15), we get the result.

Definition 3: The function g defined by

$$g(z) = z - \sum_{n=2}^{\infty} b_n z^n$$

is said to be member of the class $K_\phi (y,c, \alpha, \lambda, \mu, m, A, B)$ if there exists a function $f \in K(y,c, \alpha, \lambda, \mu, m, A, B)$ such that

$$\frac{g(z)}{f(z)} - 1 \leq 1 - \beta,$$

$$|z| \in U, 0 \leq \beta < 1.$$

Theorem 3: If $f \in K(y,c, \alpha, \lambda, \mu, m, A, B)$ and

$$\beta = 1$$

$$- \frac{W_{n}^{+c}(\alpha; \lambda; \nu; m)(1-AB)}{2 \sum_{n=2}^{\infty} W_{n}^{+c}(\alpha; \lambda; \nu; m)(1-AB) - [1 + A(A-B-1)]},$$

then $N_\phi (f) \subset K_\beta (y,c, \alpha, \lambda, \mu, m, A, B)$.

Proof: Let $g \in N_\phi (f)$. Then we have from (14) that

$$\sum_{n=2}^{\infty} |a_n - b_n| \leq \phi,$$

which implies the coefficient inequality

$$\sum_{n=2}^{\infty} |a_n - b_n| \leq \frac{\phi}{2}.$$

Also since $f \in K(y,c, \alpha, \lambda, \mu, m, A, B)$, we have from (17)

$$\sum_{n=2}^{\infty} a_n \leq \frac{1 + A(A-B-1)}{W_{n}^{+c}(\alpha; \lambda; \nu; m)(1-AB)},$$

where

$$W_{n}^{+c}(\alpha; \lambda; \nu; m) = \frac{(\alpha)_1 \cdots (\alpha)_n}{(\beta_1)_1 \cdots (\beta)_n} (1+\lambda),$$

so that

$$\frac{g(z)}{f(z)} - 1 = \frac{\sum_{n=2}^{\infty} (a_n - b_n) z^n}{z - \sum_{n=2}^{\infty} a_n z^n} \leq \frac{\sum_{n=2}^{\infty} |a_n - b_n|}{1 - \sum_{n=2}^{\infty} a_n} \leq \frac{\phi}{2 \sum_{n=2}^{\infty} W_{n}^{+c}(\alpha; \lambda; \nu; m)(1-AB)} = 1 - \beta.$$

Thus by Definition (3), $g \in K_\beta (y,c, \alpha, \lambda, \mu, m, A, B)$ for β given by (25). This completes the proof.

3. Convolution Properties

Theorem 4: Let the function $f_j (j = 1, 2)$ defined by

$$f_j (z) = z - \sum_{n=2}^{\infty} a_n j z^n \quad (a_n j \geq 0, j = 1, 2),$$

be in the class $K(y,c, \alpha, \lambda, \mu, m, A, B)$.

Then $f_1 * f_2 \in K(y,c, \alpha, \lambda, \mu, m, A, \sigma)$, where

$$\sigma = \frac{W_{n}^{+c}(\alpha; \lambda; \nu; m)(A^2 - A - 1 + [1 + A(A-B-1)]^2}{W_{n}^{+c}(\alpha; \lambda; \nu; m)(A^2 - A + 1) - [1 + A(A-B-1)]^2}.$$

Proof: We must find the largest σ such that

$$\sum_{n=2}^{\infty} W_{n}^{+c}(\alpha; \lambda; \nu; m)(1-AB) \sum_{n=2}^{\infty} a_n j z^n \leq 1.$$
Since \(f_j \in K(y, c, \alpha, \lambda, t, m, A, B)(j = 1, 2) \), then
\[
\sum_{n=2}^{\infty} \frac{W^{\gamma+c}_n(\alpha; \lambda; \nu; m)(1 - AB)}{[1 + A(A - B - 1)]} a_{n,j} \leq 1,
\]
\((j = 1, 2) \). \((27) \)

By Cauchy-Schwarz inequality, we get
\[
\sum_{n=2}^{\infty} \frac{W^{\gamma+c}_n(\alpha; \lambda; \nu; m)(1 - AB)}{[1 + A(A - B - 1)]} \sqrt{a_{n,1}a_{n,2}} \leq 1.
\]
\((28) \)

We went only show that
\[
\frac{W^{\gamma+c}_n(\alpha; \lambda; \nu; m)(1 - AB)}{[1 + A(A - B - 1)]} \leq \frac{W^{\gamma+c}_n(\alpha; \lambda; \nu; m)(1 - AB)}{[1 + A(A - B - 1)]}.
\]
\((29) \)

Thus it is sufficient to show that
\[
\frac{W^{\gamma+c}_n(\alpha; \lambda; \nu; m)(1 - AB)}{[1 + A(A - B - 1)]} \leq \frac{W^{\gamma+c}_n(\alpha; \lambda; \nu; m)(1 - AB)}{[1 + A(A - B - 1)]}.
\]
\((30) \)

which implies to
\[
\frac{\sigma}{[1 + A(A - B - 1)]} \leq \frac{A^2 + 1 - [1 + A(A - B - 1)]^2}{W^{\gamma+c}_n(\alpha; \lambda; \nu; m)(1 - AB) - [1 + A(A - B - 1)]^2}.
\]
\((31) \)

Theorem 5: Let the function \(f_j(j = 1, 2) \) defined by (26) be in the class \(K(y, c, \alpha, \lambda, t, m, A, B) \). Then the function \(h \) defined by
\[
h(z) = z - \sum_{n=2}^{\infty} (a_{n,1} + a_{n,2}) z^n,
\]
\((32) \)

belong to the class \(K(y, c, \alpha, \lambda, t, m, A, B) \), where
\[
W^{\gamma+c}_n(\alpha; \lambda; \nu; m)z^2A(1 - AB)^2 - 2A[1 + A(A - B - 1)]^2.
\]
and this completes the proof.

4. Integral Mean Inequalities for the Fractional Integral

Definition 4: The fractional integral of order \(s \) \((s > 0)\) is defined for a function by
\[
D_z^s f(z) = \frac{1}{\Gamma(s)} \int_0^z \frac{f(t)}{(z - t)^{1-s}} dt,
\]
\((33) \)

where the function \(f \) is analytic in a simply-connected region of the complex \(z - \) plane containing, and

\[
\varepsilon \leq \frac{W^{\gamma+c}_n(\alpha; \lambda; \nu; m)z^2(1 - AB)^2 - 2A[1 + A(A - B - 1)]^2}{W^{\gamma+c}_n(\alpha; \lambda; \nu; m)(1 - AB) - [1 + A(A - B - 1)]^2}.
\]

Proof: We must find the largest \(\varepsilon \) such that
\[
\sum_{n=2}^{\infty} \frac{W^{\gamma+c}_n(\alpha; \lambda; \nu; m)(1 - AB)}{[1 + A(A - B - 1)]} (a_{n,1}^2 + a_{n,2}^2) \leq 1.
\]

Since \(f_j \in K(y, c, \alpha, \lambda, t, m, A, B)(j = 1, 2) \), we get
\[
\sum_{n=2}^{\infty} \frac{W^{\gamma+c}_n(\alpha; \lambda; \nu; m)(1 - AB)}{[1 + A(A - B - 1)]} a_{n,1}^2 \leq 1,
\]
\((34) \)

and
\[
\sum_{n=2}^{\infty} \frac{W^{\gamma+c}_n(\alpha; \lambda; \nu; m)(1 - AB)}{[1 + A(A - B - 1)]} a_{n,2}^2 \leq 1.
\]
\((35) \)

Combining the inequalities (34) and (35), gives
\[
\sum_{n=2}^{\infty} \frac{1}{2} \left(\frac{W^{\gamma+c}_n(\alpha; \lambda; \nu; m)(1 - AB)}{[1 + A(A - B - 1)]} \right)^2 (a_{n,1}^2 + a_{n,2}^2) \leq 1.
\]
\((36) \)

But \(h \in K(y, c, \alpha, \lambda, t, m, A, B) \) if and only if
\[
\sum_{n=2}^{\infty} \frac{W^{\gamma+c}_n(\alpha; \lambda; \nu; m)(1 - AB)}{[1 + A(A - B - 1)]} a_{n,1}^2 \leq 1,
\]
\((37) \)

the inequality (37) will be satisfied if
\[
W^{\gamma+c}_n(\alpha; \lambda; \nu; m)(1 - AB) \leq \frac{1}{[1 + A(A - B - 1)]} \frac{W^{\gamma+c}_n(\alpha; \lambda; \nu; m)(1 - AB)}{[1 + A(A - B - 1)]}.
\]
\((38) \)

In 1925, Littlewood \[7\] proved the following subordination theorem:

Theorem 6 (Littlewood [7]): If \(f \) and \(g \) are analytic in \(U \) with \(f < g \), then for
\[
\mu > 0 \text{ and } z = re^{i\theta} (0 < r < 1)
\]
\[
\int_0^{2\pi} |f(z)|^\mu d\theta \leq \int_0^{2\pi} |g(z)|^\mu d\theta.
\]
Theorem 7: Let \(f \in K(y, c, \alpha_1, \lambda, \mu, a, b, A, B) \) and suppose that \(f_n \) is defined by
\[
f_n = z - \frac{[1 + A(A - B - 1)]}{W^{+e}(\alpha_1; \lambda; i; m)(1 - AB)} z^n,
\]
\((n \geq 2).\) (35)

Also let
\[
\sum_{i=2}^{\infty} (i - \eta)_{\eta+1} a_i
\]
\[
\leq \frac{[1 + A(A - B - 1)]\Gamma(n + 1)\Gamma(s + \eta + 3)}{W^{+e}(\alpha_1; \lambda; i; m)(1 - AB)\Gamma(n + s + \eta + 1)\Gamma(2 - \eta)}.
\]

for \(0 \leq \eta \leq i, s > 0, \) where \((i - \eta)_{\eta+1}\) denote the Pochhammer symbol defined by \((i - \eta)_{\eta+1} = (i - \eta)(i - \eta + 1) \ldots i.\)

If there exists an analytic function \(q \) defined by \((q(z))^{n-1}\)
\[
= \frac{W^{+e}(\alpha_1; \lambda; i; m)(1 - AB)\Gamma(n + s + \eta + 1)}{[1 + A(A - B - 1)]\Gamma(n + 1)} \sum_{i=2}^{\infty} (i - \eta)_{\eta+1} H(i) a_i z^{-i},
\]
where \(i \geq \eta \) and
\[
H(i) = \frac{\Gamma(i - \eta)}{\Gamma(i + s + \eta + 1)}\] (38)

then, for \(z = re^{i\theta} \) and \(0 < r < 1 \)
\[
\int_{0}^{2\pi} |D_{z}^{-s-n} f(z)|^{\mu} \, d\theta,
\]
\((s > 0, i \geq 2),\)

Proof: Let
\[
f(z) = z - \sum_{i=2}^{\infty} a_i z^{-i}.
\]

For \(\eta \geq 0 \) and Definition 4, we get
\[
D_{z}^{-s-n} f(z) = \frac{\Gamma(2)\Gamma(\eta + 1)}{\Gamma(s + \eta + 2)} \left(1 - \sum_{i=2}^{\infty} \left(\frac{\Gamma(i + 1)\Gamma(s + \eta + 2)}{\Gamma(2)\Gamma(i + s + \eta + 1)} a_i z^{-i} \right) \right).
\]

where
\[
H(i) = \frac{\Gamma(i - 1)}{\Gamma(i + s + \eta + 1)},
\]
\((s \geq 0, i \geq 2).\)

Since \(H \) is decreasing function of \(i \), we have
\[
0 < H(i) \leq H(2).
\]

Similarly, from (35) and Definition 4, we get
\[
D_{z}^{-s-n} f(z) = \frac{\Gamma(2)\Gamma(\eta + 1)}{\Gamma(s + \eta + 2)} \left(1 - \sum_{i=2}^{\infty} \left(\frac{\Gamma(i + 1)\Gamma(s + \eta + 2)}{\Gamma(2)\Gamma(i + s + \eta + 1)} a_i z^{-i} \right) \right).
\]

By setting
\[
\int_{0}^{2\pi} |D_{z}^{-s-n} f(z)|^{\mu} \, d\theta,
\]
\((s > 0, i \geq 2),\)

which readily yields \(w(0) = 0. \) For such a function \(q, \) we obtain
\[
\[q(z)\]^{n-1} \leq \frac{W^{+e}(\alpha_1; \lambda; i; m)(1 - AB)\Gamma(n + s + \eta + 1)}{[1 + A(A - B - 1)]\Gamma(n + 1)} \sum_{i=2}^{\infty} (i - \eta)_{\eta+1} H(i) a_i z^{-i},
\]

This completes the proof of the theorem.

By taking \(\eta = 0 \) in the Theorem 7, we have the following corollary:

Corollary 1: Let \(f \in K(y, c, \alpha_1, \lambda, \mu, a, b, A, B) \) and suppose that \(f_n \) is defined by (35). Also let
\[
\sum_{i=2}^{\infty} i a_i \leq \frac{[1 + A(A - B - 1)]\Gamma(n + 1)\Gamma(s + 3)}{W^{+e}(\alpha_1; \lambda; i; m)(1 - AB)\Gamma(s + \eta + 1)\Gamma(2)},
\]
\(n \geq 2.\)
If there exists an analytic function q defined by
\[
\left(q(z) \right)^{-1} = \frac{\sum_{i=2}^{\infty} iH(i)a_i z^{i-1}}{[1+A(A-1)](\gamma(n+1))},
\]
where
\[
H(i) = \frac{\Gamma(i)}{\Gamma(i+s+1)}, \quad (s > 0, i \leq 2),
\]
then, for $z = re^{\theta}$ and $0 < r < 1$
\[
\int_{0}^{2\pi} |D^{s\phi}_z f(z)|^\mu d\theta \leq \int_{0}^{2\pi} |D^{s\phi}_z f_n(z)|^\mu d\theta, \quad (s > 0, \mu > 0).
\]

References

Author Profile

Waggas Galib Atshan, Assist. Prof. Dr. in Mathematics (Complex Analysis), teacher at University of Al-Qadisiya, College of Computer Science & Mathematics, Department of Mathematics, he has 90 papers published in various journals in mathematics till now, he taught seventeen subjects in mathematics till now (undergraduate, graduate), he is supervisor on 20 students (Ph.D., M.Sc.) till now, he attended 23 international and national conferences.

Ali Hussein Battor, Prof. Dr. in Mathematics (Functional Analysis), at University of Kufa, College of Education for Girls, Department of Mathematics, he has many papers published in various journals in mathematics, he taught number of subjects in mathematics(undergraduate, graduate), he is supervisor on more than 25 students till now, he attended more than 30 international and national conferences.